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Abstract: Since grass is very abundant on the Earth’s surface, it impnitant element of natural
3D scenes. Real-time realistic rendering of grass has altvagn difficult due to the huge number of
grass blades. Overcoming this geometric complexity uguatjuires many coarse approximations
to provide interactive frame rates. However, the perforteazomes at the cost of poor lighting qual-
ity and lack of detail of the grass. In this report, we desealgrass rendering technique that allows
better lighting and parallax effect while maintaining réale performance. We use a novel com-
bination of geometry and lit volume slices, composed of igiclional Texture Functions (BTFs).
BTFs, generated using a fast pre-computation step, praidaccurate, per pixel lighting of the
grass. Our implementation allows the rendering of a fobfidt, covered by approximately 627
million virtual grass blades, with dynamic lighting, shadoand anti-aliasing in real-time. The
creation of arbitrary shaped patches of grass is made pessiing our density management.
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Rendu d’Herbe en Temps Réel avec Eclairage dynamique et
Ombres

Résumé : Puisque I'herbe couvre une grande partie de la terre, ingsbitant de I'inclure dans
les scénes naturelles 3D. Le rendu en temps réel d’herbgaaitsété une tache difficile a cause du
nombre trés élevé de brins d’herbe a gérer. Pour contouetir difficulté, on a souvent recours a
de fortes approximations lorsque I'objectif est I'intetieité. Malheureusement, ces performances
sont obtenues au détriment de la qualité de I'éclairage fitdase des détails de I'herbe. Dans ce
rapport, nous proposons une méthode de rendu d’herbe offrameilleur réalisme de I'éclairage
et un effet de parallaxe tout en assurant une performanangstréel. Nous utilisons une nouvelle
méthode combinant géométrie et tranches de volumes, aegder étant représentées par des BTFs
(Bidirectional Texture Functions) générées dans une ptegzétraitement. Cette méthode assure
un calcul précis par pixel de I'éclairage. Notre mise en oeyermet le rendu d’'un terrain de foot-
ball couvert par plus de 627 millions de brins d’herbe, uraiéafe dynamique, un calcul d’'ombre
et un anticrénelage en temps réel. La créatioon de surfdoexbd de forme quelconque est rendue
possible par notre méthode de gestion de density d’herbe.

Mots clés : rendu d’herbe, temps réel, éclairage, ombres, niveaux @d,ddensité, rendu volu-
mique, BTF, anticrénelage
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4 Boulanger & Pattanaik & Bouatouch

1 Introduction

Figure 1: From left to right: football field with 627 millionrgss blades, close view where shadows
are visible, park scene with user-defined grass density.

Grass is the plant family that occupies the greatest areheowbrld’s land surface. It can be
found in meadows, prairies, forests, mountains, savamathdll stadiums, etc. It is then crucial to
account for it when rendering natural 3D scenes.

A surface of grass is composed of a large numbeyrass bladestoo large to be fully stored in
memory and rendered directly. Our goal is to render surfaégsass with the highest obtainable
fidelity, at real-time frame rates. Overcoming the compieaf grass rendering has been a challeng-
ing problem for many years. Previous approaches eitheeragrass in real-time [1, 2, 3, 4, 5] but
with coarse approximations, or render grass in high qublityoffline [6]. We propose an approach
that allows real-time rendering of large surfaces of graitis dynamic lighting, dynamic shadows
and anti-aliasing. Rendering high quality grass with aataulighting is still not possible even with
high performance graphics cards. Our levels of detail agpgrgrovides a good compromise be-
tween lighting quality and rendering speed, and allows ghanthe balance for a better quality or
a better speed. Arbitrary shaped surfaces of grass can I @asted using our management of
grass density.

This report is structured as follows. First, we present sbarkground notions we use in our
approach, with their pros and cons. Next, we present outisnlgtep by step. Then, we introduce
some implementation issues and how we solved them. Finvedlypresent some rendering results
followed by a conclusion and proposals for future work.

Irisa



Rendering Grass in Real-Time with Dynamic Lighting 5

2 Previous work

Geometry-based rendering methods allow precise repisam of objects, with textures and light-
ing. However, the processing power needed to render matipmgrass blades in real-time is not
yet available. So far, only offline processing has been usedrider geometric grass, in particular
for movies.

Image-Based RenderingBR) is often used when geometry is too complex to be efficiently
rendered. Billboards are the simplest of the IBR approachiégy are triangles or quadrilaterals
covered by a semi-transparent 2D texture. They allow effigiendering of complex natural objects
such as trees. Their rendering is more efficient than clalsg@ometry since a single primitive can
be used in place of a large amount of geometry. Several kihtilllooards have been designed:
single quadrilateral rotated to be always aligned with tx@era [7], fixed aligned layers of quadri-
laterals [2], fixed crossed quadrilaterals [4]. The mainnirack of these methods is the lack of
parallax effect. Thus using them makes difficult the creatibview-dependent realistic rendering.

Rendering billboards using simple semi-transparent testdoes not allow complex lighting.
Parameters such as reflection properties are missing. Iampnoach, we make use of a modi-
fied version ofBidirectional Texture Functionsalso calledBTFs[8]. They represent reflectance
properties of a surface point depending on its position enstirface, the view direction and the
incident light direction. They are an extensionBiRDFs(Bidirectional Reflectance Distribution
Functiong [9], which are constant for every point of a surface. A sgbtivarying BRDF is called
SBRDF[10]. If the BRDF per point of the surface is multiplied by awaility function, we obtain
an Apparent BRDHABRDRF. A BTF is composed of such ABRDFs for every point of a surface
allowing the management of self-shadowing and self-oamhss If analphachannel is added to the
BTF data, this reflectance function can be used for billbgarather than simple semi-transparent
textures. A different way to represent a BTF, also adaptdulitioards, is the use of a set of images
per view and light direction [11].

A third method of rendering complex objects with repetitilegails is volume rendering [12, 13].
A 3D reference volume, usually a box, contains one or mor&aies of the object that has to
be rendered. This volume is tiled over an underlying surfagalume representation offers full
parallax: when the viewer is moving, objects are correalydered with no flatness impression as
with billboards. Volume rendering has already been useénder grass [13] but not in real-time.
Generally, raytracing is used to display these volumesetblume rendering methods have been
used to meet the real-time constraint [14, 15, 16, 17], iti@dar using 2D textured slices. Bakay et
al. [3] define a simpler approach, based on slicing, usingglestexture to render the ground and the
blades of grass with different lengths. The texture costéie image of the ground and green dots.
A stack of quadrilaterals with the same texture is renderigid alpha test enabled. Different alpha
thresholds create different blade lengths. However, a@gblades look similar and this method
does not manage lighting.

The method presented in this paper uses a combination ofgfepivased and volume-based
approaches, the volume data being defined using BTFs. Wmeuitle method in the following
section.

PI n1809



6 Boulanger & Pattanaik & Bouatouch

3 Our grass rendering method

The main goal of our work is to design and develop a GPU-bassgkgendering system that inte-
grates dynamic illumination and good parallax effect irl-téae applications containing very large
surfaces of grass. We combine geometry and volume rendasimg a levels of detail scheme
(LOD) to achieve this goal. We start by presenting our globalltewé detail scheme. Then, we
give details about the rendering method for each level. Negtpresent the density management
allowing the creation of non-uniform grass distributiomsldhe management of smooth transitions
between levels of detail. Finally, we describe our shadgvailgorithm.

3.1 Levels of detail

We want to render large terrains covered with grass, fobfieéds for example. Direct rendering of
geometric blades of grass with lighting is impossible in-teae (about 4 minutes per frame for a
soccer field made of 250 million grass blades), so we need ke mse of levels of detail. We use
the distance from the camera as a criterion to switch betwes@ts (Figure 2). If the grass is close
to the camera, the best rendering quality is used, performiag) lit and shadowed geometry. When
grass is farther, a large number of grass blades covering pifels have to be rendered. We use an
approach faster than geometry: volume rendering using-samsparent axis-aligned slices.

distance
from the
camera

far

(horizontal
slice only)

medium distance

(vertical and
horizontal slices)

(geometry)

Figure 2: The three levels of detail, chosen depending odligtance from the camera. For nearby
grass, simple geometry is used. At moderate distance dmtalzand vertical semi-transparent slices
are rendered. For faraway grass, only the horizontal diget.

Irisa



Rendering Grass in Real-Time with Dynamic Lighting 7

However, we cannot define all parameters of every blade sbgrga terrain because the required
memory amount is excessive. We need to define a smaller ménaihd use it several times: we
render several instances ofgeass patchover the ground surface [12, 13], laying on the cells of
an uniform grid. We define this grass patch two different wassa set of geometric grass blades
distributed inside a rectangle, and as a set of axis-aligiieds using semi-transparent textures
(Figure 2). The latter approach offers a good parallax &ffseen from any direction, the grass
patches do not look flat. For very far grass, the number oéslio be rendered is excessive. At this
distance, a surface of grass looks flat, thus only the sliaeslpl to the ground are kept.

A difficulty of any LOD scheme lies in the seamless transitmanagement. We describe in
Section 3.4 the way we perform smooth transitions betweegide

There can be significant visual differences between leviedetail if the data representing these
levels are different. For instance, we cannot use an exthigl-quality raytracer to generate the
volume slices data, otherwise variations of color wouldiséle at the transition between geometry-
based and volume-based grass. In our approach, the geneshtiata for the volume slices is done
by rendering a patch of geometry-based grass, detailedcitio8e3.3.

(@) (b)

Figure 3: Result of aperiodic tilingda) Repetition of a single grass patch without symmetries {peri
odic tiling), repetitive patterns can be observed at thearasf the image(b) Random symmetries
of the grass patch instances to achieve aperiodic tilingregetition pattern can be observed.

Repeating the same patch of grass many times over a whaéntgenerates a distracting visual
pattern. We introduce a simpéperiodic tilingscheme that consists in using four different versions
of the unique grass patch. Then each version is used randormyach terrain grid cell (Figure 3).
We define the four patches as mirrored versions of the bash,md data are present only once in
memory, the symmetry operation being done at run-time ia&). Such random symmetries break
the strong visual pattern enough. No problems are visibteeapatch borders: the roots of grass
blades defined by geometry are inside the patch bounds btipthean go outside, and interleave
with the blades of the neighbor patches. For faraway grasshigh visual complexity hides the

PI n1809



8 Boulanger & Pattanaik & Bouatouch

transitions. By following this simple aperiodic tiling setme, we get a reasonably good result and
the rendering speed is almost not affected.

If the distribution of the grass blades is not uniform inside grass patch, the clumps of grass
that are more dense appear in a regular fashion over thentesvan using random patch symmetries.
The distribution of grass blades inside a patch has to be i@rmmas possible while keeping the
random distribution. Distributing grass blade roots usingandom numbers generator for their
coordinates does not give good results: the number of rbotdd theoretically be infinite to achieve
the uniformity. To improve this uniformity, we ustratified samplingthe grass patch is subdivided
into a fine uniform grid and a grass blade is placed at a randoatibn inside each cell.

3.2 Geometry-based rendering

Figure 4: Grass blades defined with textured semi-tranapgtedrilateral strips.

Geometrically modeled grass blades are used for rendelosg to the camera and for the gen-
eration of volume slices data. We model a grass blade dpyadrilateral stripas shown in Figure
4. Real grass blades are very thin: we approximate them withsided quadrilaterals of zero
thickness. The trajectory of a particle system [18, 1] d&fitiee shape of the strip: a particle is
launched from the root of the blade, almost vertically, witluence of the gravity. The particle
position is evaluated several times, giving the coordmaftehe blade reference points from which
we determine the vertex coordinates. Tdiphachannel (Figure &)) of the texture covering the
quadrilateral strips (Figure(B)) gives the correct shape of a grass blade. In Section 4.2 gted d
our method to perform order-independent rendering of tha-tensparent quadrilaterals used for
the grass blades.

Irisa



Rendering Grass in Real-Time with Dynamic Lighting 9

(a)

(b)

()

|

Figure 5: Texture used for a grass bla®.Original scanned blad€b) Color channel of the texture
modified to remove the white bordefc) Alpha channel of the texture defining the shape of the
blade.

The Lambert reflection model is used for the grass blade esfaepresenting reflectance of
diffuse only surfaces. An ambient component is added taghgrsimulate lighting from the envi-
ronment and inter-reflections. For each blade, two-sidgttilig is enabled: the face to be rendered
(front or back) is selected depending on the normal vectojeptions in camera space. The color
of each blade is slightly modified to simulate different aged levels of degradation. To simulate
ambient occlusion, we set the color of the blades darkeedlm$he ground [1] because the amount
of occlusions due to the neighbor blades is higher than feibtade tips. The ambient occlusion
coefficient per vertex is calculated as a linear functiormefheight of the vertex from the ground.

3.3 Volume rendering

We use volume rendering for grass at middle distance frorodheera, where rendering of individual
grass blades is too expensive due to their number. Our agpradws real-time rendering and a
good parallax effect, which is important when the cameraenothe grass seems to have a real
3D shape and not flat as with billboards. The terrain to beegmlis divided into cells using a
uniform grid. Over each cell, we lay a volume containing saléhousands blades of grass. The
volume width and depth correspond to the cell dimensionstaretight is determined by the height
of the tallest blade of grass. We then repeat this volume thaeterrain. The way we minimize the
presence of the repetitive pattern is explained in Sectibn@Generally, methods using hardware 3D
acceleration resort to slicing, where several slices ofvtilame are rendered using a 3D texture.
A classic approach is to make the polygon planes facing theeca [17]. These polygons are
semi-transparent to allow the visibility of the polygonshivel and to define the global shape of
the objects inside the volume. With our instancing approaatice the polygon coordinates are
depending on the camera position, every coordinate wowld teebe computed for each polygon of
every visible instance of the volume. This approach is to&J@Rd GPU intensive because of the
linearly interpolated 3D texture accesses. So we use 2Bsslaligned with the three axes (middle
of Figure 2). The geometry representing these slices isgtait for any movement of the camera
and the textures mapped onto these slices are 2D rather Datins faster to read. The use of

PI n1809



10 Boulanger & Pattanaik & Bouatouch

slices for the three axes offers a good parallax effectngin illusion of depth. Moreover, there
are no visible gaps between the slices since there are alsliags on the two other axes that fill
these gaps. Because of the vertical nature of grass bleglag,multiple horizontal slices gives very
poor results: many holes are visible between the slicesaiitiqular when seen from a low altitude.
Hence we use only one horizontal slice, close to the bottotieppatch to make it visible only when
grass is seen from a high viewpoint.

Y directional
light source

Y far clipping
i plane
near
clipping
plane

patch bounds )
é - rendering
= N camera

=

f
/ L rendered grass,
Z

only between clipping
planes

Figure 6: Rendering of a slice orthogonal to the X axis. Theent orthogonal camera is in front
of the slice K+). The current light direction i¥. The normal to the slice il and determines the
front face of the slice. The near and far clipping planesvatite rendering of only the grass blades
needed for the current slice.

One of our goals is to render dynamically lit grass. We needppe! lighting for our volume
rendering approach since we do not define vertices for eadeldf grass. We define the slice
textures using semi-transparent BTFs rather than simplar2iges as for classic billboards. BTFs
are originally dedicated to the representation of macneetiires on a surface (see Section 2), so
they can represent small variations of height with simatabf self-shadowing and self-occlusions.
BTF is a 6-dimensional function defining the reflectance ahgmint of a surface for any incidence
and reflection direction. To reduce the amount of memoryireduo store the BTF data, we use
a discrete representation of this function using a low nunolbéight and view directions, 5 in our
case:Y+, X+, Z+, X— andZ—. Y- is not defined because we consider that the camera and the
light source cannot be under the ground. As the slices aseadigjined and of zero thickness, we use
only 2 view directions among the 5. Their choice depends erslice directions. Due to the zero
thickness, the slices are invisible from the remaining 8ations. For example, only thée+ andX—

Irisa



Rendering Grass in Real-Time with Dynamic Lighting 11

view directions are useful for the slices orthogonal toXhaxis (as in Figure 6). An example data
set for a slice orthogonal to th¢ axis is shown in Figure 7. Even though the sampling is very low
(five directions), the results using these slices are Migyeasing for grass surfaces with diffuse
only reflectance.

Color channel Alpha channel

Ambient

Light direction
uonoauIp 3ybIT

‘ Front ‘ Back ‘
View direction View direction

Figure 7: BTF data for a slice orthogonal to the X axis. The ileiage is the color channel, the
right one is the alpha channel of the texture that stores r@septation of the BTF. The five light
directions are stored along the vertical axis, the viewdfioas along the horizontal axis. Front
view of a slice corresponds to watch it from the same side libe sormal is pointing to. A sixth
row represents the diffuse reflectance factor of the grassriabthat is used to account for ambient
lighting.

To create the slices data, we resort to a method similar teeléy] for volume textures creation:
a section of a patch of grass defined with geometry is rendm®deen two clipping planes. In our
approach, we perform this process for each slice, eachdigittion and each view direction. This
process is fast, a few seconds, since we use geometry regdesing 3D hardware acceleration.
This pre-processing step has to be done only once since shking slices data are stored on the
hard drive. The method for a slice orthogonal to ¥haxis is illustrated in Figure 6. Light direction
is one of the BTF parameters, not light position. Thus we utiesgtional light source to illuminate

PI n1809



12 Boulanger & Pattanaik & Bouatouch

the grass blades. For the same reason, an orthographicaanused in place of a perspective one.
Two clipping planes orthogonal to the camera directionmeate needed. We use the near and far
clipping planes originally used for the Z-buffer range lisaiThese planes are located at the bounds
of the currently rendered slice.

To create the alpha channel of the BTF, for semi-transpa@omme slices, we use the above
method (Figure 6) but using geometry with a constant whiteraan a black background and using
the alpha channel of the blade texture (Figuf®) We obtain grayscale images (right in Figure 7)
with small gradients at the grass blade borders. The gredaiow anti-aliasing when performing
the final rendering. The alpha channel is independent ofghédirection, thus can be rendered once
for a given view direction. To create the part of the sliceadsed for the ambient component com-
putation (top left of Figure 7), we render a patch using geoyngithout any lighting computation,
only the color of the grass blades appear.

As mentioned earlier, we render large grass fields by tililgnentary volumes. In a given
volume, there are parts of grass blades whose roots are metgkbor volumes. Thus, cut blades
can appear between rendered patches if the BTF data are tammysing only one patch of geometric
grass. To handle this problem, we render the desired patthsagight neighbors when creating the
BTF data.

When rendering the grass field, we use the Lambert model. FHagke somnidirectional light
source applied to a point of a surface:

lq
1+Bd?2

whereKjy is the diffuse reflectance factor of the materiglthe intensity of the ambient lighky
the intensity of the point light sourcd,the distance between the surface point and the light source,
B the attenuation factofl the normal to the surfacé, the light direction from the surface point,
andl the rendered pixel intensity. The 1 in the denominator avaid infinite intensity when being
very close to the light source. Some of these values are fagamthe sampled BTF. Only 5 light
directions are available so we need to interpolate to geintbetween BTF values, otherwise there
would be sudden changes of color when moving the light souvde use a spherical barycentric
interpolation of the BTF images (see Appendix A for detdit)the following equation, we compute
the diffuse part by combining the images of the directibps € {1..5}.

I = lambient+ ldif fuse= Kdla + Kg ma)(N -E,O)

5
Lo lq
| =Kgla+ aiKgmaxN-L;,0) | ———

5 Id
= Kd|a+ (izlaiCi> Tﬁdz

The Ky term is taken from the first row of the BTF image (Figure 7). STt@rm is also used for
the final ambient component computation. TemaxN - [;,0) term is taken from the five next
rows of the image (calle@; in appendix A) and is used for the diffuse component comparnaty;
are the interpolation coefficients, computed as in AppeAdiXwo of these coefficients are 0 since
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Rendering Grass in Real-Time with Dynamic Lighting 13

only three samples are considered for a given quadrant digimésphere of possible directions. For
a directional light source (the sun for example), the coeeffits are computed once for the whole
grass surface. Lighting computation due to a point lightrseuequires per pixel computation of
the previous equation and hence is very expensive. Pexvestaputation of then; coefficients
with per pixel linear interpolation provides a good cosélify compromise. We interpolate only the
diffuse component of the light and separately manage theéesmhbomponent as the ambient light
value is constant for every point of the grass field.

A BTF is a function depending on the light and view directiolige interpolate sampled BTF
data according to the incident light direction. For the vidivection, interpolation is not useful since
only two directions are defined and represent each face ofdhene slices. If the camera is on
the side where the slice normal vector is pointing, the ffané has to be rendered (left column of
Figure 7). Otherwise, the back face is rendered (right calofrFigure 7).

For grass that is very far from the camera, particularly gnéfor viewpoints at high altitude, we
use a part of our volume rendering approach: only the hotiafices are rendered. This approach
looks similar to classic 2D texturing. However, our apptoatlows per pixel lighting and semi-
transparency to see the ground beneath. Depending on thveavigle and the distance from the
grass, the visibility of the ground varies. The best resatesobtained using anisotropic filtering.
However, trilinear filtering is usually enough and allowdtbe performances but a slightly lower
rendering quality.

3.4 Density management and seamless transitions

In nature, grass is never uniformly distributed over theugh Various external phenomena intro-
duce chaos: kind of ground, availability of water [6], rocksads, etc., hence affecting the grass
density We define grass density as the number of grass blades by fusirface. The density
of grass at a point of the ground, which we daltal density can be defined with density map
covering the terrain (left of Figure 8).

It is often difficult to manage grass density in real-timelaggions. Thus, when many instances
of a primitive, a tree for example, have to be distributed terain using a density map, the position
of each instance is computed in a preprocessing step. Theg®ps are then used to translate each
instance of the primitive when achieving the rendering @ fimal scene. In the case of grass,
the required memory to store all grass blade locations isailadle for large terrains containing
hundreds of million grass blades. We define a method that mloeequire the preprocessing step
and the storage space to locate the instances.

A user defined density map (left of Figure 8) gives informatio create arbitrary distributions of
grass (right of Figure 8) on the terrain. This map is equiviaie a probability distribution function.
We use bilinear interpolation to get the local density factepoint of the ground. A simple way to
simulate different values of grass density would be to cbahg opacity of an uniform distribution
of grass blades depending on the local density. Howeverehdts do not look natural. We want
to keep the full opacity of the grass blades and change thdeauof rendered grass blades while
keeping the global uniformity of the blades distribution.

PI n1809



14 Boulanger & Pattanaik & Bouatouch

l

g

Figure 8: Modeling of grass using a bilinearly interpolatietisity map. The leftimage is an example
of density map to render the scene of the right image. Thevarepresents the camera position.
Black pixels represent regions with no grass, white pixelgresent the regions with maximum
density.

We recall that a base grass patch is repeated over the teHaimever, we want the rendering
of these patches to be different depending on the local gedsfined by the density map. Thus
we introduce the notion adensity thresholdFigure 9a)). With each blade of the base grass patch
is associated a threshold value rangingdyl]. During the rendering step, for each blade of each
rendered patch, a test is performed before rasterizafitime blade density threshold is greater than
the local density taken from the density map, then the bla@éiminated (Figure ®)). The blades
with a high threshold are then rendered only in locationk Wigh density. To keep the uniformity of
grass distribution for any density value, we define the dgtisiesholds randomly using an uniform
distribution inside the single patch. To manage differgrtcées of grass, we can use a density map
for each of the species and render the final scene in multgdsgs.

Density for volume rendering has to be handled a different siace the images defining the
BTFs for each slice do not carry information per blade of gradence, we provide an additional
texture per slice (Figure 10). Texels on this texture caydrg a grass blade are assigned a value
in ]0,1], stored as gray levels. Every texel belonging to a same dplade should have the same
gray level. To generate this image for each slice, we use dheesmethod as that of the BTF
generation: we render each grass blade of a patch betweedlipping planes with a constant gray
level proportional to the density threshold. At the time ctiieal rendering, the value from the density
threshold channel is compared with the local density takem the density map (Figure 11). If this
density threshold is greater than the local density, trgmfient is discarded. In Figure 11, the density
threshold (0B) at pointB is greater than the local density.4) at the projected poiid’, so the pixel
is not displayed. Conversely, the pix&lis displayed because its density threshol®)@s lower
than the local density (8).
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Rendering Grass in Real-Time with Dynamic Lighting 15

Density

thresholds 0.7
0.5 0.5
0.9 0.1 0.1
0.3 0.3
0.6
Density

(a) (b) map

Figure 9: Density thresholds manageméa).With each grass blade is associated a density threshold
in ]0,1]. (b) Rendering of this patch of grass using a density map with atenbvalue of @. Only
blades with a threshold lower or equal t®@re rendered.

Figure 10: Density thresholds for one slice.

Our LOD scheme combines both geometry-based and volurmeztlvasdering to render large
grass terrains in real-time. However, transitions areblésirom a method to another one. Smooth
transitions between the levels of detail are desirableufeid2). A simple approach consists in
fading from a rendering method to the other one by progrelschanging the opacity depending on
the distance from the viewer. The result does not look nhtluato the presence of semi-transparent
blades.

We propose to use our density management to perform seatrdesgions. In the region be-
tween two levels of detail, the two rendering methods arel as¢he same time but with different
densities, depending on the distance from the viewer. Hensebset of the grass blades is rendered
with geometry, the remaining blades are rendered with velshites. We use weight functions de-
pending on the distance from the viewer, shown in Figure 1&. dach grass blade processed at
rendering time, we multiply the local density taken from tlensity map by the weight function
corresponding to the current rendering method. Then, wimearthe comparison with the blade
density threshold.
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Slice

Ground

High density
Low density

Figure 11: Rendering of a slice using the density thresheldpixel. A andB are the pixels to be
tested. Their projections onto the ground ArandB’. With the given density values is displayed
but notB.

The different used weight functions are defined hereaftee JarametenninGeommaxGeom
minBT F, maxBT F (see Figure 13) are defined by the user, depending on theedasindering
quality. The higher these parameters, the higher the rerglguality but at a higher cost. We define
d as the distance from the cameng(d) the weight function for grass defined by geometry. We also
define theclamp(x, min, max function as following:

min if x<min,
clampx,minmay = ¢ X if min < x < max 1)
max if x> max

We define the weight function for geometry as following:

d — maxGeom
Wg(d) =c amp(minGeom maxGeom ) 2)
For the vertical slices, the weight function has two slopes:
d —minGeom d—maxBTF
Wos(d) = Clamp(maxGeorPr minGeorﬁO’ 1) 'Clamp(minBT F—maxBTF ) (3)

The function for the horizontal slices keeps only the firepsl of the previous function:

(4)

d —minGeom )

Whs(d) = clam -
hs(d) p(maxGeonﬂr minGeom

Problems appear when applying exactly the same comparimebn the local density multi-

plied by the weight function and the density threshold fer tivo rendering methods. For example,
at a distance from the viewer where the weight for the gegmstd.4 and the weight for volume
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Figure 12: Smooth transitions between levels of detail masible with false colors. Grass blades
rendered with geometry are red. Vertical slices are blueizdntal slices are green.

slices is 06, geometric blades with a density threshold in ]0,0.4] diadds on slices with a density
threshold in ]0,0.6] are rendered. So, the grass bladesavdénsity threshold in ]0,0.4] are rendered
twice, and the ones in ]0.6,1] are not rendered. To solveptttiblem, we use % densityT hreshold
rather thandensityT hresholdor blades defined by geometry when performing comparisdgh wi
the local density. Therefore, grass blades on slices adered ifdensityT hreshol&]0, 0.6], while
grass blades defined by geometry are rendergd-fdensity T hresholge]0.6, 1]. In this case, there
is no duplicated grass blades anymore.

When rendering grass with variable density depending on aityemap, blades of grass are
either rendered or not. However, using this method to matragsitions between levels of detail
creates slightly visible popping artifacts when moving tiaenera. Rendering a grass blade or not
is equivalent to setting its opacity to 1 or O respectivelhisTbehavior is shown in Figure (&)
where a grass blade is rendered if the local density mudtighy the weight function is greater than
its density thresholdth. We would like to have a smooth transition, as in Figuré)4Hence the
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weight
functions
1
horizontal slices
vertical
slices
0 ‘ ‘ >
distance from the
minGeom maxGeom minBTF maxBTF camera
smooth transition smooth transition

Figure 13: Functions weighting the local density for eaaidering method, depending on the dis-
tance to the vieweminGeommaxGeomminBT FandmaxBT Fare user-defined parameters.

opacity opacity
A A
1 1
0.5
0 - 0 ‘ -
0 dth 1 density 0 dth-w dth dth+w 1 density
(a) (b)

Figure 14: Opacity of a grass blade depending on the localityeand the density threshottih. (a)
Simple function, a grass blade is either rendered or(pEunction providing a smoother transition.

definition of the following function:

density— dth+ w
2w

wherew is equal to half of the width of the transition region4@s a value that works well.

opacitydensitydth) = clamp( ,0, 1) (5)

3.5 Shadows

Shadows are an important factor of realism in rendered scéfihey are not present, the rendered
images look flat, with low contrast, and it is difficult to knaWwe exact location of 3D objects

relatively to the others. However, rendering scenes wittdstvs involves expensive computations,
resulting in low frame rates. If we render exact shadows &wmhegrass blade, the computation
cost gets prohibitive. We need to perform fast approxinmatithat give visually pleasant dynamic
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shadows. There are three kinds of shadow: points of the droaaluded by grass blades (Figure
15), points of grass blades occluded by other blades (Fisirend self-shadowing of the blades.
We do not manage the latter because these shadows appéadterdo the shape of grass blades.
We use a different algorithm for each kind of shadow.

Figure 15: Shadows projected onto the ground.

Figure 16: Shadows due to neighbor grass blades.

To render geometric grass blade shadows onto the groundseve classical projection method.
A projection matrix is computed depending on the ground @leguation and the light source po-
sition. It transforms grass blade vertices to shadow \estat the ground level. The stencil buffer
is cleared, then the grass blades are rendered into theldiaffer using the previous projection
matrix and without lighting computations. At the end of thémdering, the stencil buffer contains
boolean values indicating the location of shadows. We teader a black quadrilateral with blend-
ing covering the screen, making then the shadows visibles dpproximative method gives correct
results but only hard shadows can be rendered. For fartlassgusing volume slices, we use a
similar method: we project only the horizontal slice of eaelich onto the ground using the same
projection matrix. No stencil buffer is needed for this @i&m since the slice shadows do not over-
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lap. We do not project the vertical slices, otherwise thggmted shadows would cover the whole
ground and consequently would get invisible.

The projection method cannot be applied to shadows cast dgsdylades onto other blades,
because the shadow receivers are not planar. Algorithmigated to arbitrary shaped surfaces
should be used. For instance, any shadow mapping technéggeadepth map from the light source
viewpoint. However, it cannot be applied to grass since #selution of the shadow map texture
should be extremely high, otherwise strong aliasing atsfaaccur. Shadow volumes consists in
the projection of the shadow caster silhouettes, creatiag@wv volumes rendered into the stencil
buffer. It cannot be applied to grass for real-time appidat since the rasterization work is time
demanding (the silhouette of each blade should be projected

Therefore, we propose an approximation that allows readtperformances and that creates
convincing anti-aliased shadows, without being exacth&athan projecting neighbor blades onto
each blade, which is too expensive, we simulate the presditisese neighbors. We definslaadow
mask a grayscale texture representing the occlusions due teeflghborhood of a single grass blade
(Figure 17). During the rendering of a blade of grass, a dgliris fit around it with the origin of the
shadow mask texture always aligned with the inclinatiordion of the bladeX axis in Figure 17).
The shadow mask is computed once and for all and is used forreadered blade of grass. Itis
a coarse approximation but gives convincing results fom&time application. To create a shadow
mask, a slice of a patch is rendered using an orthographiemaamd a white background. Note that
the rendered blades are assigned a black color.

At rendering time, for each vertex of a grass blade, a rayuadbed from this vertex to the
light source and the intersection point with the surrougdaiylinder is computed. These coordinates
are then interpolated for each pixel of the grass blade. Fgven point on the blade, if the ray
intersection point is in the range of the cylinder bounds, ¢brresponding shadow mask texel is
retrieved. Then it is multiplied by the incoming light int8ty to obtain the real incoming light
intensity. Bilinear interpolation of the shadow mask pd®s anti-aliased shadows, shown in Figure
16.

In case of volume rendering, shadows cast by blades onto lolddes can be straightforwardly
handled. Indeed, the BTF images are generated while ustnghthdow mask algorithm. Then, at
rendering time, no additional cost is implied since the wodurendering algorithm does not change.

A natural scene is never made of grass blades only. Additielements in a scene, called
external elemenfgould act as occluders for grass blades. To account foe thxdusions, we use an
ambient occlusiotechnique. For a point of the ground, a hemisphere centéthid point covers the
possible incident light directions. The surface of this here corresponding to directions with
occluders, divided by the area of the whole hemisphere isdcambient occlusion. Since we define
this value for each point of the ground, we provide the infation through arambient occlusion
map covering the terrain (Figure 18). This map is computed omakfar all in a preprocessing
step since it is independent of the point light source dioactonly the ambient light is concerned).
When rendering a grass blade, the ambient light intensityuliplied by the value read from the
ambient occlusion map at the root of the blade.
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Shadow mask

VA
I Light direction

/

Intersection

X

S

Direction of
grass blade
inclination

Figure 17: Rendering step: projection of shadows comingpfitee neighbor grass blades. A shadow
mask mapped onto a cylinder is used as a visibility function.

>,

Figure 18: Ambient occlusion map covering the terrain arahgxe of rendering. The arrow repre-
sents the camera position to get the image on the right.

4 Implementation hints

When implementing our grass rendering method, we come upméthy issues, particularly due
to filtering, mipmapping and aliasing. Speed issues hawetalbe solved due to the large size of

PI n1809



22 Boulanger & Pattanaik & Bouatouch

usual terrains. We start by describing our multi-resolutierrain management, making our levels
of detail approach efficient. Then we present solutionsedittering problems, offering flicker free
rendering of grass at any distance with a satisfying speed.

4.1 Multi-resolution approach for the terrain

In our approach, the terrain supporting grass is repregdmt@an uniform grid. However, if viewed
from faraway, an excessive number of cells has to be rendBiegtt frustum culling of the uniform
grid is too expensive for large terrains. To reduce thergléind rendering times, we useeadtree
structure: atree is initially built, each leaf contains leeinding sphere of a cell of the grid, the upper
nodes contain the bounding spheres of square groups of callsdmacro-cells When rendering

a frame, the nodes to be processed are determined depenmdihg ocamera position, the camera
frustum and the distance from the bounding sphere to the reaniéhe farther the cells from the
camera, the larger the macro-cells to be rendered (Figure @@nsequently, the total number of
rendered cells is decreased.

The smallest cells are close to the viewer. Patches definegebgnetry and the ones using
vertical slices are rendered only in these cells. For graissMay from the camera, only horizontal
slices are rendered, particularly in the macro-cells. Bs¢éhmacro-cells, we use texture repetition
to simulate a higher number of grid cells at the initial unifiogrid resolution. The original texture
coordinates for a macro-cel ([0, 1]%) are multiplied by its size in terms of number of cells.

Section 3.1 presented the way aperiodic tiling is performoetiask repetition patterns over the
terrain. A random symmetry for each grid cell is used. Howéveannot be applied to macro-cells
by simply repeating texture coordinates. We defipaih orientation magFigure 2@a)), a texture
mapped over the terrain where each texel corresponds tah ipad cell. This texture is not filtered
so its value is constant along a grass patch. In the red chahthe map is stored a value efl or 1
representing the symmetry factor for teaxis. The green channel containg or 1 for theZ axis.

If symmetries are not used (Figure(By), the coordinate$l/,v') used to access the horizontal slice
texture are defined as following:

u \ [ (patchSize u) mod 1 6
v ]\ (patchSize v) mod 1 (6)

wherepatchSize= 4 in Figure 20. To manage symmetries (Figuréc) we propose the following
modification of the previous equation:
uoy (patchSize orientationMagu,v).red . u) mod 1 7
v )~ \ (patchSize orientationMagu,v).green. v) mod 1

With this equationy’ andv are always ir0, 1] and vary according to the patch orientation map.

Rotations could have been applied rather than symmetrigsl ¥ 1 cells, it would have been
simple. However, they are more expensive to compute for paeh of each rendered horizontal
slice in the macro-cells. The Equation 7 is much simpler thahcorresponding to rotations.
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Figure 19: Terrain managed using a quadtree. The dark gresshitaterals are rendered, determined
by the camera position and orientation. The simulated giid are created using texture repetition.
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Figure 20:(a) Subset of a patch orientation map coveringsa4icell. (b) 4 x 4 macro-cell without
symmetries management. The repetition of the grass paighvésible. (c) Symmetries applied to
the grass patches, removing the repetition effect.

4.2 Order-independent rendering of semi-transparent quadlaterals

The rendering order of several semi-transparent quaglrdist is crucial when the aim is to avoid
visual artifacts. Due to the high number of primitives (g@&trc grass blades, slices), the sorting
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is a process that is too expensive. Blending mixes the cilyreasterized fragment with the color
already stored in the current pixel. The main drawback afigibilending alone is the importance
of order: the blades have to be displayed from back to frathieravise wrong pixels appear as in
Figure 21a). Sorting of grass blades has to be done by the CPU each tinmthera is moving,
thus requiring an prohibitive processing time. Conversalgha test requires no sorting because
the process is binary: the fragment is rendered only if iphalvalue fulfills a condition. There
are no partially transparent pixels depending on the pizelsnd. The most important problem of
alpha test is the aliasing as in Figurg2)L Our approach makes use of both blending and alpha test
(Figure 21c)). To eliminate the fragments outside a blade, we use alghavith a low threshold.
Therefore we obtain a coarse version of the blade shapedBigmnefines the transparency process
by mixing the borders with the background pixels, creatimgntan anti-aliasing effect. Blending
artifacts still occur. However, only on the one pixel widedbers, which are invisible in most cases.

(2) (b) ©

Figure 21: Comparison between three methods to processtsmmparency. The white arrows
point to a zone where the advantages and drawbacks pariycapgear.(a) Simple alpha blending.
Sorting for rendering has to be don@) Alpha test, with a high aliasing effecfc) Both methods,
reducing the aliasing and the need for sorting.

The blending method we propose greatly decreases thenglidsie to alpha testing. It can be
further decreased. However the needed feature is powerduigh only on latest graphics hardware
since it requires a high fillrate. We make usenuiltisamplingand enable the feature that maps the
alpha value of the fragments to coverage value. No sortinth@fgrass blades is needed, wrong
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borders totally disappear and grass blades do not exhiagiad). Nevertheless, a high precision of
the multisample buffer is needed to be able to remove theuilith effect (at least 6X). The choice
of the method depends on the type of graphics card and this pseference for quality or speed.
The results we show in the figures of this report make use ofiganhpling.
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5 Results

Our levels of detail approach allows the rendering of largesg terrains in real-time. Our imple-
mention using th®penGL Shading Languader the shaders, on a 3.2 GHz Pentium IV wiiltfidia
GelForce 7800 GTXenders a football field with about 627 million virtual gsddades (left of figure
1) at a rate of 18 to 250 frames per second (fps) in 20288 with 4X anti-aliasing. The rendering
speed varies in this range as a function of the camera positid orientation.

Here is the summary of the rendering speeds we obtain witldifferent demos:

demo football field (figure 23)| park scene (24
whole terrain 250 fps 150 fps
human height 100 fps 80 fps

horizontal view at low altitude 18 fps 27 fps

Our levels of detail management allows high frame ratesdmay views and for the view at
human height. The rendering is slowest when the verticagsicover a large surface of the rendered
window. That case happens when grass is observed horizointah low altitude. The BTF slices
rendering speed depends on the number of rasterized fragmea to the high depth complexity
(several fragments are processed per pixel). In the caséootltaall game, this kind of view is not
really useful.

The generation of slices data takes about 5 seconds for teic2% used in the park demo. 10
vertical slices are defined for each horizontal axis offarfeter wide patch. The resolution of the
images for vertical slices is 52264 and 512 512 for the horizontal slice. The total amount of data
is 45 megabytes without any compression. Only 2 secondses@ed at run-time to load the BTF
data.

An interesting advantage of our levels of detail scheme espibssibility to render a virtually
infinite number of grass blades, as long as the data strgditireto memory. We have successfully
rendered 25 times more grass blades than the football figtetgbof 11 billions) with no variation
of speed for close view, and a decrease from 250 to 200 fraeresegond for faraway view due to
the larger screen coverage by the larger terrain.

Dynamic lighting is usually difficult to be obtained in 3D digations due to the needed compu-
tations. Our approach allows dynamic lighting and shadgwirhe light position can be changed as
desired, as shown in Figure 22.
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Figure 22: Results of dynamic lighting. A point light souriserotating around the grass surface.
(left) Light source at the bottom of the imagdeniddle)Light source on the left(right) Light source
at the top of the image.

6 Conclusion

The objective of our work was to render dynamically lit, saed, anti-aliased grass with den-
sity management in real-time. Our approach mixes geomatiyme and surface rendering. The
geometry rendering is used for rendering grass in the pribxiaf the camera, volume rendering
for moderate distances and surface rendering for distaissgOur main contribution is our volume
rendering algorithm: we discretize an unit volume intoesicand for each slice we compute a BTF,
a specific texture taking illumination, self-shadowing a®if-occlusions into account. Each BTF
allows us to get the reflected luminance to the viewer giveimeident light direction. We discretize
the space of light and view directions to compute only a Bahisubset of the BTFs and obtain a fast
approximation. The inbetween light and view directions @mputed using spherical barycentric
interpolation. In addition to our contribution to the haindl of dynamic lighting and shadows, we
introduce the notion of density to create arbitrary shapethses of grass. It also allows to dy-
namically manage the seamless transitions between the thinelering methods depending on the
position and direction of the camera.

This work opens up a number of new directions of research. vk is extensible to other
natural elements: trees, plants, flowers, etc. It can alextemded several ways. A first example is
BTF compression. This allows a higher sampling of light amwdirections and reduces memory
consumption, simplifying the memory management in presefseveral species of grass. A second
example is the management of curved terrains, introdudiagges of coordinate frame for each part
of the algorithm. Animation could also be added, typicalfyusing wind simulation. However, the
grass blades have to be long enough to make this animatiéu.use
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Figure 23: Football field seen at different distances.
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Figure 24: Park scene, using a density map to define grasibdigin.
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A Appendix

The discretization of the BTF representation for slicesepywcoarse: five light and five view di-
rections. If we simply choose the correct texture on eaate sliepending on the light and view
directions, sudden changes of intensity can be observedehbe need for interpolation. The pa-
rameters we define are presented in Figure 25. The vBetddL represents the light direction. In
this example, we have to interpolate between the imageesmonding to thX+, Y andZ+ direc-
tions (A, B andC points). We propose a linear interpolation with sphericalybentric coordinates
defining the weights. This interpolated col@y; for a rendered pixel is defined as following:

Cint = 0x Cx4 +ay Cy +a, Czy 8)

with Cx 4., Gy, Cz4. the colors taken from the corresponding imagss oty anda; the barycentric co-
ordinates in0, 1]. These three coordinates are proportional to the area dfitbe spherical triangles
LBC, LCAandLAB. </ (LAB) is the area of the spherical triandl&B for example.</ (ABC) = 7
is the area of the quarter of hemisph&®RC, of radiusR = 1.

Figure 25: Parameters for the interpolation of slices irsatpgpending on the light directidn

</ (LBC) 7 (LCA) N </ (LAB)
/(ABC) " &/(ABC) ' " &/ (ABC)
To determine the area of trianglBC, for the computation ok, we have:

Cint =

Czy 9)

</ (LBC) = [BC+BCL+CLB— 1 (10)

The cosines of the angles of equation 10 can be determined tis following equations, for a unit
sphere:

cod BC — cosB, — cosby cosy _ cost;
singysin7 sin6y
- cosf, —cosf,cosT  cos
cosBaL — 0S8 —cos 2 = % (11)
sin@,sin; sinB,
coSB = cos; — cosBy, cosd,  —cosBy, cosb,

singysinG, ~ sing,siné,
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This expression can be simplified using the following relasi

cosy =1-y=1y
cost, =1-2=1,
sinGy = [T x 91| = [|(~12,0,1)T|| = /I +12 (12)

sin6, = [[Ix 2| = [|(ly, ~1x, 0)T|| = \/IZ+13
To find the angles of equation 10, we take the arccosines @ftieos 11:

| |
4/ (LBC) =arccos——— + arccos———

VIZ+1Z J12+12
(13)

—Iyl
+arccos yz -

VIZFIZ 12417

We do the same process for the are&8BCL) and.</ (CLB). Finally, we obtain the surfaces of the
three spherical triangles, and are able to compyer, anda; of equation 8.

These coefficients are computed per vertex rather than pertoi greatly reduce the overhead
at the GPU level. This is possible if the slices are small ghand if the light source is far enough.
Linear interpolation is done per pixel, but the sum of theffigients is not equal to 1, so renormal-
ization has to be performed per pixel. There are nine arnegsio compute per vertex. It looks
intensive for the GPU, however the bottleneck of slices eging is the fragment shading. So the
introduction of these arccosines does not influence ther@malering speed.

We just have presented an example usiig, Y andZ+ images. Computations are almost the
same for the three other quadrants of the hemisphere whdiglh&ector is inside these quadrants.
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