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Course Abstract

Most real world applications can be reduced to the problem of function
representation and reconstruction. These two problems are closely re-
lated to synthesis and analysis of functions. The Fourier transform is the
classical tool used to solve them. More recently, wavelets have entered
the arena providing more robust and flexible solutions to discretize and
reconstruct functions.

Starting from Fourier analysis, the course guides the audience to ac-
quire an understanding of the basic ideas and techniques behind the
wavelets. We start by introducing the basic concepts of function spaces
and operators, both from the continuous and discrete viewpoints. We
introduce the Fourier and Window Fourier Transform, the classical tools
for function analysis in the frequency domain, and we use them as a guide
to arrive at the Wavelet transform. The fundamental aspects multires-
olution representation and its importance to function discretization and
to the construction of wavelets is also discussed.

Emphasis will be given on ideas and intuition, avoiding the heavy
computations which are usually involved in the study of wavelets. The
attendees should have a basic knowledge of Linear Algebra, Calculus,
and some familiarity with Complex Analysis. Basic knowledge of signal
and image processing would be desirable.

These notes originated from a set of notes in Portuguese that we wrote
for a wavelet course on the Brazilian Mathematical Colloquium in 1997
at IMPA, Rio de Janeiro. We wish to thank Siome Goldenstein who
collaborated with us to produce the portuguese notes.
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1. Fundamentals of Fourier Analysis
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Speaker: Jonas Gomes
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Speaker: Jonas Gomes

Coffee Break
Duration: 10:00 – 10:15 (15 minutes)

3. Filter Banks and Wavelets
Duration 10:15 – 11:00 (45 minutes)
Speaker: Luiz Velho

4. Wavelet Design
Duration 11:00 – 12:00 (60 minutes)
Speaker: Luiz Velho
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Chapter 1

Introduction

In this chapter we give a general overview of the area of Computational Mathematics and
computer graphics, introducing the concepts which motivate the study of wavelets.

1.1 Computational Mathematics

Mathematical modeling studies phenomena of the physical universe using mathematical con-
cepts. These concepts allow us to abstract from the physical problems and use the mathe-
matical tools to obtain a better understanding of the different phenomena of our universe.

The advance of computing technology (both hardware and software) has enabled the use of
mathematical modeling to make simulations on the computer (synthetic simulations). These
simulations on the computer allow for a great flexibility: We can advance in time, accelerate
processes, introduce local and global external factors, and change the different parameters on
the mathematical models used. These conditions of simulation in general are very difficult to
be attained in real simulations.

Computational Mathematics is the combination of mathematical modeling with simu-
lations on the computer. Computational mathematics represents a return to the birth of
mathematics, where mathematical problems were directly related to the solutions of practical
problems of our everyday life.

In this context, computer graphics provides different techniques to visualize the results
from the simulation. This visualization enables a direct interaction of the users with the
different parameters of the simulation and also enables them to collect valuable qualitative
information about the simulation process.

1.1.1 Abstraction Levels

A useful way to organize the ideas discussed in the previous section, which will be used in the
book, consists in structuring the problem of computational mathematics using abstraction
levels. These abstraction levels encapsulate the different phases of the simulation processing
giving us a better understanding of the whole process. We will use the paradigms of the
four universes. This paradigm uses four levels: Physical universe, Mathematical Universe,
Representation Universe and Implementation Universe (See Figure 1.1).

1
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Figure 1.1: Abstraction levels for computational mathematics.

Level 1: Physical Universe. In this level the problems are originally posed and correctly
formulated. The elements of these abstraction levels consist of the different phenomena from
the physical universe.

Level 2: Mathematical Universe. This level contains tools from different areas of math-
ematics (Analysis, Geometry, Differential Equations, Algebra etc.). The process of mathe-
matical modeling consists in the association of elements from the physical universe (Level 1)
to elements of the mathematical universe.

Level 3: Representation Universe. To perform synthetic simulations the mathematical
models must be discretized and implemented on the computer. The representation universe
consists of the different elements of discrete mathematics and the mathematical methods of
discretization. As part of this universe, we have virtual machines where we can describe
algorithms. The discretization of a problem consists in relating the mathematical model
associated to the problem in the mathematical universe (Level 2) to a discretized model in
the representation universe.

Level 4: Implementation Universe. This abstraction level is considered so as to allow
for a clear separation between the discretization problem in Level 3 and the problems inherent
to implementation. The elements of this universe consist in data structures and programming
languages with a well defined syntax and semantics. The implementation of a problem con-
sists in associating discrete structures from the representation universe to elements of the
implementation universe.
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This models of abstraction levels will be used along the book. These abstraction levels
split the problems into four major sub-problems and favors an encapsulation of each of the
sub-problems: At each level the problem is studied with a clear separation from its intrinsic
issues with issues related to the other abstraction levels.

We should point out that this abstraction paradigm constitutes in a characterization of
computational mathematics. Below will give some examples.

Example 1 (Measurements). Consider the problem of measuring objects in the physical
universe. For a given object we must associate to it a number which represents its length,
area or volume. In order to achieve this we must introduce a standard unit of measure which
is compared with the objects to provide a measurement.

From the point of view of the mathematical universe, to each measure we associate a real
number. Rational numbers correspond to commensurable objects, and irrational numbers
correspond to incommensurable ones.

To represent the measurements, we must look for a discretization of the real numbers. A
widely used choice is given by the floating point representation. Note that in this representa-
tion the set of real numbers is discretized by a finite set of rational numbers. In particular, this
implies that in the representation universe we do not have the concept of incommensurable
measurements.

An implementation o the real numbers using floating point arithmetic can be done using
a standard IEEE specification. A good reference for these topics is (Higham, 1996).

The above example, although simple constitutes the fundamental problem in the study of
computational mathematics. In particular, we should remark the loss of information when we
pass from the mathematical to the representation universe: incommensurable measures dis-
appear. In general the step from the mathematical to the representation universe forces a loss
of information, and this is one of the most delicate problems we have to face in computational
mathematics.

Example 2 (Projectiles). Consider now the well known problem of studying the motion of
a small rigid body which is thrown into the space with a given initial velocity. The problem
consists in studying the trajectory of the body.

In the mathematical universe we will make a simplification to model the problem. The
rigid body will be considered to be a particle, that is a point of mass. This abstraction allow
us to neglect the air resistance. Simple calculations well known from elementary physical
courses, allow us to solve the problem of determining the trajectory: a parabola

f(t) = at2 + bt + c.

To visualize the trajectory in the computer we must obtain a discretization of the parabola.
This discretization can be obtained by taking a uniform partition 0 = t0 < t1 < · · · < tn = t
of the time interval [0, t]. Using this partition the parabola is represented by a finite set of
points of the plane:

(t0, f(t0)), (t1, f(t1)), . . . , (tn, f(tn)).

These points constitute samples of the function the defines the parabola.
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Finally, data structures to implement the samples are well known and can be easily im-
plemented.

Note that in order to plot the parabola we must “reconstruct” it from the samples. In-
terpolation methods must be used in the reconstruction process. Again, the representation
process by sampling looses information about the parabola. Depending on the interpolation
method used we will not be able to reconstruct the parabola exactly, but only an approxima-
tion of it.

An important remark should be done. The solution to the problem in the above example
was initially attained in the mathematical universe it was an analytical solution providing
the equation of the trajectory. The discretization of the analytical solution was done in order
to visualize it. Another option would be discretizing the problem before solving it by using
discrete mathematical models to formulate the problem (Greenspan, 1981). Which is the best
strategy? Discretize the problem to obtain a solution or compute an analytical solution and
discretize it.

The answer to this problem is not simple and involves different issues. Initially we should
remark that in several situations we do not have an analytic solution to the problem in the
mathematical universe. When this happens discretization a priori to determine a solution is of
fundamental importance. This is the case, for instance, in several problems which are modeled
using differential equations: The discretization allows us the use of numerical methods to solve
an equation where an analytical solution is difficult or even impossible to be achieved.

When the problem has an analytical solution in the mathematical universe we have the
option to compute it before discretization. Nevertheless we should point out that the process
of discretization should not be decorrelated from the formulation of the problem in the physical
universe. In example 2 for instance the parameter of the parabola represents the time, and
we know that the horizontal motion is uniform. Therefore, a uniform discretization of time is
the most adequate to playback the animation of the particle motion.

1.2 Relation Between the Abstraction Levels

We should not forget the importance of establishing for each problem the relation between
the four universes in our abstraction paradigm described above. In its essence these relations
enable us to answer the question: How close a computational simulation is from reality? The
answer to this problem depends on the relation between the different abstraction levels:

• Relation between the implementation of the problem, and its discretization;

• Relation between the discretization and the mathematical formulation of the problem;

• Relation between the mathematical model of the problem and the original problem in
the physical universe.

The relationship between the mathematical and the representation universe is of most
importance. We have seen that representation is a loss process, and a very important issue
consists in recovering the continuous model from the discrete representation. This step is
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Figure 1.2: Spectral distribution function.

called reconstruction. Since the representation is a loss process, reconstruction in general is
not possible to be attained exactly. The example below will make this point clear.

Example 3 (Representation of Color). Color is produced by an electromagnetic radia-
tion in the visible band of the spectrum. Therefore from the point of view of the mathematical
universe, a color is determined by its spectral distribution function. This function associates
to each wavelength λ the value of the associated energy (see Figure 1.2).

Therefore, the process if discretizing a color reduces to that of discretizing a function.
What is the most natural technique? A simple solution consists in using point sampling as
we did in the discretization of the parabola in example 2. In this case another question arises:
How many samples should we take?

Understanding this problem in its generality and devise adequate and robust solutions is
a difficult task. In fact this is one topic to be covered in this book. In the case of color, we
can devise a simple solution going back to the physical universe. How does the human eye
processes color? From the theory of Young-Helmholtz the eye discretizes color using three
samples of the spectral distribution function: One sample of low frequency (Red), one sample
of medium frequency (Green) and another sample of high frequency (Blue)

This means that from the perceptual point of view it is enough to use three samples of the
spectral distribution function in order represent color. This means that the representation
of the color space (which is an infinite dimensional function space) is given by the Euclidean
space R3. Note that this representation is completely justified from the point of view of
color perception on the physical universe. It is far away from being a good mathematical
representation.

Exact reconstruction of the original spectral color from the three RGB samples is in general
an impossible task. Nevertheless, in the way we posed the color sampling problem, we do not
need to guarantee an exact reconstruction: We should be able to provide a reconstruction
process in which the reconstructed color is perceptually equal to the color defined by the
original spectral distribution function. This problem is called perceptual color reconstruction.
Perceptual reconstruction of color is the technology behind many color reconstruction devices
nowadays, such as color television: The TV set reconstructs colors which are only perceptually
equal to the original colors captured from the video camera.
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1.3 Functions and Computational Mathematics

Functions play a distinguished role in computational mathematics. In fact they constitute the
basic tools of mathematical modeling: The relation between magnitudes of the physical world
are, in most cases, described by functions. Notice that the two examples of particle motion
and color reconstruction were reduced to the problem of representation and reconstruction of
functions.

Therefore, a highly relevant problem in computational mathematics turns out to be the
problem of function representation and reconstruction.

1.3.1 Representation and Reconstruction of Functions

The simplest method to represent a function is to use point sampling. In the one-dimensional
case a real function of one-variable f : I ⊂ R → R is discretized by taking a partition t1 <
t2 < · · · < tn of the domain interval I. The representation is given by the vector

fn = (f(t1), f(t2, ), . . . , f(tn)) ∈ R
n.

In this way, the space of real functions defined on the interval is represented by the Euclidean
space R

n.
Is this a good representation? This question is directly related with the problem of in-

formation loss in the representation of a function. A mathematical formulation of the above
question would be: Is point sampling an exact representation? In other words, is it possible
to reconstruct a function f from its representation vector? Note that in the case of point sam-
pling a reconstruction technique consists of interpolating the points (ti, f(ti)), i = 1, . . . , n.
In general, this interpolation process gives only an approximation of the original function.

A final word about function reconstruction is in order. Inside the computer any function
is in fact necessarily discretized. When we talk about a continuous function it means that we
are able to evaluate the function at any point of its domain. That is, we have a representation
of the function on the computer, along with a reconstruction technique that enables us to
evaluate the function at any point.

1.3.2 Specification of Functions

In general when a function is specified on the computer the specification technique results in
a representation of the function. The first step towards doing computation with the function
consists in reconstructing it from its representation.

Therefore representation and reconstruction techniques are related with user interface
issues in a computational system.

1.4 What is the Relation with Graphics?

A broad view of computer graphics would lead us to say that it consists of the area that
manipulates graphical objects. That is, in computer graphics we are interested in creating,
processing, analyzing and visualizing graphical objects.
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In order to fully understand this description we must give a precise meaning to the concept
of a graphical object. A simple, and effective definition was given in (Gomes et al. , 1996): A
graphical object consists of a shape and its attributes. The shape defines the geometry and
topology of the object, and the attributes describes the different properties associated to it,
such as color, material, velocity, density etc.

Mathematically, the shape is characterized as a subset U ⊂ R
n, and the attributes are

encapsulated into a vector valued function

f : U ⊂ R
n → R

p.

The dimension of the set U is the dimension of the graphical object, and R
n is the embedding

space. The object is denoted by O = (U, f).
This definition encompasses different signals such as video, audio and image, and also

curves, surfaces and volumetric models. According the abstraction levels we have described
the main problems of computer graphics are: description, representation, reconstruction and
implementation of graphical objects. Notice that visualization of graphical objects, an im-
portant part of the computer graphics applications, is in fact a reconstruction problem.

Example 4 (Image and Digital Image). The physical model of an image is well repre-
sented by a photography. Analyzing a photography we observe a geometric support (the
paper where it is printed), and associated to each point of this support we have a color
information.

Therefore, from the mathematical point of view we can model an image as a function
f : U ⊂ R

2 → C, where C is a representation of the color space. Using the RGB color
representation of example 3 we have C = R

3.)
We can easily obtain a representation of an image using point sampling. We take partitions

∆X = {i∆x ; i ∈ Z, ∆x > 0} and ∆Y = {j∆y ; j ∈ Z, ∆y > 0} of the x and y axis of the
Euclidean plane, and we define a two-dimensional lattice of the plane by taking the cartesian
product ∆X ×∆Y . This lattice is characterized by the vertices (i∆x, j∆y) which are denoted
simply by (i, j). The image f is represented by the matrix

f(i, j) = f(i∆x, j∆y).

1.4.1 Description of Graphical Objects

By description of a graphical object we mean the definition of its shape and attributes on the
mathematical universe.

There are basically three different methods to describe the shape of a graphical object.

• Parametric description;

• Implicit description;

• Algorithmic description.
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In the parametric description the object shape is defined as the image of a function f : U ⊂
R

m → R
n. If U is an m-dimensional subset of R

m, the graphical object has dimension m.
In the implicit description the object shape U ⊂ R

m is described as the zero set of a
function F : R

m → R
k. More precisely,

U = {x ∈ R
m ; F (x) = 0}.

This set is denoted by F−1(0), and it is called the inverse image of 0 by the function f .
In the algorithmic description the shape is described by a function (either implicitly or

parametrically) which is defined using an algorithm in some virtual machine (see (Blum,
1991)). Examples of functions defined algorithmically are found in the description of frac-
tals. Other common example in computational mathematics are the objects defined using
differential equations, where we must use an algorithm to solve the equation.

An important remark is in order. The attributes of a graphical object are described by a
function. Also as discussed above, in general, the shape of the object is described by functions.
Therefore, both the shape and attributes of a graphical object are described by functions. The
study of graphical objects reduces to the problem of function description, representation and
reconstruction.

1.5 Where do Wavelets Fit?

In order to understand the role of the wavelets in the scenario of computational mathematics,
even without understanding what a wavelet is, we must remember that our major concern is
the description, representation and reconstruction of functions.

The different uses of wavelets in computational mathematics, and in particular in computer
graphics, are related with two facts:

• Representation and reconstruction of functions;

• Multiresolution representation.

1.5.1 Function Representation Using Wavelets

An efficient process to represent a function consists of decomposing it into simpler functions.
In other words, we must devise a collection {gλ} of functions λ ∈ Ω, where the parameter
space Ω is discrete, in such a way that every function f can be expressed by a sum

f =
∑

λ

cλgλ. (1.1)

In this case, the coefficient sequence (cλ) constitute the representation of the function
f , f 7→ (fλ)λ∈Ω. The function f is reconstructed from its representation coefficients using
equation (1.1). Wavelets constitute a powerful tool to construct families gλ, and compute the
representation coefficients cλ.
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1.5.2 Multiresolution Representation

Our perception of the physical world occurs in different scales. In order to recognize a house
it is not necessary to have details about its roof, doors or windows. The identification is done
using a macroscopic scale of the house. Different information about the house can be attained
by using finer scales, where the measurements of the details has the same order of magnitude
of the scale used.

This multiple scale approach is the desired one when we study functions. A good repre-
sentation of a function should enable us to devise representations in different scales. This is
achieved by using wavelets.

1.6 About these Notes

These notes describe a guided journey to the wonderland of the wavelets. The starting point
of our journey is the kingdom of Fourier analysis. The notes have an introductory flavor. We
have tried to use mathematics as a language which has the adequate semantics to describe the
wavescape along the trip. Therefore, in order to make the text easier to read we decided to
relax with the mathematical syntax. To cite an example, it is very common to refer to some
“space of functions” without making the concept precise. Inner products and norms on these
spaces will be used. Also, we will refer to linear operators and other operations on function
spaces relaxing about several hyphotesis that would be necessary to confirm the validation of
some assertions.

There are several books that cover these syntax issues in detail on the literature. We have
tried to write a logfile of our journey which contains somehow the details without going deep
into the mathematical rigor. We are more interested into the semantics of the different facets
of wavelet theory, emphasizing the intuition over the mathematical rigor.

In spite of the huge amount of material about wavelets on the literature, these notes
covers the subject with a certain degree of originality on what concerns the organization of
the topics. From the point of view of the abstraction paradigm of the four universes, we will
cover the role of wavelets on function representation and reconstruction. We will also discuss
some implementation issues along the way.

These notes originated from our need to teach wavelets to students originated from both
mathematical and computer science courses.

1.7 Comments and References

The abstraction levels of the four universes described in this section is based on (Requicha,
1980). A generalization of them along the lines presented on this section was published in
(Gomes & Velho, 1995).

Many good books on wavelets have been published. They emphasize different aspects of
the theory and applications. We will certainly use material from these sources, and we will
cite them along our journey.
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Chapter 2

Function Representation and
Reconstruction

In the previous chapter we concluded that one of the major problems in computational math-
ematics is related to function representation and reconstruction. In this chapter we will give
more details about these two problems in order to motivate the study of wavelets.

2.1 Representing Functions

Functions must be discretized so as to implement them on the computer. Also, when a
function is specified in the computer the input is a representation of the function. As an
example, numerical methods that solve differential equations (Runge-Kutta, finite differences,
finite elements, etc.) compute in fact a representation of the solution.

Associated with each representation technique we must have a reconstruction method.
These two operations enable us to move functions between the mathematical and the repre-
sentation universes when necessary. As we will see in this chapter, the reconstruction methods
are directly related with the theory of function interpolation and approximation.

2.1.1 The Representation Operator

We denote by S a space of sequences (cj)j∈Z of numbers1. We admit that S has a norm which
allow us to compute distance between sequences of the space.

A representation of a space of functions F is an operator F : F → S into some space of
sequences. For a given function f ∈ F , its representation R(f) is a sequence

R(f) = (fj)j∈Z ∈ S.

R is called the representation operator. In general it is natural to demand that R preserves
norms. That is

||R(f)|| = ||f ||,
1By numbers we mean a real or complex number

11
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or that R satisfies some stability condition, such as

||R(f)|| ≤ C||f ||.

When R is linear and continuous, we have a linear representation.
The most important examples of representations occurs when the space of functions F is

a subspace of the space L2(R), of square integrable functions (finite energy),

L2(R) = {f : R → R ;
∫

R

|f(t)|2dt < ∞},

and the representation space S is the space `2 of the square summable sequences,

`2 =

{
(xi)i∈Z, ; xi ∈ C, and

+∞∑
i=−∞

|xi|2 < ∞
}

.

When the representation operator is invertible, we can reconstruct f from its representa-
tion sequence: f = R−1((fi)i∈Z). In this case, we have an exact representation, also called
ideal representation. A method to compute the inverse operator gives us the reconstruction
equation. We should remark that in general invertibility is a very strong requirement for a
representation operator. In fact weaker conditions such as invertibility on the left suffices to
obtain exact representations.

In case the representation is not exact we should look for other techniques to compute
approximate reconstruction of the original function. There are several representation/recons-
truction methods on the literature. We will review some of these methods in this chapter.

2.2 Basis Representation

A natural technique to obtain a representation of a space of functions consists in constructing
basis of the space. A set B = {ej ; j ∈ Z} is a basis of a function space F if the vectors ej

are linearly independent, and for each f ∈ F there exists a sequence (αj)j∈Z of numbers such
that

f =
∑
j∈Z

αjej . (2.1)

The above equality means the convergence of partial sums of the series in the norm of the
space F .

lim
n→∞ ||f −

n∑
j=−n

αjej || = 0.

We define the representation operator by

R(f) = (αj)j∈Z.

Equation (2.1) reconstructs the function f from the representation sequence (αj).
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We must impose additional hypothesis on the representation basis in order to guarantee
unicity of the representation. A particular case of great importance (in fact the only one we
will be using in these notes) occurs when the space of functions has an inner product and it
is complete in the norm induced by this inner product. These spaces, called Hilbert spaces,
possess special basis as we will describe below.

2.2.1 Complete Orthonormal Representation

A collection of functions {ϕn;n ∈ Z} on a separable Hilbert space H is a complete orthonormal
set if the conditions below are satisfied:

1. Orthogonality: 〈ϕm, ϕn〉 = 0 if n 6= m;

2. Normalization: ||ϕn|| = 1 for each n ∈ Z;

3. Completeness: For all f ∈ H, N > 0, and any ε > 0,

|| f −
N∑

k=−N

〈f, ϕk〉ϕk || < ε.

The third condition says that linear combinations of functions from the set can be used to
approximate arbitrary functions from the space. Complete orthonormal sets are also called
orthonormal basis of the Hilbert spaces.

An orthonormal basis {ϕj} define a representation operator R : H → `2, R(f) = (fj) =
(〈f, ϕj〉). which is invertible. Therefore, the representation is exact. The reconstruction of
the original signal is given by

f =
+∞∑

k=−∞
〈f, ϕk〉ϕk.

It is easy to see that the orthogonality condition implies that the elements ϕn are linearly
independent. This implies in particular that the representation sequence (〈f, ϕk)〉 is uniquely
determined by f . This representation preserves the norm. That is

||R(f)||2 =
∑
k∈Z

〈f, ϕk〉2 = ||f ||2. (2.2)

This expression is called Plancherel equation.

2.3 Representation by Frames

The basic idea of representing functions on a basis, consists in decomposing it using a countable
set of simpler functions.

The existence of a complete orthonormal set, and its construction is in general a very
difficult task. On the other hand orthonormal representations are too much restrictive and
rigid. Therefore, it is important to obtain collections of functions {ϕn;n ∈ Z} which do not
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constitute necessarily an orthonormal set or are not linearly independent, but can be used to
define a representation operator. One such collection is constituted by the frames.

A collection of functions {ϕn;n ∈ Z} is a frame if there exists constants A and B satisfying
0 < A ≤ B < +∞, such that for all f ∈ H, we have

A||f ||2 ≤
∞∑

n=−∞
|〈f, ϕn〉|2 ≤ B||f ||2. (2.3)

The constants A and B are called frame bounds. When A = B we say that the frame is
tight. From the Plancherel formula (2.2) it follows that every orthonormal set is a tight frame
with A = B = 1. Nevertheless, there exists tight frames which are not orthonormal basis.
The following statement is true:

Theorem 1. If B = {ϕn;n ∈ Z} is a tight frame with A = 1 e ||ϕn|| = 1,∀n, then B is an
orthonormal basis.

If a frame is tight, it follows from (2.3) that∑
j∈Z

|〈f, ϕj〉|2 = A||f ||2.

Using the polarization identity, we obtain

A〈f, g〉 =
∑
j∈Z

〈f, ϕj〉〈ϕj , g〉,

that is,
f = A−1

∑
j∈Z

〈f, ϕj〉ϕj .

The above expression (although deduced in the weak sense) shows how we can obtain
approximations of a function f using frames. In fact, it motivates us to define a representation
operator R analogous to what we did for orthonormal basis:

R(f) = (fj)j∈Z, where fj = 〈f, ϕj〉.

We should remark that this operator in general is not invertible. Nevertheless it is possible
to reconstruct the signal from its representation R(f), as we will show below.

From equation (2.3) it follows that the operator R is bounded: ||Rf ||2 ≤ B||f ||2. The
adjoint operator R∗ de R is easy to obtain:

〈R∗u, f〉 = 〈u, Ru〉 =
∑
j∈Z

uj〈f, ϕj〉 =
∑
j∈Z

uj〈ϕj , f〉,

Therefore
R∗u =

∑
j∈Z

ujϕj .
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(It can be shown the convergence is also true on norm). By the definition of R we have∑
j∈Z

|〈f, ϕj〉|2 = ||Ff ||2 = 〈F ∗Ff, f〉.

On the other hand, since ||F ∗|| = ||F ||, we have ||F ∗u|| ≤ B1/2||u||. We conclude that

AI ≤ F ∗F ≤ BI.

In particular, it follows that the operator F ∗F : F → F is invertible.
The above results allow us to obtain an expression to reconstruct the function f from its

representation R(f). We will state the result without proof: Applying the operator (F ∗F )−1

to the elements ϕj of the frame, we obtain a family of functions ϕ̃j ,

ϕ̃j = (F ∗F )−1ϕj .

This family constitutes a frame with bounds given by

B−1||f ||2 ≤
∑
j∈Z

|〈f, ϕ̃j〉|2 ≤ A−1||f ||2.

Therefore we can associate to the frame {ϕ̃j} a representation operator R̃ : F → `2(Z), defined
in the usual way (R̃f)j = 〈f, ϕ̃j〉. The frame {ϕ̃j} is called reciprocal frame of the frame
{(ϕj)j∈Z}. It is easy to see that the reciprocal frame of {ϕ̃j} is the original frame {(ϕj)}.

The following identity can also be proved for all functions f ∈ F :

f =
∑
j∈Z

〈f, ϕj〉ϕ̃j =
∑
j∈Z

〈f, ϕ̃j〉ϕj . (2.4)

The first equality gives us a reconstruction equation of the function f from its representation
sequence R(f) = (〈f, ϕj〉)l∈Z. Note that the second equation in (2.4) gives a method to
describe a function f as a superposition of the elements of the original frame. Because of this
equation the reciprocal frame is also called dual frame.

2.4 Riesz Basis Representation

If a collection B = {ϕn;n ∈ Z} is a frame, and the functions ϕj are linearly independent, we
have a Riesz basis. Therefore if {en} is a Riesz basis, for any f ∈ H we have

A||f ||2 ≤
∑
n

|〈f, en〉|2 ≤ B||f ||2.

For each function f ∈ L2(R), we define its representation∑
k

〈f, ek〉ek,
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on the Riesz basis {ek}.
If L is a continuous linear operator with a continuous inverse, then L maps any orthonormal

basis of a Hilbert space onto a Riesz basis. Moreover, any Riesz basis can be obtained using
this method.

Also, it can be proved that from a Riesz basis {en} of a Hilbert space H, we can construct
and orthonormal basis {ẽn} of H. A proof of this fact can be found in (Daubechies, 1992),
page 139.

From the above remarks, we see that Riesz bases constitute the basis of a Hilbert space
that are closest to complete orthonormal sets.

2.5 Representation by Projection

For a given closed subspace V of a Hilbert Space F , the representation by projection consists
in taking a representation of a function f ∈ F as its unique orthogonal projection onto V (see
Figure 2.1).

If {ϕk} is an orthonormal basis of V , than a representation of f is given by

R(f) = ProjV (f) =
∑

k

〈f, ϕk〉ϕk.

This representation is not exact, unless we have V = F . The best reconstruction we can have
consists in finding the unique vector of V which is closest to f . This vector can be computed
using optimization techniques.

An important particular case occurs when we have a family of subspaces {Vj} such that⋃
Vj = F , and the family of representations ProjVj

(f) converges to the function f . An
example occurs when each subspace Vj has finite dimension, as described in the next section.

2.6 Galerkin Representation

The Galerkin method computes a representation R(f) = (fj), j = 0, 1, . . . , N − 1 in such a
way that there exists a reconstruction equation

fN (t) =
N−1∑
k=0

aN (k)φN,k(t),

which approximates the function f , in norm, when N → ∞. That is,

||f − fN || → 0, if N → ∞.

The representation fN is therefore computed in such a way to minimize the norm ||f − fN ||.
Geometrically, the functions

φN,0, φN,1, . . . , φN,N−1

generate a subspace V of the space of functions, and the representation fN is the orthogonal
projection of f onto V (see Figure 2.1).
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Figure 2.1: Galerkin representation of a function f

The coefficients aN (k) are computed using a dual set ϕN,k of the set φN,k:

〈φN,k, ϕN,j〉 = δi,j , aN (k) = 〈f, ϕN,k〉.
The functions ϕN,k are called sampling functions, analysis functions, or representation func-
tions. The functions φN,k are called synthesis functions or reconstruction functions.

It is important to remark that the reconstruction functions are not uniquely determined.
Also, changing these functions imply in a change of the reconstructed function. If φN,k is an
orthonormal set, then the synthesis functions may be used as analysis functions, that is,

aN (k) = 〈f, φN,k〉.
The Galerkin representation is also known in the literature as representation by finite projec-
tion.

Galerkin representation is very important in devising numerical methods because they use
finite dimensional representation spaces, which is very suitable for computer implementations.
This method is used in different representations of functions by piecewise polynomial functions
in the theory of approximation.

2.7 Reconstruction, Point Sampling and Interpolation

The well known example of a Galerkin representation consists in taking a finite point sampling
of a function f : [a, b] → R. We take a partition a = t0 < t1, · · · , < tn = b and define

R(f) = (f(t0), . . . , f(tn)) ∈ R
n.

In this case, the Dirac “functions” δ(t − tk), k = 0, 1, . . . , n constitute the sampling functions

f(tk) = 〈f, δ(t − tk)〉 =
∫ +∞

−∞
f(u)δ(t − tk)du.

We can choose several different reconstruction functions from the above representation. We
will study some classical reconstruction basis below.
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2.7.1 Piecewise Constant Reconstruction

In this reconstruction each synthesis function is given by the characteristic functions of the
partition intervals.

φN,k = χ[tk,tk+1] =

{
0 if x < tk or t > tk+1

1 if x ∈ [tk, tk+1]
(2.5)

The graph of this function is shown in Figure 2.2(a). Geometrically, the reconstructed function
is an approximation of the function f by a function which is constant in each interval of the
partition (see Figure 2.2(b)).

Figure 2.2: (a) Graph of the synthesis function; (b) Reconstruction.

In the literature of signal processing the synthesis function used here is called box function.
This method reconstructs the functions approximating it by a discontinuous functions. The
discontinuities in the reconstructed function introduce high frequencies in the reconstructed
signal (see Chapter 7 of (Gomes & Velho, 1997)).

2.7.2 Piecewise Linear Reconstruction

In this case the synthesis functions φN,k are given by

φN,k =


0 if x < tk−1 or t > tk+1
t−tk−1
tk−tk−1

if x ∈ [tk−1, tk]
tk+1−t
tk+1−tk

if x ∈ [tk, tk+1]

(2.6)

The graph of this function is shown in Figure 2.3(a). Geometrically, the reconstructed function
is an approximation of the function f by a continuous function which is linear in each interval
of the partition used in the sampling process. Figure 2.3(b) shows, in dotted lines, the graph
of the original function, and the graph of the reconstructed function using a continuous line.

Higher Order Reconstruction

We could continue with these reconstruction methods using polynomial functions of higher
degree defined on each interval of the sampling partition. The differentiability class of these
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Figure 2.3: (a) Graph of the synthesis function. (b) Reconstruction.

functions on the whole interval can be controlled according with the degree of the polynomials.
The spaces of splines is the natural habitat for these reconstruction methods.

We should remark that in the Galerkin representation using point sampling the recon-
struction methods consist in interpolating and approximating the original function from its
samples. A natural question would be:

Question 1. Is it possible to obtain exact reconstruction using the Galerkin representation
by point sampling?

Note that exact reconstruction in this representation has an interesting geometric meaning:
Find an interpolation method that is able to reconstruct the function f exactly from the set of
its samples f(ti). We will return to this question in the next chapter.

2.8 Multiresolution Representation

We perceive the world through a multiscale mechanism. First we use a coarse scale to recognize
the object, then we use finer scales in order to discover its distinct properties in detail. As an
example, the identification of a house can be done in a very coarse scale, but finer scales are
necessary in order to observe details about the windows, doors, floor, and so forth.

Therefore, it is natural that we look for multiscale representation of functions. That is,
we are interested in obtaining a family of representations that could represent the function
at distinct scales. At the same time we need techniques that allow us to change between
representations on different scales.

This can be achieved by using nested representation spaces. Consider a sequence of closed
subspaces {Vj}j∈Z such that

· · ·Vj+1 ⊂ Vj ⊂ Vj−1 · · · , ∀ ∈ Z.

And a family of representation operators Pj : V → Vj such that

||v − Pj(v)|| ≤ C infu∈Vj ||v − u||, (2.7)

where C independs on j. The proximity condition of equation (2.7) is trivially satisfied if
Vj is a closed subspace of a Hilbert space, and Pj is the orthogonal projection onto Vj , as
illustrated in Figure 2.4.
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Figure 2.4: Representation operator.

Note that from equation (2.7) we have

||Pj(v)|| ≤ c||v|| (2.8)

Pj(v) = v, ∀v ∈ Vj (i.e. P 2
j = Pj) (2.9)

Also we require a natural commutativity condition Pj ◦Pj−1 = Pj , which guarantees that the
different representations match each other.

Intuitively each representation space Vj−1 contains more details (finer scale) than the space
Vj . This can be stated precisely by introducing the operator Qj : V → Vj−1, defined by

Qj(v) = Pj+1(v) − Pj(v).

If Wj = Image(Qj) = Qj(Vj), it follows that

Vj−1 = Vj + Wj . (2.10)

That is, Qj(v) is the detail we must add to the representation space Vj to obtain Vj+1. For
this reason, Qj is called a refinement operator.

Iterating equation (2.10) we have the decomposition equation

VJ = Vj0 + (Wj0 + · · · + WJ+1) , (2.11)

which says that a finer representation can be obtained from a finer one, by adding details.
Equation (2.11) can be rewritten using operators:

Pj(v) = Pj0(v) +
j0∑

j=J+1

Qj(v). (2.12)

In order to be able to decompose any element v of V we impose some additional hypothesis
on the representation operators Pj :

1. Pj(v) → v if j → −∞;
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2. Pj(v) → 0 if j → +∞.

From the proximity condition of equation (2.7), these two conditions are equivalent to

1.
⋃

j∈Z
Vj is dense on V ;

2.
⋂

j∈Z
= {0}.

By taking the limit, j0 → +∞ and j → −∞, in (2.12) we have

v =
∑
j∈Z

Qj(v), ∀v ∈ V.

That is, any vector v is the sum of all of its details in the different representations.
In the particular case where the representation operators Pj are orthogonal projections

over closed Hilbert spaces, the sum in equation (2.11), is in fact a direct sum, and the spaces
Vj and Wj are orthogonal.

Techniques to compute nested sequences of multiresolution representation are closed re-
lated with wavelets.

2.9 Representation by Dictionaries

The problem of obtaining a representation of a function can be well understood using the
metaphor of natural language. When we write, we have an idea and we must represent it
using words of the language. If we have a rich vocabulary we will have a great conciseness
power to write the idea, on the contrary, we will have to use more words to express the same
idea. Based on this metaphor, S. Mallat (Mallat & Zhang, 1993) introduced in the literature
a representation method based on dictionary of functions.

A dictionary in a function space H is a family D = (gλ)λ∈Γ of vectors in H such that
||gλ|| = 1. This family is not necessarily countable. A representation of a function in a
dictionary D is a decomposition

f =
∑
λ∈Γ

αγgγ ,

such that (αγ) ∈ `2. The rationale behind the representation method consists in constructing
extensive dictionaries and devising optimal representation techniques that allow us to rep-
resent a function using a minimum of words from the dictionary. Therefore, Representation
using dictionaries allows us the use of a great heterogeneity in the reconstruction functions,
which makes the representation/reconstruction process very flexible.

Note that distinct functions use different dictionary vectors in their representation which
makes the representation process non-linear. In (Mallat, 1998) several dictionary systems
are described, as well as techniques to compute dictionary based representations. One basic
strategy to compute a representation for a function f is described below.

Let fM be the projection of f over the space generated by M vectors from the dictionary,
with index set IM :

fM =
∑

m∈IM

〈f, gm〉gm.
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The error eM in the approximation is the sum of the remaining coefficients

eM = ||f − fM ||2 =
∑

m/∈IM

|〈f, gm〉|2.

To minimize this error the indices in IM must correspond to the M vectors that have the
largest inner product amplitude |〈f, gm〉|. These are the vectors that have a better correlation
with f , that is, the vectors that best match the features of f . Certainly the error is smaller
than the error resulting from a linear approximation where the decomposition vectors of the
representation do not vary with f .

The above ideas lead to an algorithm to compute the representation. For details see
(Mallat & Zhang, 1993).

2.10 Redundancy in the Representation

The representation of a function is not unique in general. Besides non-unicity, we can have a
redundancy for a given representation. This occurs for instance in the representation using
frames. In fact, if the frame (ϕj)j∈Z is an orthonormal basis, the representation operator

R : H → `2, (Rf)j = 〈f, ϕj〉

is an isometry, and the image of H is the whole space `2. The reconstruction equation

f =
∑
j∈Z

〈f, ϕj〉ϕ̃j

computes each vector in such a way that there is no correlation between the coefficients.
If the frame is not constituted by linearly independent vectors, there exists a redundancy

in the representation, which corresponds to a certain correlation between the elements of the
representation sequence. This redundancy can be used to obtain a certain robustness in the
representation/reconstruction process. An interesting discussion of the redundancy in frame
representation can be found in (Daubechies, 1992), page 97.

2.11 Wavelets and Function Representation

We can summarize what we have done up to this point in the statement that our main concern
is the study of representation and reconstruction of functions. Therefore our slogan at this
point should be “all the way to function representation and reconstruction techniques”.

In fact, we need to develop techniques that allow us to construct representation tools
(basis, dictionaries, frames, multiscale representations, etc.) which are flexible, concise and
allows for robust reconstruction.

This leads us naturally to the study of function variation as an strategy to detect the
different features of a given function, and take them into consideration when representing the
function. We will start our journey on this road from the next chapter on. It will take us
from the kingdom of Fourier to the wonderland of wavelets.
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2.12 Comments and References

Multiscale representation was introduced by S. Mallat in (Mallat, 1989) in the context of the
Hilbert spaces L2(R) of functions, and orthonormal projection. The more general introduction
we gave in Section 2.8 of this chapter was based on (Canuto & Tabacco, 1997). A detailed
description of Mallat’s work will be given later on.

A detailed study of representation and reconstruction using frames is found in (Daubechies,
1992), pages 57-63, and also in Chapter V of (Mallat, 1998).
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Chapter 3

The Fourier Transform

In order to devise good representation techniques we must develop tools that enable us to
locate distinguished features of a function. The most traditional of these tools is the Fourier
Transform which we will study in this chapter. The study of Fourier transform, its strength
and limitations, is the starting point of our journey to the wavelets.

3.1 Analyzing Functions

To detect features of a function we must analyze it. This occurs in our everyday routine:
signals are analyzed and interpreted by our senses, a signal representation is grabbed from
this analysis and it is sent to our brain. This is the process used in our perception of colors
and sound.

Sound, Color, and other elements we interact with in our everyday life are characterized
by functions: To each point on the space, and to each instant of time the function produces
a certain output which we are able to detect. These functions are usually called signals.

The best way to analyze the features of a signal is by studying its frequencies. In an audio
signal, for example, the frequencies are responsible for what we are accustomed to identify as
an acute or grave sound. Also, the distinction from red to green is captured in the frequency
of the associated electromagnetic wave.

3.1.1 Fourier Series

In order to analyze the frequency content of a function we must initially answer the following
question: What is the frequency of a function? This is an easy task when the function is
periodic. In fact given the function f(t) = A sen(2πωt), A > 0, the parameter A measures the
amplitude (maximum and minimum values assumed by f), the parameter ω indicates how
many complete cycles of period exist on the interval [0, 1]. This number is directly connected
with the number of oscillations of the function in the unit of time, which is called the frequency
of the function. Figure 3.1 shows the graph of f for different values of ω.

Consider a periodic function with period L > 0, that is, f(t + L) = f(t). We denote by

25
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Figure 3.1: Sine function with frequencies 2, 4 and 8.

L2
T (R) the space of periodic functions of period T which are square integrable. That is∫ t0+T

t0

|f(t)|2dt < ∞.

The theory of Fourier series says that f can be decomposed as

f(s) =
+∞∑

j=−∞
aje

i2πωjs, aj ∈ R, (3.1)

where ωj = j/T is a constant. This decomposition of a periodic function f is called the Fourier
series of f . It is well known that the family {ei2πωjs, j ∈ Z} is a complete orthonormal set
of the space L2

T (R). Therefore equation (3.1) is an orthogonal basis representation of the
function f .

In conclusion, the Fourier series shows that any periodic function can be decomposed as
an infinite sum of periodic functions (sines and cosines). This decomposition makes it easy an
analysis of the frequencies present on the function f : There exists a fundamental frequency ω,
and all of the other frequencies are integer multiples ωj, j ∈ Z, of this fundamental frequency.

The coefficient aj in the equation (3.1) of the Fourier series measures the amplitude of
the frequency component ωj on the function f . In particular, if aj = 0, this frequency is not
present in the function. This frequency amplitude aj is computed using the equation

aj =
∫ L

0
f(u)ei2πωjudu, (3.2)

where L is the period of the function. Note that equation (3.1) completely characterizes the
function f by its frequencies. In other words, we have an exact representation of f

3.1.2 Fourier Transform

The above portrait of the function f worked perfectly well: We were able to obtain an exact
representation of the function f and this representation completely characterizes f by its
frequencies. The only drawback is the fact that f was a periodic function.

Is it possible to extend the above results for non-periodic functions? In this case we do not
have a discrete spectrum of well defined frequencies as in equation (3.1). In fact, every function
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f defined by equation (3.1) is necessarily periodic. Nevertheless, we can use the Fourier series
representation as an inspiration to introduce the concept of frequency for arbitrary functions.

Take s = ωj in equation (3.2) which computes the amplitude of the frequency, and assume
that the variable s takes any value. We obtain

a(s) =
∫ +∞

−∞
f(u)ei2πsudu. (3.3)

Notice that we have changed the notation from aj to a(s).
The operation f(u)ei2πsu in the integrand above is called modulation of the function f .

The exponential is called the modulating function. For each s, ei2πsu is a periodic function of
frequency s, s ∈ R. Therefore, for each s ∈ R equation (3.3) can be interpreted as an infinite
weighted average of f using the modulating function as the weighting function.

The rationale behind the frequency computation in the modulation process can be ex-
plained as follows: When f has oscillations of frequencies s, or close to s, these frequencies
result to be in resonance with the frequency s of the modulating function, therefore a(s) as-
sumes non-zero values. On the contrary, when the oscillations of f and the frequencies of the
modulating function are completely distinct we have a cancellation effect and the integral of
(3.3) is zero or close to zero. We conclude that a(s) measures the occurrence of the frequency
s on the function f . Since s varies in a continuum of numbers, it is interesting to interpret
(3.3) as describing a frequency density of the function f . When a(s) 6= 0 this means that
frequencies s occurs on f . The value of a(s) is a measure of the occurrence of the frequency
s on f .

We will change notation and denote a(s) by f̂(s) or by F (f)(s). Note that f̂ is in fact an
operator that associates to the function f the function f̂ = F (f), defined by (3.3). Therefore
we have an operator defined between two function spaces. What function spaces are these? It
is possible to show that the operator is well defined for any function f satisfying the equation

||f || =
∫

R

|f(u)|2du < ∞. (3.4)

These functions are called square integrable functions or functions with finite energy. This
space is denoted by L2(R). Equation (3.4) defines a norm on L2(R), and it is easy to see that
this norm is induced by the inner product.

〈f, g〉 =
∫

R

f(u)g(u)du,

where g means the complex conjugate. It is well known that the space L2(R) with this inner
product is a Hilbert space, called the space of square integrable functions.

In sum, we have introduced an operator F = f̂ : L2(R) → L2(R), defined by

F (f)(s) = f̂(s) =
∫ +∞

−∞
f(u)e−i2πsudu. (3.5)

This operator is called Fourier Transform. Note that we changed the signal of the exponent
when passing from (3.3) to (3.5) so as to keep the definition compatible with the definition of
the Fourier transform used in the literature.
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Without going into too much details, we would like to clarify some mathematical points.
The Fourier transform is well defined when the function f belongs to the space L1(R) of
integrable functions. In this case it is easy to see that f̂ is bounded and continuous. In fact,

|f̂(w) − f̂(s)| ≤
∫

R

|f(t)|ei2πwt − ei2πst| ≤
(∫

R

|f(t)dt

)
|w − s|.

The extension of f to the space L2(R) of square integrable functions is achieved by a limiting
process: Any function f ∈ L2(R) can be approximated by integrable functions of finite energy.
More precisely, for any f ∈ L2(R), there exists a sequence fn ∈ L1(R) ∩ L2(R) such that

lim
n→∞ ||fn − f || = 0.

We define f̂ as the limit of the sequence f̂n. Why is it important to define the Fourier
transform on L2(R), instead of L1(R)? We can give two main reasons for that:

• The Fourier transform of an integrable function is not necessarily integrable. Therefore
F is not an operator F : L1(R) → L1(R).

• The space L2(R) has a richer structure than the space L1(R) because of its inner product.
In fact it is a Hilbert space.

From the linearity of the integral it follows easily that the Fourier transform F : L2(R) →
L2(R) is linear. A fascinating result is that F is an isometry of L2. That is,

〈f, g〉 = 〈f̂ , ĝ〉, ∀f, g ∈ L2(R). (3.6)

This equation is known as Parseval identity. It follows easily from it that

||f ||2 = ||f̂ ||2. (3.7)

This equation is known as Plancherel equation.
The inverse of the Fourier transform is given by

F−1(g)(t) =
∫ +∞

−∞
g(s)ei2πωtds. (3.8)

That is, F−1(f̂) = f . Therefore, we have

f(t) = F−1(f̂) =
∫ +∞

−∞
f̂(s)ei2πstds. (3.9)

An important fact to emphasize is that we have two different ways to “read” equation
(3.9) of the inverse transform:

1. It furnishes a method to obtain the function f from its Fourier Transform f̂ .

2. It allows us to reconstruct f as a superposition of periodic functions, ei2πst, and the
coefficients of each function in the superposition are given by the Fourier transform.

The second interpretation above shows that the equation of the inverse Fourier transform
is a non-discrete analogous of equation (3.1) of the Fourier series.
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3.1.3 Spatial and Frequency Domain

Analyzing from the mathematical point of view, the Fourier transform is an invertible linear
operator on L2(R). Nevertheless, in the applications we have a very interesting interpretation
of it. A function f : R → R, can be interpreted as associating to each value of t in the spatial
domain R some physical magnitude f(t). When we compute the Fourier transform of f , we
obtain another function f̂(s) defined on L2(R). In this case, for each value of the parameter
s ∈ R the value f̂(s) represents the frequency density s in f . We interpret this by saying that
f̂ is a representation of the function f in the frequency domain. In summary, the Fourier
transform changes a function from the spatial to the frequency domain.

Since in our case the spatial domain has dimension 1 it is common to interpret the variable
t as time and call the spatial domain by the name of time domain.

Note that describing a function on the frequency domain allow us to obtain the frequency
contents of the function. The frequency contents is closely related with the features carried
by the function. As we have pointed out on the previous chapter, these features are important
elements to obtain good function representation.

3.2 A Pause to Think

Our purpose in this section is to have a better understanding of the potentialities of the Fourier
transform from the point of view of function representation and reconstruction. Equation (3.2)
provides us with information about the frequencies of a periodic function. For this reason, it
is called the analysis equation. Equation (3.1) allows us to obtain f from the coefficients aj

computed using the analysis equation. For this reason it is called a synthesis equation. From
the point of view of the previous chapter the analysis equation computes a representation of
the periodic function f by the sequence (aj), j ∈ Z. The synthesis equation provides us with
a reconstruction technique. Note that in this case the reconstruction is exact.

When the function is not periodic we know that equation (3.5), which defines the Fourier
transform, gives us an analysis of the frequencies of the function f . Equation (3.9) writes the
function f as a superposition of a “continuum” of periodic functions. This equation plays the
role of the reconstruction equation (3.1) of the function f (the analysis equation). Note that
the analysis and synthesis equation associated with the Fourier transform are not discrete as
in the case of the Fourier series, for periodic functions. Therefore we do not have a tool that
allow us to represent and reconstruct arbitrary functions as in the case of the Fourier series.

One important question can be posed now: How effective is the Fourier transform analysis
of a function? A discussion of this question will be done in the next section.

3.3 Frequency Analysis

In this section we study some examples that will give a better insight into the analysis provided
by the Fourier transform.

Suppose that f̂(s0) 6= 0. From this we conclude that f has frequencies s0 or close to s0.
In this case, the next step of analyzing f consists in determining the localization of these
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frequencies on the spatial domain of f . This localization is of great importance in several
applications, and in particular in the problem of function representation. We can make an
analogy using a radar metaphor: the existence of a certain frequency detects the presence of
some object, and the localization of a frequency allows us to determine the object position.

In general localizing frequencies on the spatial domain using Fourier transform is im-
possible. This happens because the modulating function (exponential) used to measure the
frequency density on the Fourier transform does not have compact support: the integral that
defines the transform extends to the whole line. Therefore the only information carried from
the fact that f̂(s) 6= 0 is that the frequency s, or frequencies close to s, are present on the
function f .

Example 5 (Signal with impulses). Consider the signal defined by the function

f(t) = sin(2π516.12t) + sin(2π2967.74t) + δ(t − 0.05) + δ(t − 0.42).

It consists of a sum of two sines with frequencies 516.12Hz and 2967.74Hz, where we added
two impulses of order 3 at the two different positions t0 = 0.05s e t1 = 0.42s. The graph
of this signal is shown on Figure 3.2(a). The graph of its Fourier Transform is shown on
Figure 3.2(b).
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Figure 3.2: A signal and its Fourier transform.

Note that the Fourier transform detects well the two sine signals (the two spikes in Figure
(b)). How about the impulses? It is easy to see from the definition of the Fourier transform,
that translation of an impulse on the spatial domain introduces modulation by an exponential
on the frequency domain. Therefore the modulation introduced by the two impulses generate
a superposition of frequencies. These frequencies do not appear on Figure 3.2(b) because of
an scale problem. Figure 3.3 plots the graph in a different scale so as to make it possible to
observe the superposed frequencies corresponding to the two impulses.

In conclusion the Fourier transform does not provide clear information about the two
impulses.
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Figure 3.3: Fourier transform of two impulses δ(t − 0.05) e δ(t − 0.42).

The difficulty in localizing frequencies on the spatial domain is one of the major weakness
of the Fourier transform in analyzing signals. Below we will give a classical example that
shows the inefficiency of the Fourier transform in representing functions.

Example 6 (Fourier analysis of the impulse signal). Consider the impulse “function”
Dirac δ. We have ∫ +∞

−∞
f(t)δ(t)dt = f(0).

Taking f(t) = e−i2πst in this equation we have

δ̂(s) =
∫ +∞

−∞
δ(t)e−i2πstdt = 1.

This shows that the Fourier transform of the impulse δ is a constant function of value 1. Using
this result in the reconstruction equation (3.9), we obtain

δ(t) =
∫ +∞

−∞
δ̂(f)ei2πstds =

∫ +∞

−∞
ei2πstds.

That is, exponentials of every frequency values s ∈ R must be combined in order to analyze
the impulse signal.

This fact has a very simple mathematical explanation: As the Fourier transform uses
modulating functions without compact support, and periodic, we must “sum” an infinite
number of these functions so as to occur destructive interference. Nevertheless from the
physical point of view we do not find a plausible explanation for the problem of representing
such a simple signal combining an infinite number of periodic functions.

In general, if a function presents sudden changes (e.g. discontinuities), the high frequencies
relative to these changes are detected by the transform, but they influence the computation of
the Fourier transform along all of the domain because the modulating function does not have
compact support. The Fourier analysis is therefore more efficient in the study of signals that
do not suffer sudden variations along the time. These signals are called stationary signals.
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3.4 Fourier Transform and Filtering

Even though the classical theory of filtering is developed for discrete signals, a good insight
is gained by studying filtering of continuous signals. The relation of the filtering theory with
the Fourier analysis is very important and will be exploited in many different parts of the
book.

A filter is an operator L : L2(R) → L2(R), defined on the space of signals with finite
energy. An important class of filters is given by the linear, time invariant filters. A filter is
linear if the operator L : L2(R) → L2(R), is linear. A filter is time invariant if a time delay
can be applied either before of after filtering, with the same result. That is,

L(f(t − t0)) = (Lf)(t − t0).

Linear and space invariant filters are simple to study because they are completely determined
by their values on the impulse signal h = Lδ(t). Indeed, time invariance of L gives

Lδ(t − u) = h(t − u).

Therefore,

L(f(t)) = L

∫
R

f(u)δ(t − u)du (3.10)

=
∫

R

f(u)h(t − u) =
∫

R

h(u)f(t − u)du. (3.11)

The last integral on the above equation is called the convolution product of h and f , and
it is denoted by h ∗ f(t). That is,

h ∗ f(t) =
∫

R

h(u)f(t − u)du.

We conclude that filtering signal f with a linear, time invariant filter L is equivalent to make
a convolution of f with the signal h = Lδ(t). The signal h is called the impulse response of
the filter. Sometimes h is called the kernel of the filter.

Applying the filter L to e−i2πwt yields

L(e−i2πwt) =
∫

R

h(u)e−i2πw(t−u)du (3.12)

= e−i2πwt

∫
R

h(u)e−i2πwudu (3.13)

= ĥ(w)e−i2πwt. (3.14)

This shows that each exponential e−i2πwt is an eigenvector of the filter L, and the corre-
sponding eigenvalue is the value ĥ(w) of Fourier transform of the impulse response function
h of L.

This result is of paramount importance and it is the link between filter theory and Fourier
analysis. In fact, as an immediate consequence it gives an insight in the action of the filter
on the frequencies of a signal f as we will show below.
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From the equation of the inverse Fourier transform we have

f(t) =
∫

R

f̂(w)ei2πwtdw.

Applying L to f we get

L(f(t)) =
∫

R

f̂(w)L(ei2πwt)dw =
∫

R

f̂(w)ĥ(w)ei2πwtdw. (3.15)

The above equation shows that the filter L modulates the sinusoidal components ei2πwt of
f , amplifying or attenuating them. Since Lf(t) = h ∗ f , equation (3.15) can be restated as

F (h ∗ f) = F (h)F (f), (3.16)

where F is the Fourier transform, and on the right we have a product of two functions. The
Fourier transform F (h) of the impulse response is called the transfer function of the filter.
Equation (3.16) will be used to give a better insight into the filtering operation.

Linear and space invariant filters are classified according to the way they modify the
frequencies of the signal f . This classification includes four basic types:

• Low-pass;

• High-pass;

• Band-pass

• Band-stop.

Low-pass Filters

This filter is characterized by the fact that they attenuate the high frequencies of the signal
without changing the low frequencies. From equation (3.16) it follows that the graph of the
transfer function of an ideal low-pass filter is shown in Figure 3.4.

Figure 3.4: Transfer function of an ideal low-pass filter.

High-pass Filter

This filter has a complementary behavior to that of the low-pass filter. It attenuates the low
frequencies and does not change the high frequencies. From equation (3.16) it follows that
the graph of a transfer function of an ideal high-pass filter is shown in Figure 3.5.
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Figure 3.5: Transfer function of an ideal high-pass filter.

Band-pass Filter

This filter changes both low and high frequencies of the signal, but does not change frequencies
in some interval (band) of the spectrum. The graph of the transfer function of an ideal band-
pass filter is shown in Figure 3.6. A low-pass filter is a band-pass filter for low frequencies.

Figure 3.6: Transfer function of an ideal band-pass filter.

Band-stop Filter

This is the complementary of a band-pass filter. This filter affects frequencies on an interval
(band) of the spectrum. Frequencies outside this frequency band are not affected. The graph
of the transfer function of an ideal band-stop filter is shown in Figure 3.7.

Figure 3.7: Transfer function of an ideal band-stop filter.

3.5 Fourier Transform and Function Representation

Is it possible to obtain representation and reconstruction techniques for a non-periodic func-
tion using the Fourier transform?
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Equation (3.9) which defines the inverse transform gives us a clue to look for an answer
to our question. In fact, this equation writes the function f as a superposition of periodical
functions, “modulated” by the Fourier transform.

Certainly there exists a redundancy in this “representation” of the function f by a con-
tinuum of functions. We can eliminate this redundancy by taking only a discrete set of
frequencies sj = ω0j, ω0 constant, j ∈ Z.

Unfortunately this discretization leads us to the Fourier series of the function f . In fact,
Fourier series are particular instances of Fourier transform for discrete signals. If

f(t) =
∑
n∈Z

f(n)δ(t − n),

then
f̂(w) =

∑
n∈Z

f(n)e−i2πwn.

Therefore the method that seems natural to obtain function representations from the
Fourier transform is in fact inadequate. Nevertheless the Fourier theory, and its relationship
with filter theory, is of great importance in the study of different representation methods.
This fact will be illustrated in the next section.

3.5.1 Fourier Transform and Point Sampling

In spite of all of the weakness of the Fourier transform that we have already discussed, it is a
powerful tool to analyze the problem of function representation. We will use it to understand
the problem of exact reconstruction from a representation by point sampling.

An important step in this direction is to understand the spectrum of a point sampled signal.
More precisely, suppose that we have a uniform sampling partition of the real numbers with
interval length ∆t. This length is called the sampling period. The discretized signal is given
by

fd(t) =
∑
k∈Z

f(k∆t)δ(t − k∆t).

The relation between the Fourier transform f̂ of f and the Fourier transform f̂d of the dis-
cretized signal fd is given by

f̂d(s) =
1

∆t

∑
k∈Z

f̂

(
s − k

∆t

)
(3.17)

A clear interpretation of equation (3.17) is very important: Apart from the scaling factor
1/∆t, it says that the spectrum of the sampled signal fd is obtained from the spectrum f̂
of the continuous signal f by translating it by multiples of 1/∆t, and summing up all of the
translated spectra. This is illustrated in Figure 3.8: In (a) we show the graph of the function
f ; in (b) we show the graph of the Fourier transform f̂ ; in (c) we show the graph of the
point sampling representation (fi) of f ; in (d) we show the Fourier transform of the sampled
function fd.
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Figure 3.8: Sampling and the Fourier spectrum.

It is important to remark that the translating distance varies inversely with the sampling
period: The sampling period is ∆t and the translating distance is 1/∆t. Therefore closer
samples produce more spaced translations and vice-versa. Note that in particular, very high
frequencies are introduced in the sampling process by the infinite translation of the spectrum.

Equation (3.17) is the key point to understand the reconstruction problem when we use
uniform point sampling to represent a function. This fact will be discussed in next section.

3.5.2 The Theorem of Shannon-Whittaker

In this section we will use Fourier theory to answer a question posed on chapter 2: Is it
possible to obtain an exact representation of a function using point sampling?

We will see that the answer is positive if we restrict the function f and at the same time
impose conditions on the sampling rate. Initially we will demand the following conditions:

• The point sampling process is uniform. That is, the sampling intervals [tk, tk+1] have
the same length ∆t = tk+1 − tk.

• The Fourier transform f̂ of the function f , assumes zero values outside a bounded
interval [−Ω,Ω] of the frequency domain. We say that f̂ has compact support.

Using the above restrictions, we have the classical:

Theorem 2 (Theorem of Shannon-Whittaker). Consider a function f : R → R with
compact support, supp (f̂) ⊂ [−Ω,Ω], and a uniform partition ti, i ∈ Z of the real num-
bers R such that 2∆t ≤ Ω. Then f can be reconstructed (exactly) from its point sampling
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representation (f(ti))i∈Z. The reconstruction equation is given by

f(t) =
+∞∑

k=−∞
f(

k

2Ω
)
sinπ(2Ωt − k)

π(2Ωt − k)
. (3.18)

The inequality 2∆x ≤ Ω is called Nyquist limit. It says that we must take at least 2
samples for each complete cycle of maximum frequency occurring in the function.

The result of the theorem is very intuitive. The hypothesis of the theorem says:

1. The function f should not have very high frequencies, supp (f̂) ⊂ [−Ω,Ω];

2. We take samples of f sufficiently close, such that we have at least 2 samples for a
complete cycle of maximum frequency (2∆t ≤ Ω);

The conclusion of the theorem is: f can be exactly reconstructed interpolating its samples
using equation (3.18).

A function f such that f̂ has compact support is called a band limited function, because it
posses frequencies within a limited interval (band) of the frequency domain. It is interesting
to make a sketch of the proof of the theorem so that we can see the role of Fourier analysis
and filtering.

Sketch of the Proof: Consider a band limited function f . The point sampling represen-
tation transforms f into the sequence f(ti) which is null outside the points of the sampling
partition, and assumes the values of f on the points of the partition.

We have seen from equation (3.17) that the sampling process alters the frequency spectrum
of the function f , introducing very high frequencies by translating and summing up the original
spectrum. In order to reconstruct f we have to recover the original frequency spectrum from
the spectrum of the sampled function.

The translation distance of the spectrum of the original signal f depends on the sampling
period (the length of the intervals in the sampling lattice): The smaller the period (that means
more space between consecutive samples), the bigger will be the translation of the spectrum.

The Nyquist limit 2∆t ≤ Ω says that if we take the sampling period sufficiently small, the
translated spectra will have disjoint domains. In this case, using an adequate low-pass filter
we can recover the original spectrum of the signal f . From this original spectrum we are able
to reconstruct the original signal using the inverse Fourier transform.

Details of this proof, including the computation of the reconstruction equation (3.18), can
be found in (Gomes & Velho, 1997).

3.6 Point Sampling and Representation by Projection

It can be shown that if we take

eΩ(t) =
sinπ2Ωt

π2Ωt
,
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the set {eΩ(t − k∆t)} is an orthogonal basis of the space

L2
Ω(R) = {f ∈ L2(R) ; supp(f̂) ⊂ [−Ω,Ω]}.

Moreover, the reconstruction equation (3.18) is the projection of f on this basis. In sum, the
problem of point sampling and reconstruction is reduced to the problem of representation on
an orthogonal basis.

If a signal f is not band-limited, that is, f /∈ L2
Ω(R), and it is represented using point sam-

pling with period ∆t ≤ Ω/2, and we reconstruct the sampled signal using the reconstruction
equation (3.18) of Shannon-Whittaker, we obtain a function f̃ ∈ L2(R) such that ||f̃ − f || is
minimized. In fact, f̃ is the orthogonal projection of f on L2

Ω(R).

3.7 Point Sampling and Representation Coefficients

When we have an orthonormal basis {φj} of the space L2(R), the representation of f in this
basis is given by

f =
∑
n

〈f, φn〉φn.

In this case we have the representation sequence

f 7→ (〈f, φn〉)n∈Z.

Note that if φn(x) = δ(x − n), then

〈f, φn〉 = 〈f, δ(x − n)〉 = f(n).

That is, the elements of the representation sequence are samples of the function f . This fact
motivates us to pose the following question:

Question 2. What is the relation between the elements 〈f, φn〉 of the representation sequence
and the samples f(n) of the function f?

There is a simple answer for this question in a very particular case of great importance in
the study of wavelets. We will suppose that the functions φn which constitute the orthonormal
basis are obtained from a single function φ by translations. More precisely,

φn(x) = φ(x − n).

From Parseval equation, and the identity

φ̂n(s) = F (φ(x − n)) = e−i2πinsφ̂(s),

we have

〈φn, f〉 = 〈φ̂n, f̂〉 =
∫ +∞

−∞
e2πinsφ̂(s)f̂(s)ds = F (n),
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where the function F is given by its Fourier transform

F̂ (ω) = φ̂(ω)f̂(ω). (3.19)

Notice that
|F̂ (s)| ≤ ||φ̂|| ||f̂ || = ||φ|| ||f ||,

therefore F̂ (ω) is integrable, and this implies that F is continuous. This shows that the values
of the samples F (n) are well defined.

If the function φ is a low-pass filter, equation (3.19) shows that F is obtained from the
original function f by a low-pass filtering process, therefore the values of F (n) are close to
the values of the original function f , if it does not have great frequency variations.

For this reason, it is common to refer to the elements 〈f, φn〉 from the representation
sequence as samples of the function f , even when φ is not a low-pass filter. This fact is
resumed in the theorem below for future references:

Theorem 3. If {φn = φ(x − n)} is an orthonormal basis of L2(R) then the terms 〈f, φn〉 of
the representation sequence of f on the basis {φn} are obtained by filtering f , F = f ∗φ, and
sampling the resulting function F . That is,

〈f, φn〉 = 〈f, φ(x − n)〉 = F (n)

3.8 Comments and References

There are several good books covering the theory of Fourier analysis. For a revision of the
classical theory we suggest the reader to consult (Weaver, 1989). This reference also covers
the discrete Fourier transform. A comprehensive reference for the discrete Fourier transform,
both from the conceptual and computational point of view, is found in (Briggs & Henson,
1995).

In practice we use finite signals when implementing the operations of sampling and recon-
struction on the computer. Therefore, we need to study the Fourier transform of finite signals.
This Fourier transform is called Discrete Fourier Transform (DFT). For the reader interested
in details we recommend (Gomes & Velho, 1997) and (Briggs & Henson, 1995). The reference
(Gomes & Velho, 1997) brings a chapter with a review of signal theory, adequate for those
with some computer graphics background, it can be found on Chapter 1 of (Gomes & Velho,
1997).

From the computational viewpoint an important issue related with the Fourier transform is
the study of its computational complexity. That is, the study of the computational complexity
of the DFT when applied to a finite signal with N samples. There are different flavors of
computing with a Fast Fourier Transform, which reduces the computational complexity. For
those interested in these topics we recommend (Loan, 1996) and (Duhamel & Vetterli, 1990).

We have not stressed in this chapter a very important point when working with Fourier
analysis and filtering: Since all of the theory studied here is linear, a natural representation
for them is to use matrices. This approach is important specially from the computational
point of view. Matrix notation is used all over in (Strang & Nguyen, 1996). We will use some
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matrix notation later on these notes. The reader should consult the Appendices to this course
notes where we introduce matrix notation.

The concepts of this chapter extend naturally to real functions of several variables. Of
particular importance in computer graphics is the case of functions f : R

2 → R, which de-
scribes an image, and the case f : R

3 → R which is related to the study of volumetric objects.
A good reference at an introductory level that covers two-dimensional signal processing is
(Lim, 1990).

A detailed discussion of the different problems arising from incorrect reconstruction of a
signal from a representation by point sampling, is found in Chapter 7 of (Gomes & Velho,
1997).

An analysis of the reconstruction problem when we use uniform point sampling represen-
tation with a sampling rate superior to the Nyquist limit is found in page 20 of (Daubechies,
1992).

The problem of reconstructing a function from its samples called the attention of math-
ematicians since the beginning of the century. For details about the history of this problem
we recommend (Butzer & Stens, 1992). A comprehensive discussion with different versions of
the problem including solutions can be found on (Zayed, 1993).

The Theorem of Shannon-Whittaker is a very important result in the theory of func-
tion discretization. Nevertheless it presents certain deficiencies as a solution to the sam-
pling/reconstruction problem. In particular, the hypothesis that f̂ has compact support is
too much restrictive. Several research directions are raised from the Theorem of Shannon-
Whittaker. We could mention the following ones:

• Look for versions of the theorem using a weaker hypothesis than that of compact support;

• Generalize the theorem for arbitrary domains of Rn.

• Analyze what happens with the reconstruction when the sampling is done without obey-
ing the Nyquist limit.
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Chapter 4

Windowed Fourier Transform

In this chapter we will introduce a modification in the definition of the Fourier transform in
order to obtain a transform with better localization properties in the time-frequency domain.
This transform will give us better results for the purposes of function representation.

4.1 A Walk in The Physical Universe

Our purpose is to obtain a transform that enables us to perform a local computation of
the frequency density. The inspiration for this transform is to analyze the audio analysis
performed by our auditory system. Consider for this an audio signal represented by a real
function f of one variable (time).

Real time analysis. The audio information we receive occurs simultaneously on time and
frequency. This means that the signal f is transformed by the auditory system in a signal
f̃(t, ω) that depends on the time and the frequency.

Future sounds are not analyzed. This means that only values of f(t) for t ≤ t1 can be
analyzed when computing the “transform” f̃(t, ω).

The auditory system has finite memory. That is, sounds that we have heard some
time ago do not influence the sounds that we hear in a certain instant of time. This means
that there exists a real number t0 > 0 such that the computation of the “transform” f̃(t, ω)
depends only on the values of t on the interval [t − t0, t].

Mathematically, the last two properties show that the modulating function used to detect
frequencies in the computation of the “transform” f̃(t, ω) must have its values concentrated
in a neighborhood of t. We say that it is localized in time. D. Gabor, (Gabor, 1946), was the
first to propose a transform with the above properties.

43
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Figure 4.1: Modulating function.

4.2 The Windowed Fourier Transform

One method to obtain a localized modulating function consists in using an auxiliary function
g(u) to localize the modulating function e−2iπωu used in the Fourier transform in a certain
neighborhood of the time domain:

gω,t(u) = g(u − t)e−2πiωu. (4.1)

This localization operator is illustrated in Figure 4.1. We take a function g(u), and for each
value of t ∈ R, we translate the origin to the point t and multiply the exponential by the
translated function g(u − t). If the function g is localized in the time domain, we obtain the
desired localization of the modulating function g(u − t)e−2πiωu.

From the above, the definition of our transform is given by

f̃(ω, t) =
∫ +∞

−∞
g(u − t)f(u)e−2πiωudu

=
∫ +∞

−∞
gt,ω(u)f(u)du = 〈gt,ω, f〉. (4.2)

The transform f 7→ f̃(t, ω) is called the windowed Fourier transform (WFT), or the short
time Fourier transform (STFT). Two important questions can be posed with respect to the
windowed Fourier transform f̃(t, ω):

Question 1. Is the transform f̃(t, ω) invertible?

Question 2. What is the image of the transform f̃(t, ω)?

The importance of these questions can be measured from the fact that the invertibility of
the Fourier transform is one of its strength. The underlying ideia of the importance of the
inverse transform is that if we are able to obtain a good representation using the transform,
its inverse will provide the reconstruction. The image of the transform is important because
it measures the scope of the representable functions.

We will discuss these two questions in the following sections.
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4.2.1 Invertibility of f̃(t, ω)

The problem of inverting the windowed Fourier transform consists in determining a function
f from its transformed function f̃(t, ω).

From (4.2) it follows that f̃(u, t) = f̂t(u), where ft(u) = g(u−t)f(u). Applying the inverse
Fourier transform, we have

g(u − t)f(u) = ft(u) =
∫ +∞

−∞
f̃(ω, t)e2πiωudω.

We can not divide by g(u − t) to get f(u), because the function g might as well assume zero
values. Multiplying both members of the equation g(u − t), and integrating in t we obtain∫ +∞

−∞
|g(u − t)|2f(u)dt =

∫ +∞

−∞

∫ +∞

−∞
e−2πiωug(u − t)f̃(ω, t)dωdt.

That is,

f(u) =
1

||g||2
∫∫

ω,t
g(u − t)e2πiωuf̃(ω, t)dω. (4.3)

As we did for the Fourier transform, equation (4.3) can be interpreted into two different
ways:

1. It is an equation to compute f from its windowed Fourier transform f̃(ω, t);

2. It decomposes the function f as an infinite superposition of localized waveforms

gω,t(u) = g(u − t)e2πiωu.

These waveforms are called time-frequency atoms.

4.2.2 Image of the Windowed Fourier Transform

In this section we will discuss the second question posed before: What is the image space of
the windowed Fourier transform? We will only give some comments concerning the answer.

Given a function f its windowed Fourier transform f̃(ω, t) is a function of two variables.
It is possible to prove that if f ∈ L2(R), then f̃(ω, t)L2(R2). Also, it is possible to show that
the image of the transform f̃ does not cover the whole space L2(R2). Therefore, the posed
question consists in characterizing the image set of the windowed Fourier transform. We will
not solve this problem here. A solution to it can be found in (Kaiser, 1994), page 56, or
Theorem 4.1 of (Mallat, 1998).

It is important to compare the result here with the analogous result for the Fourier trans-
form: The Fourier transform is an isometry of the space L2(R). In particular its image is the
whole space.
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4.2.3 WFT and Function Representation

Since our main focus is the problem of function representation, a natural question to be posed
now would be:

Question 3. Is it possible to obtain a function representation using the windowed Fourier
transform?

In fact since the windowed Fourier transform has good localization properties in the time-
frequency domain, we should expect that the discretization of equation (4.3) would give good
discrete time-frequency atomic representations.

4.3 Time-frequency Domain

We have noticed that if f ∈ L2(R), then f̃(ω, t) ∈ L2(R2). Therefore the windowed Fourier
transform of a function is defined on the domain (ω, t), called the time-frequency domain.

From the definition of the windowed Fourier transform (4.2) we know that if g is well
localized in time (i.e. g is small outside of a small time interval), then f̃ is also well localized
in time. How about the frequency localization of f̃?

From equation (4.2) which defines the windowed Fourier transform, we have

f̃(ω, t) = 〈gω,t, t〉 = 〈ĝω,t, f̂〉,

where the second equation follows from Parseval’s identity. We conclude that if g has good
localization properties in the frequency domain (i.e. ĝ is small outside an interval of frequency
ω), then the transform f̃ is also localized in frequency.

Therefore the windowed Fourier transform enable us to analyze the function f in the time-
frequency domain, in the sense that we have localized information both in time and frequency
domain. This results is completely in accordance with the problem we have discussed before:
Detect frequencies of the function f , and localize them on the time domain.

How precisely can we localize the information about f in the time-frequency domain? An
answer to this question is given below.

4.3.1 The Uncertainty Principle

From the previous section we could conclude that finer and finer analysis of a function f ∈
L2(R) could be obtained by using window functions g with very good localization properties
on the time-frequency domain (ω, t).

Unfortunately there is a limit to the localization precision in the time-frequency domain.
This limitation comes from a general principle that governs the time-frequency transforms.
This is the uncertainty principle which will be discussed now. In simply terms the statement
of this principle is: We can not obtain precise localization simultaneously in the time and
frequency domains. The intuition behind this principle is simple: To measure frequencies we
must observe the signal for some period of time. The more precision we need in the frequency
measurements the larger the time interval we have to observe.
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Figure 4.2: Information cells.

In order to give a more quantitative statement of the uncertainty principle, we have to
define precisely the notion of “information localization” of a function. For this, we will suppose
that the norm L2(R) of the window function g is 1, that is, ||g||2 = 1. It follows from the
equation of Plancherel that ||ĝ||2 = 1. We may consider g and ĝ as probability distributions,
then the averages of g e ĝ are computed by

t0 =
∫ +∞

−∞
t|g(t)|dt, and ω0 =

∫ +∞

−∞
ω|ĝ(ω)|dω,

respectively. The size of the localization interval of g and ĝ is given the standard deviation

T 2 =
∫ +∞

−∞
(t − t0)2|g(t)|2dt,

and

Ω2 =
∫ +∞

−∞
(ω − ω0)2|ĝ(ω)|2dω.

With the above definitions, the uncertainty principle states that

4πΩT ≥ 1.

Note that if g is well localized in frequency (Ω small) then T ≥ 1/4πΩ can not be small,
therefore g does not have good localization in time. The same reasoning applies for frequency
localization.

The localization of the signal in the time-frequency domain (ω, t) is represented geomet-
rically by the rectangle of dimensions T × Ω. This rectangle is called uncertainty window or
information cell of the transform. From the uncertainty principle, the area of this rectangle
is ≥ 1/4π (See Figure 4.2).

The uncertainty principle shows that do not exist coordinates in the time-frequency do-
main. Or, to state this more precisely, the coordinates on the time-frequency domain are
not of great importance to the analysis of functions, unless for the fact that they are used to
measure the dimensions of the uncertainty windows.



48 CHAPTER 4. WINDOWED FOURIER TRANSFORM

Figure 4.3: Atoms in the time-frequency domain.

4.4 Atomic Decomposition

Our main goal is to provide better representations of a signal. The purpose of introducing
the windowed Fourier transform is to obtain representations in the time-frequency domain.
More precisely, given a function f we must obtain a decomposition

f =
∑
λ∈Ω

aλgλ, (4.4)

where Ω is discrete, and the functions gλ have good localization properties in the time-
frequency domain. The functions gλ are called time-frequency atoms, and the reconstruction
equation (4.4) is called atomic decomposition.

The atomic decomposition defines a representation operator

R(f) = (aλ)λ∈Ω ∈ `2.

Each atom in this representation constitutes a basic element used to measure the frequency
density of the function in a small period of time. Each of these atoms is represented by
a rectangle whose sides indicate the measure of localization according to the uncertainty
principle. The degree of uncertainty in time and in frequency is indicated by the width and
height of the rectangle. The localization of the atom in the time-frequency domain is given
by the coordinates of the center of the rectangle, or by the coordinates of some of its vertices.
From the uncertainty principle the area of each rectangle is ≥ 1/4π.

We associate a gray color to each atom to indicate its energy in the decomposition. The
energy is directly related with the value of the coefficients in the reconstruction equation. In
Figure 4.3 we depict some atoms. The associated signal to the atom on the left presents small
localization in frequencies and has small energy; the central atom has better localization of
frequencies (complete cycle) and therefore has more energy; the atom to the right has a good
frequency localization (several cycles are encompassed) and a high energy.
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Given a signal f represented by some finite atomic decomposition

fN (t) =
N−1∑
k=0

aN (k)φN,k(t),

this representation depicted by the corresponding rectangles of each atom φN,k, and the
corresponding energy component aN (k)φN,k.

In the case of representation by uniform sampling, we have an exact localization in time
and no localization in the frequency domain. The representation in the time-frequency domain
is illustrated in Figure 4.4(a), where the distribution between the vertical segments is given
by the sampling interval.

(a) (b)

Figure 4.4: (a) Point sampling. (b) Fourier sampling.

The atoms of the discrete Fourier transform

1, e
2πi
N , . . . , e

2πi(N−1)s
N

constitute an orthonormal basis. We have N discrete values of frequency 0, s, 2s, . . . , (N −1)s.
These atoms have no time localization, therefore the atomic representation of a function using
this basis is localized in the frequency domain and has no time localization. This fact is
depicted in Figure 4.4(b).

4.5 WFT and Atomic Decomposition

The natural way to obtain atomic decompositions of the function f using the windowed Fourier
transform would be using the inverse transform (4.3) which writes f as a superposition of
indexed functions by the time frequency parameters. This equation gives us an indication that
by discretizing the time and frequency parameters we obtain representation/reconstruction
methods for functions f ∈ L2(R).
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Figure 4.5: Uniform lattice in time-frequency domain.

In order to achieve this we should look for discrete versions of the windowed Fourier
transform. We fix t0 and ω0 and we take discrete values of time t = nt0, and discrete values
of frequency ω = mω0, n, m ∈ Z. In the time-frequency domain we have the uniform lattice

∆t0,ω0 = {(mt0, nω0) ; m, n ∈ Z},

depicted in Figure 4.5
In this case we write the transform f̃ in the form

f̃m,n =
∫ +∞

−∞
f(u)g(u − nt0)e−2πimω0udu, (4.5)

which is called discrete windowed Fourier transform (DWFT).
The discrete windowed Fourier transform uses a countable family of time frequency atoms

gm,n(u) = ei2πmω0ug(u − nt0).

If this family constitute a frame we can obtain a representation

f 7→ (〈f, gm,n〉)m,n∈Z,

of the function f . Moreover, f can be reconstructed from this representation using the
reciprocal frame g̃m,n, as described in Chapter 2:

f =
∑
m,n

〈f, gm,n〉g̃m,n.

Geometrically, this result means that when we position the information cells of the time-
frequency atoms gm,n on the vertices of the lattice, we cover the whole time-frequency plane.
This fact is illustrated in Figure 4.6 for two distinct discretizations of the domain.

Now the crucial question to complement the above results is:
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Figure 4.6: Decompositions of the time-frequency domain using the DWFT.

Question 4. Does there exist frames gm,n with good localization properties in the time-
frequency plane?

A detailed analysis of this question, with several related references, can be found in Chapter
4 of (Daubechies, 1992). We will give a briefing of the results here:

1. If t0ω0 > 2π, then frames gm,n do not exist.

2. If t0ω0 = 2π, frames do exist but they do not have good localization properties in the
time-frequency domain. In fact, if we take

g(x) =

{
1 if x ∈ [0, 1]
0 if x < 0 ou x > 1,

then gm,n(x) is a basis. The same happens if we take g(x) = senπx/πx.

3. If t0ω0 < 2π, then there exists tight frames with good time-frequency localization prop-
erties. A construction of such a tight frame is found in (Daubechies et al. , 1986).

From the point of view of time-frequency, the atomic decomposition of a function using the
discrete windowed Fourier transform, gives an uniform decomposition in rectangles, according
to the illustration on Figure 4.6. We will give some examples.

Example 7 (Sines with impulses). Consider the signal defined by the function

f(t) = sin(2π516.12t) + sin(2π2967.74t) + δ(t − 0.05) + δ(t − 0.42).

This signal consists of a sum of two senoids with frequencies 516.12Hz e 2967.74Hz, with two
impulses of order 3 for time values of t0 = 0.05s and t1 = 0.42s. The graph of the signal is
shown in the image on the left of Figure 4.7. The graph of its Fourier transform is depicted
in the image on the right.
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Figure 4.7: Signal and its Fourier transform.

The analysis of this signal using the Fourier transform was done in Chapter 2. Our goal
here is to revisit this analysis using the windowed Fourier transform. For this, we use a
Hamming window with different sizes. A Hamming window is defined by a cosine curve
a + b cos t for convenient values of a and b. Its graph is shown in Figure 4.8.
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Figure 4.8: Hamming window.

The images (a), (b) and (c) of Figure 4.9 show the information cells of the atomic decom-
position of the signal f using the discrete windowed Fourier transform. In the decomposition
shown in (a) we have used a Hamming window of width 32 (i.e. 32 samples) in the decompo-
sition shown in (b) we used a Hamming window of width 64 (64 samples), and in (c) we have
used a Hamming window of width 256.

An analysis of the decompositions on the figure shows us the following:

• In (a) we see that two impulses were detected with a good localization in time. The
two sine waves also have been detected but the localization of their frequencies is not
good. Moreover several information cells show up which are not directly related with
the dominating frequencies of the signal.

• In (b) we have a better localization of the sine frequencies, but the information cells are
not able to distinguish the two impulses.
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Figure 4.9: Atomic decomposition using windowed Fourier transform.

• In (c) we have a good localization of the two impulses in time and good localization of
the sinusoidal frequencies. Also it should be noticed that most of the information cells
on the figure are related with the relevant frequencies of the signal. Nevertheless, it
should be remarked that if the two pulses were close together, we would not be able to
distinguish them.

The above example shows that making an adequate adjustment of the size of the window,
we can obtain satisfactory results in the analysis of the signal using the windowed Fourier
transform. The results are much better than those of the analysis using the Fourier transform
in the previous chapter.

Nevertheless we must take into consideration that the signal that we have used is very
simple: it contains only two distinguished frequencies of the sine waves, and the two impulses.

Now we will give an example of a signal which is very difficult to be analyzed using the
windowed Fourier transform. The idea of constructing such an example is very simple: The
information cells of the windowed Fourier transform have constant width, thus if a signal has
frequencies which varies between different orders of magnitude, it is very difficult to obtain
an adequate width of a window that is able to detect all of the frequency values. We will give
an example illustrating this fact.

Example 8 (Quadratic chirp signal). Consider the signal defined by the function

f(t) = sin2(t2).

The frequencies of this signal have a quadratic growth along the time. The graph of the
function f is shown in Figure 4.10(a). Since the signal has low frequencies close to the origin
t = 0 and they increase arbitrarily as the time increases, we conclude that a good atomic
decomposition of this signal should have time-frequency atoms as illustrated in Figure 4.10(b).

Figure 4.11 shows two atomic decompositions of the signal f using the windowed Fourier
transform. In both we have used Hamming windows of different sizes. It should be noticed
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Figure 4.10: (a) Quadratic chirp signal; (b) Ideal atomic decomposition of the signal.

that the relevant frequencies are detected and are correlated along a parabola, as we pre-
dicted. Nevertheless several other information cells appear that are not related with relevant
frequencies of the signal. Moreover the information cells corresponding to the frequencies of
the signal do not posses good localization properties.
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Figure 4.11: Time-frequency decomposition of chirp signal using DWFT.

The above example explicitizes the limitation of the windowed Fourier transform: It uses a
fixed window size. In the next chapter we will introduce the wavelet transform in an attempt
to fix this problem. The problem of representation and reconstruction of signals will be
revisited with this transform. As we will see, better atomic decompositions will be obtained.

4.6 Comments and References

The windowed Fourier transform was introduced in the literature by D. Gabor, (Gabor,
1946). D. Gabor used Gaussian windows, for this reason the windowed fourier transform with
gaussian windows is also called Gabor transforms on the literature.
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The reference (Kaiser, 1994) contains useful information with detailed proofs, the only
drawback is that it requires more familiarity of the reader with techniques from functional
analysis, and measure theory. In particular it generalizes the concept of frames for non-discrete
frames, and along with the equations of the resolution of the identity provides elegant proofs
of several results.

The study of the windowed Fourier transform in (Daubechies, 1992) is quite complete.
Nevertheless frames for the windowed Fourier transform is discussed along with the problem
of wavelet frames. This could bring some difficulties for those with less experience.
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Chapter 5

The Wavelet Transform

In this chapter we will introduce the wavelet transform with the purpose of obtaining better
representation of functions using atomic decompositions in the time-frequency domain.

5.1 The Wavelet Transform

The windowed Fourier transform introduces an scale (the width of the window), and analyzes
the signal from the point of view of this scale. If the signal has important frequency details
outside of the scale, we will have problems in the signal analysis:

• If the signal details are much smaller then the width of the window, we will have a
problem similar to the one we faced with the Fourier transform: The details will be
detected but the transform will not localize them.

• If the signal details are larger than the width of the window they will not be detected
properly.

To solve this problem when we analyze a signal using the windowed Fourier transform, we
must define a transform which is independent of scale. This transform should not use a fixed
scale, but the scale should vary.

The scale is defined by the width of the modulation function. Therefore we must use a
modulation function which does not have a fixed width. Moreover the function must have
good time localization. To achieve this we start from a function ψ(t) as a candidate of a
modulation function, and we obtain a family of functions from ψ by varying the scale: We fix
p ≥ 0 and for all s ∈ R, s 6= 0, we define

ψs(u) = |s|−pψ(
u

s
) =

1
|s|p ψ(

u

s
). (5.1)

If ψ has width T (given as the standard deviation as explained in Chapter 3) then the width
of ψs is sT . The modulation of the function ψ by the factor 1/|s|2, increases its amplitude
when the scale s decreases and vice-versa. In terms of frequencies, we can state: For small
scales s, ψs has high frequencies, and as s increases the frequency of ψs decreases. This fact
is illustrated in Figure 5.1.
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Figure 5.1: Scales of a function: (a) s < 1; (b) s = 1; (c) s > 1.

Analogous to what we did with the windowed Fourier transform of a function, we need to
localize each function ψs in time. For this we define for each t ∈ R the function

ψs,t(u) = ψs(u − t) = |s|−pψ(
u − t

s
) =

1
|s|p ψ(

u − t

s
). (5.2)

Note that if ψ ∈ L2(R), then ψs,t ∈ L2(R), and

||ψs,t||2 = |s|1−2p||ψ||2.
By taking p = 1/2, we have ||ψs,t|| = ||ψ||.

Now we can define a transform on L2(R) in a similar way that we defined the windowed
Fourier transform, using functions from the family ψs,t as modulating functions. More pre-
cisely, we have

f̃(s, t) =
∫ +∞

−∞
f(u)ψs,t(u)du = 〈ψs,t, f〉. (5.3)

This transform is known by the name of the wavelet transform.
As we did for the windowed Fourier transform, we can pose the following questions con-

cerning the wavelet transform:

Question 1. Is the wavelet transform f̃(s, t) invertible?

Question 2. What is the image of the wavelet transform f̃(s, t)?

In the previous chapter we have explained the importance of these two questions for
function representation using time-frequency atoms.

5.1.1 Inverse of the Wavelet Transform

By definition we have
f̃(s, t) = 〈ψs,t, f〉 = 〈ψ̂s,t, f̂〉.

Moreover,

ψ̂s,t(ω) = |s|1−pe−2πiωtψ̂(sω). (5.4)
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From this it follows that

f̃(s, t) = |s|1−p

∫ +∞

infty
e2πiωtψ̂(s, ω)f̂(ω)dω (5.5)

= |s|1−pF−1
(
ψ̂(sω)f̂(ω)

)
, (5.6)

Where F indicated the Fourier transform.
Applying the Fourier transform to both sides of the equation we obtain∫ +∞

−∞
e−2πiωtf̃(s, t)dt = |s|1−pψ̂(sω)f̂(ω). (5.7)

From the knowledge of f̂ we can obtain f using the inverse transform. But we can not
simply divide the above equation by ψ̂, because it might have zero values. Multiplying both
sides of (5.7) by ψ̂(sω), and making some computations we obtain the result below:

Theorem 4. If ψ satisfies the condition

C =
∫ +∞

−∞
|ψ̂(u)|2

|u| < ∞, (5.8)

then

f(u) =
1
C

∫∫
R2

|s|2p−3f̃s,t(u)ψs,t(u)dsdt. (5.9)

This theorem answers the first question posed at the end of the previous section: The
wavelet transform is invertible and equation (5.9) reconstructs f from its wavelet transform.

As we did with the windowed Fourier transform, we can read equation (5.9) of the inverse
wavelet transform in two distinct ways:

1. The function f can be recovered from its wavelet transform;

2. The function f can be decomposed as a superposition of the time-frequency atoms
ψs,t(u).

We have seen that the second interpretation is of great importance because, as in the case
of the windowed Fourier transform, it will lead us to obtain good representations by atomic
decompositions of the function f .

5.1.2 Image of the Wavelet Transform

In this section we will discuss the second question we asked before about the image of the
wavelet transform.

The wavelet transform, similarly with the windowed Fourier transform, takes a function
f ∈ L2(R) into a function f̃(s, t) of two variables. A natural question consist in computing
the image of the transform.

The interested reader should consult (Kaiser, 1994), page 69. Besides characterizing the
image space, this reference brings a proof that the wavelet transform defines an isometry over
its image. We will not go into details of the computation here.
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5.2 Filtering and the Wavelet Transform

Equation (5.3) that defines the wavelet transform can be written as a convolution product

f̃(s, t) = f ∗ ψs(u),

where ψs(u) is defined in (5.1). Thus the wavelet transform is a linear space-invariant filter.
In this section we will discuss some properties of the wavelet filter.

The condition (5.8) that appears in the hypothesis of the Theorem 4 is called admissibility
condition. A function ψ that satisfies this condition is called a wavelet.

From the admissibility condition it follows that

lim
u→0

ψ̂(u) = 0.

If ψ̂(u) is continuous, then ψ̂(0) = 0, that is,∫ +∞

−∞
ψ(u)du = 0.

Geometrically, this condition states that the graph of the function ψ must oscillate so as to
cancel positive and negative areas in order to have integral zero. Therefore the graph of ψ
has the form of a wave. In fact since ψ should have good time localization properties it has
a form of a “small wave” (see Figure 5.2). That is why ψ is named by wavelet.

Figure 5.2: Graph of a wavelet.

Another important conclusion can be drawn from the above computations. Since ψ̂(u) ∈
L2(R), then

lim
u→0

ψ̂(u) = 0.

Along with the fact that ψ̂(0) = 0, we conclude that the graph of the Fourier transform ψ̂ is
as depicted in Figure 5.3(a).

If ψ̂ has a fast decay when u → 0 and u → ∞, then ψ̂(u) is small outside of a small
frequency band α ≤ |u| ≤ β (see Figure 5.3(b)). It follows from equation (5.4) that ψ̂s,t ≈ 0
outside of the frequency band

α

|s| ≤ |u| ≤ β

|s| .
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(a)

(b)

Figure 5.3: Fourier transform of a wavelet.

Moreover, from equation (5.6) the wavelet transform f̃ does not contain information about
f outside of this spectrum interval. In sum, the computations above show that “the wavelet
transform is a linear, time invariant band-pass filter”.

The next two examples are taken from (Kaiser, 1994).

Example 9 (Blur Derivative). Consider a function φ of class C∞, satisfying the conditions

φ ≥ 0;∫
R

φ(u)du = 1;∫
R

uφ(u)du = 0;∫
R

u2φ(u)du = 1.

That is, φ is a probability distribution with average 0 and variance (width) 1. Suppose that

lim
u→+∞

∂n−1φ

∂un−1 (u) = 0.

Defining

ψn(u) = (−1)n ∂nφ

∂un
(u),

we have, ∫
R

ψn(u)du = 0.
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That is, ψn satisfies the admissibility condition (5.8). Therefore we can define a wavelet
transform

f̃(s, t) =
∫

R

ψn
s,t(u)f(u)du, (5.10)

where
ψn

s,t(u) =
1
s
ψn(

u − t

s
).

(We are taking p = 1 in equation (5.2) that defines ψs,t(u)). In an analogous way we define,

φs,t(u) =
1
s
φ(

u − t

s
).

From the definition of ψn we have that

ψ−n
s,t (u) = (−1)ns−n ∂nφs,t

∂un
(u) = s−n ∂nφs,t

∂tn
(u). (5.11)

From equations (5.10) and (5.11) it follows that

f̃(s, t) = s−n ∂n

∂tn

∫
R

φs,t(u)f(u)du. (5.12)

The above integral is a convolution product of the function f with the function φs,t, there-
fore it represents a low-pass filtering linear time-invariant filtering operation of the function
f , which is dependent of the scale s. We will denote this integral by f(s, t). Therefore we
have

f̃(s, t) = s−n ∂nf(s, t)
∂tn

, (5.13)

that is, the wavelet transform of f is the n-th time derivative of the average of the function
f on scale s. This derivative is known in the literature by the name of blur derivative.

We know that the n-nth derivative of f measures the details of f in the scale of its
definition. Therefore, equation (5.13) shows that the wavelet transform f̃(s, t) gives the detail
of order n of the function f , in the scale s. Keeping this wavelet interpretation in mind is
useful, even when the wavelet does not come from a probability distribution.

Example 10 (The Sombrero Wavelet). We will use a particular case of the previous ex-
ample to define a wavelet transform. Consider the Gaussian distribution

φ(u) =
1√
2π

e−u2/2,

with average 0 and variance 1. The graph of this function is depicted in the image on the left
of Figure 5.4. Using the notation of the previous example, we have

ψ1(u) = −φ′(u) =
1√
2π

ue−u2/2,
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Figure 5.4: Graph of the sombrero wavelet.

and

ψ2(u) = φ′′(u) =
1√
2π

(u2 − 1)e−u2/2.

The function −ψ2 is known as the “sombrero” function, because of the shape of its graph,
shown in the right of Figure 5.4.

From the previous example it follows that we can use the sombrero function to define a
wavelet transform. We will use this wavelet to illustrate the flexibility of the wavelet transform
in analyzing frequencies of a signal. For this, consider the signal whose graph is shown in
Figure 5.5.

Figure 5.5: Signal f to be analyzed(Kaiser, 1994).

This signal has high frequencies localized in the neighborhood of t = 50, and t = 150.
From time t = 280, the signal has a chirp behavior: a continuum of increasing frequencies. In
this region the signal is defined by the function

f(t) = cos(t3).

We know already that the windowed Fourier transform is not adequate to analyze signals
with this behavior. Figure 5.6 shows the graph of the signal and the graph of the wavelet
transform for 5 distinct values of the scale s (the scale decreases from top to bottom).

Note that the frequencies associated to the sudden change of the signal at time t = 50
and time t = 150 are detected by the wavelet transform. Moreover, as the scale s decreases
the high frequencies of the chirp signal cos(t3) are also detected.
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Figure 5.6: The wavelet transform(Kaiser, 1994).

5.3 The Discrete Wavelet Transform

In the study of the windowed Fourier transform the time-frequency domain was discretized
using an uniform lattice

∆(t0,ω0) = {(mt0, nω0);m, n ∈ Z},

because of the constant width of the time-frequency atoms. The wavelet transform is defined
on the time-scale domain. A natural question is:

Question 3. How to discretize the time-scale domain in such a way to obtain a discrete
wavelet transform?

We known that the scaling operation acts in a multiplicative way, that is, composing
two consecutive scalings is attained by multiplying each of the scale factors. Therefore the
discretization of the scaling factor is simple: We fix an initial scale s0 > 1, and we consider
the discrete scales

sm = sm
0 , m ∈ Z.

Positive values of m produce scales larger than 1, and negative values of m produce scales
less than 1.

How to discretize the time? Initially we should observe that we must obtain a lattice
in the time-scale domain in such a way that when we sample the wavelet transform f̃(s, t)
on this lattice, we are able to reconstruct the function f from the time-scale atoms f̃m,n,
with minimum redundancy. As the wavelet width changes with the scale, we must correlate
the time with the scale discretization: As the scale increases the width of the wavelet also
increases, therefore we can take samples further apart in the time domain. On the other hand,
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when the width of the wavelet decreases with a reduction of the scale, we must increase the
frequency sampling.

To obtain the correct correlation between the scale and time discretization we observe
that an important property of the wavelet transform is: The wavelet transform is invariant
by change of scales. This statement means that if we make a change of scale in the function
f and simultaneously change the scale of the underlying space by the same scaling factor, the
wavelet transform does not change. More precisely, if we take

fs0(t) = s
−1/2
0 f(

t

s0
),

then

f̃s0(s0s, s0t) = f̃(s, t).

Invariance by changing of scale constitutes an essential property of the wavelet transform.
It is important that this property be preserved when we discretize the wavelet, so as to be
also valid for the discrete wavelet transform. In order to achieve this goal, when we pass from
the scale sm = sm

0 to the scale sm+1 = sm+1
0 , we must also increment the time by the scaling

factor s0. In this way, we can choose a time t0 and take the length of the sampling time
intervals as ∆t = sm

0 t0. Therefore, for each scale sm
0 the time discretization lattice is

tm,n = nsm
0 t0, n ∈ Z.

Finally, the discretization lattice in the time-scale domain is defined by

∆s0,t0 = {(sm
0 , nsm

0 t0) ; m, n ∈ Z}.

Example 11 (Dyadic Lattice). We will give a very important example of a wavelet dis-
cretization using s0 = 2 (dyadic lattice). We have

∆2,t0 = {(2m, n2mt0) ; m, n ∈ Z}.

The vertices of this lattice are shown in Figure 5.7(a). This lattice is called hyperbolic lattice
because it is a uniform lattice in hyperbolic geometry (only the points are part of the lattice).

To obtain a time-frequency lattice, we must observe that the frequency is the inverse of
the scale. In this manner, for a given initial frequency ω0 the lattice will be given by

∆2ω0,t0 = {(2−mω0, n2−mt0) ; m, n ∈ Z}.

The vertices of this lattice are shown in Figure 5.7(b).
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(a) (b)

Figure 5.7: (a) Time-scale lattice.(b) Time-frequency lattice.

5.3.1 Function Representation

From the point of view of atomic decomposition the time-frequency atoms define a tiling of
the time-frequency domain in rectangles as shown in Figure 5.8.

Figure 5.8: Time-frequency decomposition using wavelets.

The discretization of the wavelet transform f̃(s, t) = 〈f, ψs,t(u)〉 in the time-scale lattice
is given by

f̃m,n = 〈f, ψm,n(u)〉,
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where

ψm,n(u) = ψsm
0 ,nt0sm

0
(u) (5.14)

= s
−m/2
0 ψ

(
u − nt0s

m
0

sm
0

)
(5.15)

= s
−m/2
0 ψ(s−m

0 u − nt0). (5.16)

In this context we can pose again the two questions which motivated the process of defining
a discrete wavelet transform:

Question 4. Is the sequence 〈f, ψm,n〉, m, n ∈ Z an exact representation of the function f?

Question 5. Is it possible to reconstruct f from the family of wavelet time-frequency atoms
ψm,n?

A positive answer to these two questions would give us atomic decompositions of the
function f using a family ψm,n. of discrete wavelets.

There are several directions we could take to answer the two questions above. Based on
the representation theory discussed in Chapter 2, two natural questions in this direction are:

Question 6. Is it possible to define a lattice such that the corresponding family {ψm,n}
constitutes an orthonormal basis of L2(R)?

Question 7. Is it possible to define lattices for which the family {ψm,n} is a frame?

If we have orthonormal basis of wavelets or a frame, we know from Chapter 2 that the
answer to the two questions posed above are positive.

Chapter 3 of (Daubechies, 1992) brings a comprehensive discussion of frames of wavelets.
The explicit construction of some wavelet frames is given. In the Chapters to follow we will
discuss the construction of different basis of wavelets.

Example 12 (Haar Basis). Consider the function

ψ(x) =


1 if x ∈ [0, 1/2)
−1 if x ∈ [1/2, 1)
0 if x < 0 ou x > 1.

The graph of f is shown in Figure 5.9. This function satisfies the admissibility condition (5.8).

It is possible to show that the set ψm,n, where

ψm,n(u) = 2−m/2ψ(2−mu − n), m, n ∈ Z,

constitutes an orthonormal basis of L2(R). Therefore we have an orthonormal basis of
wavelets. A direct, and long, proof of this fact is found in (Daubechies, 1992), Section 1.3.3.
The orthonormality of the set ψm,n is easy to proof. The fact that the set generates the space
L2(R) is more complicated. This will follow as a consequence of the theory of multiresolution
analysis that we will study in next chapter.
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Figure 5.9: Haar wavelet.

5.4 Comments and References

There are several possibilities of extending the wavelet transform to functions of several vari-
ables, i.e. L2(Rn). The interested reader should consult (Daubechies, 1992), page 33, or
(Mallat, 1998).

The beautiful examples 9 and 10 of this chapter were taken from (Kaiser, 1994).
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Chapter 6

Multiresolution Representation

In the introductory chapter we stated that two properties of wavelets were responsible for their
applicability in the study of functions. One of these properties is the wavelet time-frequency
atoms we studied in the previous chapter. The second property is the relationship of wavelets
with multiresolution representation. This relationship will be exploited in two different ways:

• From one side it allows us the use of wavelets to obtain multiresolution representations
of functions.

• On the other hand it will be used as a tool to construct wavelets.

6.1 The Concept of Scale

Our perception of the universe uses different scales: Each category of observations is done in
a proper scale. This scale should be adequate to understand the different details we need.
In a similar manner, when we need to represent an object, we try to use a scale where the
important details can be captured in the representation.

A clear and well known example of the use of scales occurs on maps. Using a small scale
we can observe only macroscopic details of the mapped regions. By changing the scale we can
observe or represent more details of the object being represented on the map.

Multiresolution representation is a mathematical model adequate to formalize the repre-
sentation by scale in the physical universe. As we will see, this problem is intrinsically related
to the wavelets.

The idea of scale is intrinsically related with the problem of point sampling of a signal.
We call sampling frequency the number of samples in the unit of time. The length of the
sample interval is called the sampling period. When we sample a signal using a frequency
2j , we are fixing a scale to represent the signal: Details (frequencies) of the signal that are
outside of the scale magnitude of the samples will be lost in the sampling process. On the
other hand, it is clear that all of the details of the signal captured in a certain scale will also
be well represented when we sample using a higher scale, 2k, k > m.

These facts are well translated mathematically by the sampling theorem of Shannon-
Whittaker that relates the sampling frequency with the frequencies present on the signal.

69
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6.2 Scale Spaces

How to create a mathematical model to formalize the problem of scaling representation in
the physical universe? The relation between sampling and scaling discussed above shows us
the way. For a given integer number j, we create a subspace Vj ⊂ L2(R), constituted by the
functions in L2(R) whose details are well represented in the scale 2j . This means that these
functions are well represented when sampled using a sampling frequency of 2j .

The next step consists in creating a representation operator that is able to represent any
function f ∈ L2(R) in the scale 2j . A simple and effective technique consists in using a
representation by orthogonal projection. This is the Galerkin representation we discussed
in Chapter 2. A simple and effective way to compute this representation is to obtain an
orthonormal basis of Vj . But at this point we will demand more than that to make things
easier: We will suppose that there exists a function φ ∈ L2(R) such that the family of functions

φj,k(u) = 2−j/2φ(2−ju − k), j, k ∈ Z, (6.1)

is an orthonormal basis of Vj .
Notice that we are using here a process similar to the one we used when we introduced

the wavelet transform: We define different scales of φ producing the continuous family

φs(u) =
1

|s|1/2 φ(
u

s
).

The width of φ and φs are related by

width(φ) = s width(φs).

Thus, as the scale increases or decreases, the width of φs does the same. Equation (6.1) is
obtained by discretizing the parameter s, taking s = 2j , j ∈ Z. Also, we have demanded that
the translated family

φj,k = φ2j (u − k) = 2−j/2φ(2−ju − k)

is an orthonormal basis of Vj . Note that when j decreases, the width of φj,k also decreases,
and the scale is refined. This means that more features of f are detected in its representation
on the space Vj .

The representation of a function f ∈ L2(R) by orthogonal projection in Vj is given by

ProjVj
(f) =

∑
k

〈f, φj,k〉φj,k.

We want the representation sequence (〈f, φj,k〉) to contain samples of the function f in the
scale 2j . In order to attain this we know from Theorem 2 of Chapter 3 that the representation
sequence (〈f, φj,k〉)j,k∈Z is constituted by the samples of a filtered version of the signal f . More
precisely,

〈f, φj,k〉 = F (k),

where F is obtained from f by sampling with a filter of kernel φj,k: F = f ∗ φj,k. In order
that the elements of the representation sequence are close to the samples of f , the filter kernel
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φj,k must define a low-pass filter. This can be attained by demanding that φ̂(0) = 1, because
φ̂(ω) approaches 0 when ω → ±∞. The graph of φ is depicted in Figure 6.1. With this choice
of φ, representing a function at scale 2j amounts to sample averages of f over neighborhoods
of width 2j .

The space Vj is called space of scale 2j , or simply scale space.

Figure 6.1: Low-pass filter.

It is very important that we are able to change from a representation in a certain scale
to a representation on another scale. For this we must answer the question: How are the
different scale spaces related?

Since the details of the signal which appear on scale 2j certainly must appear when we
represent the signal using a smaller scale 2j−1, we must have

Vj ⊂ Vj−1. (6.2)

Given a function f ∈ L2(R), a natural requirement is

f ∈ Vj if, and only if, f(2u) ∈ Vj−1. (6.3)

In fact, the scaling of the variable of f by 2 reduces the width of f by the factor of 1/2
(see Figure 6.2). Therefore the details of f go to a finer scale. Applying successively the

Figure 6.2: Scaling of f by an scale factor of 2.

condition in (6.3), we obtain

f ∈ Vj if, and only if, f(2ju) ∈ V0.
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That is, all spaces are scaled version of the space V0. In particular, from the fact that φj,k in
equation (6.1), is an orthonormal basis of Vj , we conclude that

φ0,k(u) = φ(u − k)

is an orthonormal basis of the scale space V0.
The space L2(R), our universe of the space of functions, contains all of the possible scales.

This is reflected in the relation ⋃
j∈Z

Vj = L2(R).

On the other hand, we have ⋂
j∈Z

Vj = {0}.

In effect, this expression says that the null function is the only function that can be well
represented in every scale. In fact it should be observed that any constant function can be
represented in any scale, nevertheless the only constant function that belongs to L2(R) is the
null function.

6.2.1 A Remark About Notation

It is important here to make a remark about the index notation we use for the scale spaces,
because there is no uniformity on the literature. We use the notation of decreasing indices

· · ·V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · · .

From the discussion above, this notation is coherent with the variation of the scale when we
pass from one scale space to the other: As the indices decrease, the scale is refined, and the
scale spaces get bigger.

If we use a notation with increasing indices

· · ·V−1 ⊂ V0 ⊂ V1 · · · ,

which also appears on the literature, than the base φj,k of the scale space Vj should be
constituted by the functions

φj,k(x) = 2j/2φ(2jx − k).

This is rather confusing because it is not in accordance with the notation used when we
discretized wavelets.

6.2.2 Multiresolution Representation

The scale spaces and their properties that we studied above define a multiresolution repre-
sentation in L2(R). We will resume them into a definition to facilitate future references:

Definition 1 (Multiresolution Representation). We define a multiresolution represen-
tation in L2(R) as a sequence of closed subspaces Vj , j ∈ Z, of L2(R), satisfying the following
properties:
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(M1) Vj ⊂ Vj−1;

(M2) f ∈ Vj if, and only if, f(2u) ∈ Vj−1.

(M3)
⋂

j∈Z
Vj = {0}.

(M4)
⋃

j∈Z
Vj = L2(R).

(M5) There exists a function φ ∈ V0 such that the set {φ(u − k); k ∈ Z} is an orthonormal
basis of V0.

The function φ is called the scaling function of the multiresolution representation. Each of
the spaces Vj is called scale spaces, or, more precisely, space of scale 2j .

Example 13 (Haar Multiresolution Analysis). Consider the function

φ(t) = χ[0,1] =

{
0 if x < 0 ou t ≥ 1
1 if x ∈ [0, 1)

It is easy to see that φ is a scale function of a multiresolution representation. In this case,

Vj = {f ∈ L2(R); f |[2jk, 2j(k + 1)] = constant, k ∈ Z}.

That is, the projection of a function f on the scale space Vj is given by a function which is
constant on the intervals [2jk, 2j(k + 1)]. This is the Haar multiresolution representation.

We should notice that conditions (M1), . . . (M5), that define a multiresolution represen-
tation are not independent. In fact it is possible to prove that condition (M3) follows from
(M1), (M2) e (M5). Moreover, condition (M5) can be replaced by the weaker condition that
the set {φ(u − k)} is a Riesz basis. Also, the reader might have noticed that we have not
imposed that the scale function φ satisfies the condition φ̂(0) = 1 (as we know, this condition
guarantees that φ is a low-pass filter). It can be proved that this low-pass filter condition
follows from (M4). For a proof of all of these facts we suggest consulting (Hernandez & Weiss,
1996) or (Daubechies, 1992). We will return to this problem with more details in next chapter
about construction of wavelets.

6.3 A Pause to Think

How to interpret geometrically the sequence of nested scale spaces in the definition of a
multiresolution representation?

In general, visualizing subspaces of some space of functions is not an easy task. Neverthe-
less, in this case a very informative visualization of the nested sequence of scale space can be
obtained in the frequency domain.

Indeed, the orthogonal projection of a function f ∈ L2(R) in Vj is obtained using a filtering
operation of f with the different kernels φj,k, k ∈ Z which define low-pass filters. Indicating
the cutting frequency of these filters by αj (see Figure 6.3), we conclude that each space Vj

is constituted by functions whose frequencies are contained in the interval [−αj , αj ], αj > 0.
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When we go from the space Vj to the space Vj−1 we change from the scale 2j to a finer
scale 2j−1. Therefore the frequency band increases to an interval [−αj−1, αj−1]. The graph
of the spectrum of φj−1,k is the dotted curve in Figure 6.3. The scale space Vj−1 consists of
the set of all the functions whose spectrum is contained in [−αj−1, αj+1].

Figure 6.3: Spectrum of the scaling function.

For each space Vj , with scale 2j , we have the representation operator Rj : L2(R) → Vj ,
given by the orthogonal projection over Vj

Rj(f) = ProjVj
(f) =

∑
k

〈f, φj,k〉φj,k.

From condition (M4) of the definition of a multiresolution representation, we have

lim
j→∞ Rj(f) = f, (6.4)

that is, as the scale gets finer we get a better representation of the function f . This is
illustrated in Figure 6.4 (from (Daubechies, 1992)) we show a function f , and its representation
on the spaces of scale V0 e V−1 of the Haar multiresolution representation.

Figure 6.4: Scale approximations of a function(Daubechies, 1992).



6.4. MULTIRESOLUTION REPRESENTATION AND WAVELETS 75

There is a different, and very important way, to interpret equation (6.4) Consider the
graph representation of the space Vj on Figure 6.5. We see that the space Vj−1 is obtained
from the space Vj by adding all of the functions from L2(R) with frequencies in the band
[αj , αj−1] of the spectrum. We indicate this “detail space” by Wj . It follows immediately
that Wj is orthogonal to Vj . Therefore we have

Vj−1 = Vj ⊕ Wj .

Figure 6.5: Frequency band between Vj and Vj−1.

The space Wj contains the details of the signal in the scale Vj . The above equation says
that a function represented on a finer scale space Vj−1 is obtained from the representation on
a coarser scale space Vj , by adding details. These details can be obtained using a band-pass
filtering, whose passband is exactly the interval [αj , αj−1]. We have seen that the wavelets
constitute linear time-invariant band-pass filters. Therefore it seems natural that there might
exist some relation between the detail spaces and the wavelets. We will discuss this relation
“with details” in next section.

6.4 Multiresolution Representation and Wavelets

We have proved that given two consecutive scale spaces Vj ⊂ Vj−1, the orthogonal complement
Wj of Vj in Vj−1 could be obtained using a band-pass filter defined on L2(R). In this section
we will show that this complementary space is in fact generated by an orthonormal basis of
wavelets.

For every j ∈ Z, we define Wj as the orthogonal complement of Vj in Vj−1. We have

Vj−1 = Vj ⊕ Wj .

We remind that the best way to visualize the above equality is by observing the characteri-
zation of these spaces on the frequency domain (Figure 6.5).

It is immediate to verify that Wj is orthogonal to Wk, if j 6= k. Therefore by fixing J0 ∈ Z,
for every j < J0 we have (see Figure 6.6)

Vj = VJ0 ⊕
J0−j⊕
k=0

WJ0−k. (6.5)
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We should remark that because of the dyadic scales used in the discretization, the frequency
bands do not have uniform length, they are represented in the figure using logarithmic scale.

Figure 6.6: Frequency bands between Vj and VJo−j .

In sum, equation (6.5) says that the signals whose spectrum is in the frequency band of
Vj , is the sum of the signals with frequency band in VJ0 with those signals whose frequency
band are in WJ0 , WJ0−1, . . . , Wj . All of the subspaces involved in this sum are orthogo-
nals. If J0, k → ∞, if follows from conditions (M3) and (M4) that define a multiresolution
representation that

L2(R) =
⊕
j∈Z

Wj ,

that is, we obtain a decomposition of L2(R) as a sum of orthogonal subspaces.
We have seen that the projection of a function f in each subspace Wj could be obtained

using a band-pass filter. In fact, this filtering process can be computed by projecting f on an
orthogonal basis of wavelets. This fact is a consequence of the theorem below:

Theorem 5. For each j ∈ Z there exists an orthonormal basis of wavelets {ψj,k, k ∈ Z} of
the space Wj .

We will sketch the proof of the theorem because it has a constructive nature which will
provide us with a recipe to construct orthonormal basis of wavelets.

Basis of W0. Initially we observe that the spaces Wj inherit the scaling properties of the
scale spaces Vj . In particular,

f(u) ∈ Wj if, and only if, f(2ju) ∈ W0. (6.6)

For this reason, it suffices to show that there exists a wavelet ψ ∈ W0 such that the set
{ψ(u − k)} is an orthonormal basis of W0. In fact, in this case, it follows from (6.6) that the
set

{ψj,k(u) = 2−j/2ψ(2−ju − k)}
is an orthonormal basis of Wj .
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Low-pass filter and scaling function. Since φ ∈ V0 ⊂ V−1, and also φ−1,k is an orthonor-
mal basis of V−1, we have

φ =
∑

k

hkφ−1,k, (6.7)

where
hk = 〈φ, φ−1,k〉, and

∑
k∈Z

||hk||2 = 1.

Substituting φ−1,k(u) =
√

2φ(2u − k) in (6.7 we obtain

φ(x) =
√

2
∑

k

hkφ(2x − k).) (6.8)

Applying the Fourier transform to both sides of this equation, we have

φ̂(ξ) = mo(
ξ

2
)φ̂(

ξ

2
), (6.9)

where
m0(ξ) =

1√
2

∑
k

hke
−ikξ.

Note in equation (6.9) that φ̂( ξ
2) there exists a frequency band which has twice the size of

the frequency band of φ(ξ). Therefore, it follows from (6.8) that the function m0 is a low-pass
filter. The function m0 is called de low-pass filter of the scaling function φ. It is not difficult
to see that m0 is periodic with period 2π.

Characterization of W0. Now we need to characterize the space W0. Given f ∈ W0, since
V−1 = V0 ⊕ W0, we conclude that f ∈ V−1 and f is orthogonal to V0. Therefore

f =
∑
n

fnφ−1,n, (6.10)

where
fn = 〈f, φ−1,n〉.

Computations similar to the ones we did to obtain the low-pass filter m0 of the scaling
function, give us the equation

f̂(ξ) = mf (
ξ

2
)φ̂(

ξ

2
), (6.11)

where
mf (ξ) =

1√
2

∑
n

fne−inξ.

After some computations, we can rewrite the equation (6.11) in the form

f̂(ξ) = e
iξ
2 m0

(
ξ

2
+ π

)
ν(ξ)φ̂(

ξ

2
), (6.12)

where ν is a periodic function of period 2π.
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Choosing the Wavelet. Equation (6.12) characterizes the functions from W0 using the
Fourier transform, up to a periodic function ν. A natural choice is to define a wavelet ψ ∈ W0
such that

ψ̂(ξ) = e
−iξ
2 m0

(
ξ

2
+ π

)
φ̂(

ξ

2
). (6.13)

Taking this choice, from equation (6.12), it follows that

f̂(ξ) =

(∑
k

νke
−ikξ

)
ψ̂(ξ),

and applying the inverse Fourier transform, we have

f(x) =
∑

k

νkψ(x − k).

We need to show that defining ψ by the equation (6.13), ψ0,k is indeed an orthonormal
basis of W0. We will not give this proof here.

Details of the above proof can be found on (Daubechies, 1992) or (Hernandez & Weiss,
1996).

6.5 A Pause... to See the Wavescape

If Vj is the scale space 2j we have Vj−1 = Vj ⊕ Wj . We know that Wj has an orthonormal
basis of wavelets {ψj,k, k ∈ Z}, therefore if Rj is the representation operator on the scale space
Vj , we have, for all f ∈ L2(R),

Rj−1(f) = Rj(f) +
∑
k∈Z

〈f, ψj,k〉ψj,k. (6.14)

The second term of the sum represents the orthogonal projection of the signal f on the
space Wj and it will be denoted by ProjWj

(f). The terms of this representation sequence are
obtained using the discrete wavelet transform.

We know that the wavelet transform is a band-pass filtering operation, ant the scale spaces
allow us to represent a function f in different resolutions. When we obtain a representation of
f in a certain scale 2j , we are loosing details of the signal with respect with its representation
in the scale 2j−1. The lost details are computed by the orthogonal projection on the space
Wj , that is,

ProjWj
(f) =

∑
k∈Z

〈f, ψj,k〉ψj,k, (6.15)

which is a representation of the signal f in the basis of wavelets of the space Wj .
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It is useful to interpret the decomposition Vj−1 = Vj ⊕ Wj in the language of filters. The
representation of a signal f in the scale Vj ,

Rj(f) =
∑
k∈Z

〈f, φj,k〉φj,k,

is equivalent to filter the signal using the low-pass filter defined by the scaling function φ.
The representation of the details of f in the space Wj , equation (6.15) is obtained by filtering
f with the band-pass filter defined by the wavelet transform associated with ψ.

From the relation Vj−1 = Vj ⊕ Wj , we are able to write

Rj−1(f) = Rj(f) + ProjWj
(f)

Rj−2(f) = Rj−1(f) + ProjWj−1
(f)

...

Note that each line of the equation above represents a low-pass filtering and a band-pass
filtering of the signal. Iterating this equation for Rj−2, . . . , Rj−J0 , summing up both sides
and performing the proper cancellations, we obtain

Rj−J0(f) = Rj(f) + ProjWj−1
(f) + · · ·ProjWj−J0

(f). (6.16)

The projection Rj(f) represents a version of low resolution (blurred version) of the signal,
obtained using successive low-pass filtering with the filters φj , φj−1, . . . , φJ0−j . The terms
ProjWj−1

(f), . . . , ProjWj−J0
(f) represent the details of the signal lost in each low-pass filter-

ing. These details are obtained by filtering the signal using the wavelets ψj , ψj−1, . . . , ψJ0−j .
Equation (6.16) states that the original signal f can be reconstructed exactly from the low
resolution signal, summing up the lost details.

Figure 6.7 shows an image (scale V0), the projection on the spaces V−2 e V−4 (on the left)
and the projections on the spaces W−2 e W−4 (on the right).

6.6 Two Scale Relation

In this section we will revisit some equations we obtained in the computations of this chapter
in order to distinguish them for future references.

Consider an scaling function φ associated to some multiresolution representation. Then
φ ∈ V0 ⊂ V−1 and φ−1,n is an orthonormal basis of V−1. Therefore

φ =
∑
k∈Z

hkφ−1,k, (6.17)

with hk = 〈φ, φ−1,k〉. This equation can be written in the form

φ(x) =
√

2
∑
k∈Z

hkφ(2x − k). (6.18)
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Figure 6.7: Image decomposition on the spaces Vj e Wj .

Similarly, given a wavelet ψ associated with a multiresolution representation ψ ∈ V0, since
V−1 = V0 ⊕ W0, we have that ψ ∈ V−1, and ψ is orthogonal to V0, therefore

ψ =
∑
k∈Z

gkφ−1,k, (6.19)

or,

ψ(x) =
√

2
∑
k∈Z

gkφ(2x − k). (6.20)

Equations (6.17) and (6.19) (or equivalently (6.18) and (6.20)), are called two-scale re-
lations, or scaling relations of the scaling function and the wavelet respectively. In several
important cases, the sum that defines the two-scale relations is finite:

φ(x) =
√

2
N∑

k=0

gkφ(2x − k).

It is not difficult to see that when this is the case, the support of the scaling function φ is
contained in the interval [0, N ].
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Also, note that if φ is a solution of the equation defined by the two-scale relation, then
λφ, λ ∈ R, is also a solution. In this way, to have uniqueness of the solution we must impose
some kind of normalization (e.g. ψ(0) = 1).

A priori, it is possible to construct a multiresolution representation and the associated
wavelet starting from an adequate choice of the function φ. This choice can be done using
the two scale relation (6.18). In a similar manner, the two scale equation (6.20) can be used
to obtain the associated wavelet.

6.7 Comments and References

The concept of multiresolution representation and its relation to wavelets was developed by
S. Mallat (Mallat, 1989). In the literature it carries different names: multiscale analysis or
multiscale approximation. We have opted for multiresolution representation because it fits
better to the emphasis we have been given on function representation.

The material covered in this chapter can be found on (Hernandez & Weiss, 1996). Never-
theless the notation of the indices in the scale space differs from the one used here.

For an exposition of the topics in this chapter using the language of operators in function
spaces the reader should consult (Kaiser, 1994). The approach is algebraically very clear and
clean, nevertheless a lot of geometric insight is lost.
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Chapter 7

The Fast Wavelet Transform

The Fast Wavelet Transform (FWT) algorithm, is the basic tool for computation with wavelets.
The forward transform converts a signal representation from the time (spatial) domain to its
representation in the wavelet basis. Conversely, the inverse transform reconstructs the signal
from its wavelet representation back to the time (spatial) domain. These two operations need
to be performed for analysis and synthesis of every signal that is processed in wavelet appli-
cations. For this reason, it is crucial that the Wavelet Transform can be implemented very
efficiently.

In this chapter we will see that recursion constitutes the fundamental principle behind
wavelet calculations. We will start with a revision of the multiresolution analysis to show
how it naturally leads to recursion. Based on these concepts, we will derive the elementary
recursive structures which form the building blocks of the fast wavelet transform. Finally,
we will present the algorithms for the decomposition and reconstruction of discrete one-
dimensional signals using compactly supported orthogonal wavelets.

7.1 Multiresolution Representation and Recursion

The efficient computation of the wavelet transform exploits the properties of a multiresolution
analysis. In the previous chapters, we have seen that a multiresolution analysis is formed by
a ladder of nested subspaces

· · ·V1 ⊂ V0 ⊂ V−1 · · ·
where all Vj are scaled versions of the central subspace V0.

From the above structure, we can define a collection of “difference” subspaces Wj , as the
orthogonal complement of each Vj in Vj−1. That is,

Vj = Vj+1 ⊕ Wj+1

As a consequence, we have a wavelet decomposition of L2(R) into mutually orthogonal sub-
spaces Wj

L2(R) =
⊕
j∈Z

Wj

83



84 CHAPTER 7. THE FAST WAVELET TRANSFORM

Therefore, any square integrable function f ∈ L2(R) can be decomposed as the sum of its
projection on the wavelet subspaces

f =
∑
j∈Z

ProjWj
(f)

where ProjWj
(f) is the projection of f onto Wj .

From Vj = Vj+1 ⊕ Wj+1, it follows that any function fj ∈ Vj can be expressed as

fj = ProjVj+1
(f) + ProjWj+1

(f).

This fact gives us the main recursive relation to build a representation of a function using the
wavelet decomposition.

If we denote the projections of f onto Vj and Wj respectively by fj = ProjVj
(f) and

oj = ProjWj
(f), we can write

fj = fj+1 + oj+1︷ ︸︸ ︷
fj+2 + oj+2

Applying this relation recursively we arrive at the wavelet representation

fj = fj+N + oj+N + · · · + oj+2 + oj+1

where a function fj in some Vj is decomposed into its projections on the wavelet spaces
Wj+1 . . . Wj+N , and a residual given by its projection onto the scale space Vj+N . This recursive
process can be illustrated by the diagram in Figure 7.1.

fj → fj+1 → fj+2 → · · · → fj+N

↘ ↘ ↘ ↘
oj+1 og+1 · · · oj+N

Figure 7.1: Wavelet decomposition of a function f .

We assumed above that the process starts with a function fj which already belongs to
some scale subspace Vj . This is not a restriction because we can take the initial j arbitrarily
small (i.e. a fine scale). In practice, we work with functions that have some natural scale
associated with them.

The wavelet decomposition gives an analysis of a function in terms of its projections onto
the subspaces Wj . Note that, since by construction Wj ⊥ Wl if j 6= l and Vj ⊥ Wj , this
decomposition of a function is unique once the spaces Vj and Wj are selected.

It is also desirable to reconstruct a function from its wavelet representation using a recur-
sive process similar to the decomposition in Figure 7.1. It turns out that, since Wj ⊂ Vj−1
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and Vj ⊂ Vj−1, the original function can be obtained from the projections, and the wavelet
reconstruction is essentially the reverse of the decomposition, as illustrated in Figure 7.2.

The reconstruction gives a mechanism for the synthesis of functions from the wavelet
representation.

fj+N → fj+N−1 → · · · → fj+1 → fj

↗ ↗ ↗ ↗
oj+N oj+N−1 · · · oj+1

Figure 7.2: Wavelet reconstruction process of a function f

To implement the wavelet decomposition and reconstruction we need to compute the
projections onto the spaces Vj and Wj . We know that the set of functions {φj,n;n ∈ Z} and
{ψj,n;n ∈ Z}, defined as

φj,n(x) = 2−j/2φ(2−jx − n) (7.1)

ψj,n(x) = 2−j/2ψ(2−jx − n), (7.2)

are respectively orthonormal basis of Vj and Wj . Therefore, the projections operators ProjVj

and ProjWj
are given by inner products with the elements of these bases

ProjVj
(f) =

∑
n

〈f, φj,n〉φj,n =
∑
n

(∫
f(x)φj,n(x)dx

)
φj,n (7.3)

ProjWj
(f) =

∑
n

〈f, ψj,n〉ψj,n =
∑
n

(∫
f(x)ψj,n(x)dx

)
ψj,n (7.4)

The problem now is how compute the projection operators ProjVj
and ProjWj

efficiently.
In fact, we would like to avoid altogether computing the integrals explicitly. To find a solu-
tion we take advantage of the fact that the recursive decomposition/reconstruction processes
requires only projections between consecutive subspaces of the multiresolution ladder. For
that purpose we will rely on the two–scale relations.

7.2 Two-Scale Relations and Inner Products

We have seen before that the interdependencies between two consecutive subspaces in a mul-
tiresolution analysis are formulated by the equations below, called two-scale relations

φ(x) =
∑

k

hkφ−1,k(x) (7.5)

ψ(x) =
∑

k

gkφ−1,k(x) (7.6)
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Using these two relations, we can express the basis functions of the scale and wavelet
spaces, Vj and Wj , at level j in terms of the basis functions of the subsequent scale space
Vj−1, at finer level j − 1. This is possible because, since Vj−1 = Vj ⊕ Wj , both Vj ⊂ Vj−1 and
Wj ⊂ Vj−1.

Substituting (7.1) into (7.5), we have

φj,k(x) = 2−j/2φ(2−jx − k)

= 2−j/2
∑

n

hn 21/2φ(2−j+1x − 2k − n)

=
∑

n

hn φj−1,2k+n(x)

=
∑
n

hn−2k φj−1,n(x) (7.7)

Similarly, substituting (7.2) into (7.6), we have

ψj,k(x) = 2−j/2ψ(2−jx − k)

= 2−j/2
∑

n

gn 21/2φ(2−j+1x − 2k − n)

=
∑

n

gn−2k φj−1,n(x) (7.8)

Now, we need to find a way to use the sequences (hn)n∈Z and (gn)n∈Z to help us compute
recursively the inner products 〈f, φj,k〉, and 〈f, ψj,k〉. This can be easily done by inserting the
expressions obtained for φj,k and ψj,k into the the inner products.

〈f, φj,k〉 = 〈f,
∑
n

hn−2kφj−1,n〉 =
∑

n

hn−2k〈f, φj−1,n〉 (7.9)

〈f, ψj,k〉 = 〈f,
∑
n

gn−2kφj−1,n〉 =
∑

n

gn−2k〈f, φj−1,n〉 (7.10)

7.3 Wavelet Decomposition and Reconstruction

Using the two–scale relations, we showed how to relate the coefficients of the representation
of a function in one scale 2j−1, with the coefficients of its representation in the next coarse
scale 2j and with coefficients of its representation in the complementary wavelet space. It
is remarkable, that from the inner products of the function f with the basis of Vj−1, we
are able to obtain the inner products of f with the basis of Vj and Wj , without computing
explicitly the integrals! This is the crucial result for the development of the recursive wavelet
decomposition and reconstruction method described in this section.

7.3.1 Decomposition

The wavelet decomposition process starts with the representation of a function f in the space
V0. There is no loss of generality here because, by changing the units, we can always take
j = 0 as the label of the initial scale.
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We are given the function f = ProjV0
(f), represented by the coefficients (ck) of its repre-

sentation sequence in the scale space V0. That is

ProjV0
(f) =

∑
k

[〈f, φ0,k〉φ0,k(x)] =
∑

k

c0,kφ0,k (7.11)

In case we only have uniform samples f(k), k ∈ Z of the function, the coefficients (ck)
can be computed from the samples by a convolution operation. This fact is well explained in
Section 3.7 of Chapter 3 (see Theorem 2).

The goal of the decomposition is to take the initial coefficient sequence (c0
k)k∈Z, and

transform it into the coefficients of the wavelet representation of the function. The process
will be done by applying recursively the following decomposition rule

ProjVj
(f) = ProjVj+1

(f) + ProjWj+1
(f). (7.12)

In this way, the process begins with f0 ∈ V0 = V1 ⊕ W1, and in the first step, f0 is
decomposed into f1 + o1, where f1 = ProjV1

(f) and o1 = ProjW1
(f). The recursion acts on

f j , decomposing it into f j+1 + oj+1, for j = 0, . . . N . The components oj are set apart. In
the end we obtain the wavelet representation of f , consisting of the residual scale component
fN and the wavelet components o1, . . . oN .

The core of the decomposition process splits the sequence (cj
k) of scale coefficients associ-

ated with f j , into two sequences (cj+1
k ) and (dj+1

k ), of scale and wavelet coefficients associated,
respectively with f j+1 and oj+1.

We can view this process as a basis transformation where we make the following basis
change (φj,k)k∈Z → (φj+1,k, ψj+1,k)k∈Z. Note that both sets form a basis of the space V j .
Equations (7.9) and (7.10) give the formulas to make the transformation on the coefficients
of the bases:

cj+1
k =

∑
n

hn−2kc
j
n (7.13)

dj+1
k =

∑
n

gn−2kc
j
n (7.14)

with the notation a = (a−n)n∈Z.
Note that we are computing the coefficients (cj+1

k ) and (dj+1
k ) by discrete convolutions,

respectively, with the sequences (hn) and (gn). Note also, that we are retaining only the even
coefficients for the next step of recursion (because of the factor 2k in the indices). This is a
decimation operation.

In summary, if we start with a sequence (c0
n), containing n = 2J coefficients, it will

be decomposed into the sequences (d1
n/2), (d2

n/4), . . . (dJ
n/2J ), and (cJ

n/2J ). Note that the
decomposition process outputs a wavelet representation with the same number of coefficients
of the input representation.

Another important comment is that, up to now, we implicitly assumed doubly infinite
coefficient sequences. In practice, we work with finite representations, and therefore it is
necessary to deal with boundary conditions. This issue will be discussed in more detail later.
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7.3.2 Reconstruction

The reconstruction process generates the coefficients of the scale representation from the
coefficients of the wavelet representation. We would like to have an exact reconstruction,
such that the output of the reconstruction is equal to the input of the decomposition. This is
possible because we have just made an orthogonal basis transformation.

In order to bootstrap the recursive relations for the reconstruction process, we recall
that one step of the decomposition takes a function representation f j−1 and splits into the
components f j and oj .

f j−1(x) = f j(x) + oj(x)

=
∑

k

cj
kφj,k(x) +

∑
k

dj
kψj,k(x) (7.15)

We need to recover the coefficients (cj−1
n ) from (cj) and (dj)

cj−1
n = 〈f j−1, φj−1,n〉 (7.16)

Substituting (7.15) into (7.16), we obtain

cj−1
n = 〈

∑
k

cj
kφj,k +

∑
k

dj
kψj,k, φj−1,n〉 (7.17)

=
∑

k

cj
k〈φj,k, φj−1,n〉 +

∑
k

dj
k〈ψj,k, φj−1,n〉 (7.18)

Because both φ0 ∈ V−1 and ψ0 ∈ V−1, they can be represented as a linear combination of
the basis {φ−1,n;n ∈ Z}. Therefore φ0 =

∑
n〈φ0, φ−1,n〉φ−1,n and ψ0 =

∑
n〈 ψ0, φ−1,n〉φ−1,n.

Since this representation is unique, using the two scale relations (7.5) and (7.6), we know that

hn = 〈φ0, φ−1,n〉 (7.19)
gn = 〈ψ0, φ−1,n〉 (7.20)

The above results provide a reconstruction formula for the coefficients cj−1
n from the coef-

ficient sequences of the decomposition at level j.

cj−1
n =

∑
k

hn−2kc
j
k +

∑
k

gn−2kd
j
k

=
∑

k

[
hn−2kc

j
k + gn−2kd

j
k

]
(7.21)

The reconstruction process builds the final representation (c0
n), from bottom up. At each step,

it combines the sequences (cj
n) and (dj

n) to recover the intermediate (cj−1
n ), from j = J, . . . , 1.
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7.4 The Fast Wavelet Transform Algorithm

The fast wavelet transform (FWT) algorithm is a straightforward implementation of the
method described in the previous section. It consists of the recursive application of equations
(7.13) and (7.14) for the forward transform, and of equation (7.21) for the inverse transform.

In this section we present the pseudo-code, in C-like notation, of an implementation of
the FWT algorithm. The code was structured for clarity and simple comprehension.

7.4.1 Forward Transform

The input of the algorithm is an array v, with 2m+1 elements, containing the coefficient
sequence to be transformed, and the number of levels m. It uses the global arrays containing the
two-scale sequences h and g. There are also global variables associated with these sequences:
their number of elements hn and gn; and their offset values ho and go (i.e. the origins h0
and g0 of the sequences (hn) and (gn)). The main procedure wavelet fwd xform executes the
iteration of the basic wavelet decomposition.

wavelet_fwd_xform(v, m, h, g)
{

for (j = m; j >= 0; j--)
wavelet_decomp(v, pow(2,j+1));

}

The procedure wavelet decomp performs the decomposition for just one level, splitting
the array v0 of size 2j+1, into two arrays v and w with sizes 2j . The result is accumulated
into the input array v, such that in the end of the decomposition the array v is partitioned
into [vN | wN | ... | w2 | w1], with sizes respectively 1, 1, . . . , 2m, 2m−1.

wavelet_decomp(v, n)
{

zero (w, 0, n);
for (l = 0; l < n/2; l++) {

i = (2*l + ho) % n;
for (k = 0; k < hn; k++) {

w[l] += v[i] * h[k];
i = (i+1) % n;

}
i = (2*l + go) % n;
m = l + n/2;
for (k = 0; k < gn; k++) {

w[m] += v[i] * g[k];
i = (i+1) % n;

}
}
copy (w, v, n/2);

}
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The procedure uses a local array w that must have, at least, the same size of v. It calls
two auxiliary procedures, zero that fills and array with zeros, and copy that copies one array
to another.

7.4.2 Inverse Transform

The inverse transform takes as input an array containing the wavelet representation, in the
format produced by wavelet fwd xform, and converts it into a scale representation.

The procedure wavelet inv xform executes the iteration of the basic reconstruction step.

wavelet_inv_xform(v, m)
{

for (j = 0; j <= m; j++)
wavelet_reconst(v, pow(2, j+1));

}

The procedure wavelet reconst performs the reconstruction combining the components
vj and wj of the input array to reconstruct vj-1. It replaces [vj wj...] with [vj-1...].
Note that the number of elements of vj and wj is 1/2 of the number of elements of vj-1,
therefore they use the same space in the array.

wavelet_reconst(w, n)
{

zero(v, 0, n);
for (k = 0; k < n; k++) {

i = floor((k-ho)/2) % (n/2);
m = (k - h.o) % 2;
for (l = m; l < hn; l += 2) {

v[k] += w[i] * h[l];
i = (i-1) % (n/2);

}
i = floor ((k-go)/2) % (n/2);
m = (k - go) % 2;
for (l = m; l < gn; l += 2) {

v[k] += w[i + n/2] * g[l];
i = (i-1) % (n/2);

}
}
copy(v, w, n);

}
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7.4.3 Complexity Analysis of the Algorithm

The computational performance of the algorithm is very important. Let’s determine what is
the computational complexity of the fast wavelet transform.

The computation of each coefficient is a convolution operation with the two-scale se-
quences. Assuming that these sequences have n coefficients, then the convolution requires n
multiplications and n − 1 additions.

In order to make the decomposition of a coefficient sequence at level j, from Vj into Vj+1
and Wj+1, we have to compute 2j new coefficients: 2j+1 for the two components f j+1 and
oj+1. Since each coefficient requires 2n−1 operations, we have a total of 2j(2n−1) operations
for one-level transformation.

The full decomposition process is applied for j log2(m) levels. Therefore, we have

O = 2j(2n − 1) + 2j+1(2n − 1) + · · · + 2(2n − 1)

factoring out (2n − 1) and noting that m = 2j , we obtain:

O(m(2n − 1)[1 + 2−1 + 2−2 + · · · + 2−j+1])
O(m(2n − 1) 1−2−j

1−2−1 )
O(mn)

The above analysis leads us to the following conclusions:

• The complexity is linear with respect to the size of the input sequence;

• The size of the two-scale sequences have a direct relation with the algorithm complexity.

7.5 Boundary Conditions

Since in practice we work with finite sequences, it is necessary take special care with the
computation near the beginning and the end of the sequences (boundaries).

In order to compute the coefficients in the boundary regions, we have to perform a discrete
convolution with the two-scale sequences, and therefore, we may need coefficients that lie
beyond the boundaries of the sequence. Note that, for this reason, the boundary region is
determined by size of the two-scale sequences. This situation is illustrated in Figure 7.3.

Figure 7.3: Boundary regions for convolution between finite sequences.



92 CHAPTER 7. THE FAST WAVELET TRANSFORM

There are some techniques to deal with boundary conditions:

• Extending the sequence with zeros (see Figure 7.4 (a));

• Periodization by translation of the sequence with x(N + i) ≡ x(i) (figure7.4 (b));

• Periodization by reflection of the sequence with x(N+i) ≡ x(N−i+1) e x(−i) ≡ x(i−1)
(Figure 7.4 (c));

• Use basis functions adapted to the interval (we are going to discuss this option later).

(a)

(b)

(c)

Figure 7.4: Options for boundary computation (a) Extending with zeros; (b) Periodization;
(c) Reflection.

In the implementation of the fast wavelet transform algorithm presented in Section 7.4,
we deal with the boundary problem by a simple periodization of the sequence. This is accom-
plished using the coefficient with indices i % m.
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7.6 Comments and References

The fast wavelet transform algorithm was introduced by Stephane Mallat (Mallat, 1989).
One of the first references on the computational implementation of the algorithm appeared
in (Press et al. , 1996).

The code for the fast wavelet transform algorithm presented in this chapter was based
in the pseudo-code from (Jawerth & Sweldens, 1994). This algorithm was implemented in
(Bourges-S venier, 1994).

The book (Wickerhauser, 1994) describes a complete system for computation with wavelets,
including the fast wavelet transform.

Bibliography

Bourges-S venier, Mikael. 1994. R alisation d’une biblioth que C de fonctions ondelettes. Tech.
rept. IRISA – INRIA.

Jawerth, B., & Sweldens, Wim. 1994. An overview of wavelet based multiresolution analyses.
SIAM Rev., 36(3), 377–412.

Mallat, S. 1989. Multifrequency Channel Decomposition of Images and Wavelet Models. IEEE
Transaction on ASSP, 37, 2091–2110.

Press, William H., Teukolsky, Saul A., & Vetterling, William T. 1996. Numerical Recipes :
The Art of Scientific Computing. Cambridge Univ Press. Chap. 13, pages 591–606.

Wickerhauser, Mladen Victor. 1994. Adapted Wavelet Analysis from Theory to Software.
Wellesley, MA: A. K. Peters.





Chapter 8

Filter Banks and Multiresolution

The goal of this chapter is to translate the theory of Multiresolution Representation to the
language of Signal Processing.

Therefore, this chapter takes an important step in the change from the mathematical
universe (continuous domain) to the representation universe (discrete domain), in the route
to implementation.

The reader not familiar with signal processing will find basic concepts of linear systems
and filters in Appendices A and B.

8.1 Two-Channel Filter Banks

We are going to study in greater detail a particular case of a type of filter bank that will be
very important to understand the multiresolution representation in the discrete domain.

Consider a lowpass filter L and a highpass filter H. We define an analysis filter bank S
using those two filters together with downsampling operators as shown in Figure 8.1.

(   2)

(   2)H

L

z

z

1n

0n

y
0n

1ny

xn

Figure 8.1: Diagram of a Two-Channel Analysis Filter Bank.

Let’s study the operations in the above system: the input signal (xn) is processed by the
filter L in order to obtain its low frequency components (y0n), and also by the filter H to obtain
its high frequency components (y1n). After this first level of processing the filtered signals (y0n)
and (y1n) constitute together a representation of the original signal (xn), but with twice as
much samples. In order to reduce the size of these two signals to the size of the original signal,
we should discard terms. This can be achieved by performing a downsampling operation (see

95
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Appendix A). The output of the analysis bank, S(xn), is therefore a representation of the
input signal in terms of its low and high frequency components, with the same size of the
original signal. A natural question now is:

Question 1. Can we reconstruct the original signal (xn) from the representation S(xn) pro-
duced by the analysis bank?

Because the downsampling operator ↓ 2 is not invertible, the answer to this question in
neither immediate nor obvious. An attempt of a solution is to define a synthesis filter bank
S̃ as shown in Figure 8.2.

(   2)

(   2)

xn

z1n

z0n L

H1

1

Figure 8.2: Two-Channel Synthesis Filter Bank

More precisely, we apply an upsampling operator to the components of the two chan-
nels, lowpass and highpass, and then use a pair of filters L1 e H1 such that these processed
components when combined reconstruct the original signal.

The combination of these two filter banks S e S̃, forming a composite analysis and synthesis
filter bank S̃ ◦ S, is shown in the diagram of Figure 8.3

(   2)

(   2)

(   2)

(   2)

x[n] x[n]

H

L L

H1

1

Figure 8.3: Two-Channel Analysis and Synthesis Filter Bank

The filter bank S is called analysis bank because it produces a representation of the signal
in term of its frequencies. The filter bank S̃ is called synthesis bank because it reconstruct
the signal from its representation. When the output of the composite filter bank S̃ ◦ S is the
same as the input signal, that is

(x̂n) = S̃S(xn) = (xn),

we say that the filter bank has the property of perfect reconstruction. Usually, we have
perfect reconstruction, but with a delay of the signal, which is not a problem because we can
compensate that with a signal advance within the system.



8.2. FILTER BANKS AND MULTIRESOLUTION REPRESENTATION 97

Matrix Representation

Suppose that the filters L e H are defined as the convolution operators

L(xn) =
3∑

k=0

a(k)x(n − k)

and

H(xn) =
3∑

k=0

b(k)x(n − k).

Then,the analysis bank is given by the matrix

S =

↓ L
−−
↓ H

 ,

or, using the results of applying the operator ↓ 2 to a matrix,

S =


a(3) a(2) a(1) a(0)

a(3) a(2) a(1) a(0)
b(3) b(2) b(1) b(0)

b(3) b(2) b(1) b(0)

 .

It is clear that the perfect reconstruction property is related with the invertibility of the
matrix S. In fact, if S is invertible, we can make the synthesis bank as S̃ = S−1, and we
have exact reconstruction. An important particular case occurs when the linear system S is
orthogonal, in this case the matrix of S is an orthogonal matrix. This system has the perfect
reconstruction property and the synthesis filter, the inverse matrix S̃ is determined by the
transpose of the analysis matrix S: S̃ = ST.

Question 2. Why we have discussed two-channel filter banks with perfect reconstruction?

The answer to this question is easy: Given a multiresolution analysis, we know that the
associated scaling function is a low-pass filter and the corresponding wavelet is a band-pass
filter. We are going to show that, in the discrete domain, the multiresolution analysis defines
a filter bank similar to the two-channel filter bank S̃ ◦ S, which has the property of perfect
reconstruction. Furthermore, we will describe an algorithm that implements all the operations
of the filter bank (analysis and synthesis) in linear time, proportional to the number of samples
of the input signal (note that this is equivalent to the algorithm described in last chapter).

8.2 Filter Banks and Multiresolution Representation

In the mathematical universe (continuous domain) is easy to convince ourselves that a mul-
tiresolution analysis defines a filter bank. This was already done earlier, but for the sake of
reviewing the concepts and notation, we will repeat here:



98 CHAPTER 8. FILTER BANKS AND MULTIRESOLUTION

If φ is the scaling function associated with the multiresolution analysis

· · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · ·
then Vj−1 = Vj ⊕ Wj , where Wj is the complementary (or wavelet) space. Given f ∈ L2(R),
we have that

ProjVj−1
(f) = ProjVj

(f) + ProjWj
(f).

Also, ProjVj
(f) represents the lowpass component of the function f , and ProjWj

(f) represents
the bandpass component of the function f both defined by the wavelet transform. Intuitively
the lowpass component gives a representation of f in the scale 2j , and the bandpass gives the
details that are lost when f is represented in this scale

Using the notation

Lj(f) = ProjVj
(f), e Hj(f) = ProjWj

(f),

we have
f = Lj(f) + Hj(f).

Applying successively this decomposition to the component Lj(f) of low frequencies of the
signal, we arrive at

f = Lk
j (f) + Hk(f) + Hk−1(f) + · · · + Hj(f). (8.1)

In summary, the signal f is decomposed into a low frequency component (i.e. in a scale
that cannot capture details), Lk

j (f), together with high frequency components, Hn(f), n =
k, k − 1, . . . , j, which contain the details lost when going to a low resolution representation of
f .

The equation (8.1) states that we can recover the function f exactly from the low reso-
lution component by adding the high resolution components, properly. Therefore, he have a
(continuous) two-channel filter bank, with perfect reconstruction.

The decomposition operations of the analysis filter bank are illustrated by the diagram
below

Lj(f) L2
j (f) Lk

j (f)

¡
¡

¡
¡

¡µ

¡
¡

¡
¡

¡µ

· · ·
¡

¡
¡

¡
¡µ

f - Hj(f) - Hj+1(f) - Hk(f)

The reconstruction operations of the synthesis filter bank are illustrated by the diagram
below

Lk(f) - Lk+1(f) - Lj(f) - f

¡
¡

¡
¡

¡µ

¡
¡

¡
¡

¡µ

· · ·
¡

¡
¡

¡
¡µ

Hk(f) Hk+1(f) Hj(f)
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Our objective now is to study the above filter bank, that corresponds to a multiresolution
analysis, in the discrete domain.

8.3 Discrete Multiresolution Analysis

All ingredients for the discretization of a multiresolution analysis, and to revisit the associated
filter bank in the discrete domain, are already of our knowledge.

If ψ is the wavelet associated with a multiresolution analysis, we have

ψj,k(x) = 2
−j
2 ψ(2−jx − k). (8.2)

We also have the two-scale relation that gives ψ as

ψ(x) =
∑
n

gnφ−1,n(x) =
√

2
∑
n

gnφ(2x − n),

where φ is the corresponding scaling function, and gn = 〈ψ, φ−1,n〉. Using this relation in
(8.2), we have

ψj,k(x) = 2
−j
2

∑
n

gn21/2φ(2−j+1x − 2k − n)

=
∑

n

gn

∑
n

gn2
−j+1

2 φ(2−j+1x − (2k + n))

=
∑

n

gnφj−1,2k+n(x)

Making a change in the indices, we can rewrite the above equation in the form

ψj,k(x) =
∑
n

gn−2kφj−1,n. (8.3)

Then, it follows that

〈f, ψj,k(x)〉 =
∑
n

gn−2k〈f, ψj−1,n〉. (8.4)

We can write the expression above using the filter operators so that the reader can more
easily identify it with a filter bank. Indeed, it is immediate for the reader to verify that
equation (8.4) above is equivalent to

〈f, ψj,k(x)〉 = (↓ 2)[(〈f, ψj−1,n〉) ∗ g−n]. (8.5)

The two-scale relation for the function φ of the multiresolution analysis is given by

φ =
∑
n

hnφ−1,n.
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Computations similar to the ones we did from the two-scale relation for the wavelet, give

φj,k(x) =
∑
n

hn−2kφj−1,n, (8.6)

From that, it follows

〈f, φj,k(x)〉 =
∑
n

hn−2k〈f, φj−1,n〉. (8.7)

As before, we can write this expression using the convolution and downsampling operators:

〈f, φj,k(x)〉 = (↓ 2)[(〈f, φj−1,n〉) ∗ h−n] (8.8)

8.3.1 Pause to Review

The equations (8.4) and (8.7) given the decomposition and reconstruction formulas of the
filter bank associated with a multiresolution analysis. We are going to study these equations
in more detail.

Without loss of generality, we can assume that the function f is defined initially in some
scale as f0. This scale is associated with some sampling frequency in which f can be rep-
resented by a sequence of samples. We suppose that f0 = ProjV0

(f), that is f0 is the
discretization of f in the scale space V0. Because V0 = V1 + W1, we have that

f0 = f1 + o1.

Furthermore,

f0 =
∑
n

c0
nφ0,n;

f1 =
∑
n

c1
nφ1,n;

o1 =
∑
n

d1
nφ1,n.

From equation (8.7) and (8.4), we have

c1
k =

∑
n

hn−2kc
0
n;

d1
k =

∑
n

gn−2kc
0
n.

These equations allow us to obtain a representation of f in the finer scale V−1 from the initial
representation sequence (c0

n)n∈Z, in the scale V0.
From a linear algebra point of view, we are just making a change of basis: From the basis

{φ0,n}n∈Z of the space V0 to the basis {φ1,n, ψ1,n}n∈Z.
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Indicating by L the matrix of the operator in (8.5) and by H the matrix of the operator
in (8.8), we can write

(c1
n) = L(c0

n) e (d1
n) = H(c0

n).

Similarly,
f1 ∈ V1 = V−2 ⊕ W−2

and, therefore
f1 = f2 + o2, f2 ∈ V−2, o2 ∈ W−2.

Thus,
f2 =

∑
n

c2
nφ2,n, o2 =

∑
n

d2
nψ2,n,

with
(c2

n) = L(c1
n), e (d2

n) = H(c1
n).

We have an analysis filter bank that is given by the diagram shown below

(d1
n) (d2

n) (dk
n)

¡
¡

¡
¡

¡
H

µ

¡
¡

¡
¡

¡
H

µ

· · ·
¡

¡
¡

¡
¡

H
µ

(c0
n)

L - (c1
n)

L - (c2
n)

L - (ck
n)

The above filter bank is a very particular case of a filter bank called pyramid bank. In
fact, the pyramid structure is the best form to represent the type of filter bank in a diagram.
For example, consider a initial signal given by a sequence of samples with 8 elements, that is,

f0 = (c0
0, c

0
1, c

0
2, . . . , c0

7).

The successive analyses of f0 by the filter bank are represented in the inverted pyramid,
shown in the diagram below:

c0
0 c0

1 c0
2 c0

3 c0
4 c0

5 c0
6 c0

7

@RA
A
A
A
AU

ª¡

®¢
¢
¢
¢
¢ @RA

A
A
A
AU

ª¡

®¢
¢
¢
¢
¢ @RA

A
A
A
AU

ª¡

®¢
¢
¢
¢
¢ @RA

A
A
A
AU

ª¡

®¢
¢
¢
¢
¢

d1
0 d1

1 d1
2 d1

3

c1
0 c1

1 c1
2 c1

3
QQQsS
S
S
S
Sw

+́́
´

/¶
¶
¶
¶
¶ QQQsS

S
S
S
Sw

+́́
´

/¶
¶
¶
¶
¶

d2
0 d2

1

c2
0 c2

1PPPPPPPq
Q

Q
Q

Q
Q

Q
Qs

)³³³³³³³

+́
´

´
´

´
´

´

d3
0

c3
0



102 CHAPTER 8. FILTER BANKS AND MULTIRESOLUTION

In the first level (base of the pyramid) we have the initial sequence of samples of f . In
the second level we obtain the coefficients (c1

n) of the lower resolution scale and the detail
coefficients (d1

n). We continue with the operation of the filter bank, going through each level
of the pyramid until we reach a sequence with only one element (c3

0) (which gives the average
of the signal).

In matrix notation, the filter is represented by the structure

S =


Lk |
Hk |
−− − −

| I

 · · ·


L1 |
H1 |
−− − −

| I




L

−
H

 (8.9)

The order of each block  Lk

−−
Hk


with the lowpass filter Lk and highpass filter Hk is half of the order of the preceding blockLk−1

−−
Hk−1


with filters Lk−1 e Hk−1. Accordingly, the order of the block with the identity matrix doubles
its size in each matrix. This product of matrices is the matrix representation of the filter bank
of the multiresolution analysis. When this matrix is applied to the initial vector (c0

n) it pro-
duces the complete multiresolution decomposition. The vector resulting from this operation
S((c0

n)) is

(cJ0 , dJ0 , dJ0−1, . . . , d0), (8.10)

where
dk = (dk

0, d
k
1, . . . , dk

m), k = J0, J0 − 1, . . . , 0.

Example 14 (Haar Multiresolution Analysis). The two-scale relations of the Haar mul-
tiresolution analysis are

φ(t) = φ(2t) + φ(2t − 1)
ψ(t) = ψ(2t) − ψ(2t − 1)

For a signal represented by four samples, the corresponding filter bank matrix in the first
level has order 4 and is given by

(
L
G

)
=


1 1

1 1
1 −1

1 −1

 .
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To make this matrix an orthogonal operator, we have to multiply its elements by r = 1/
√

2,
obtaining the matrix 

r r
r r

r −r
r −r

 .

In the next level of scale the matrix is given by(
r r
r −r

)
.

Therefore the matrix of the filter bank is
r r
r −r

1
1




r r
r r

r −r
r −r

 .

8.4 Reconstruction Bank

Since the scaling function and wavelet are orthonormal bases, the operators involved into the
analysis filter bank are also orthonormal. Therefore, the inverse operation for the synthesis
filter bank is given by the adjoint matrix (i.e. the transpose of the conjugate). Indeed, the
filter bank gives perfect reconstruction.

For completeness, we are going to derive the reconstruction expressions. We have

f j−1 = f j + dj

=
∑

k

cj
kφjk +

∑
k

dj
kψj,k.

Therefore

cj−1
n = 〈f j−1, φj−1,n〉

=
∑

k

cj
k〈φj,k, φj−1,n〉 +

∑
k

dj
k〈ψj,k, φj−1,n〉

=
∑

k

[hn−2kc
j
k + gn−2kd

j
k] (8.11)

where we have used the equation (8.3) and (8.7) in the last line.
The equation (8.11) is the synthesis equation (reconstruction) of the filter bank associated

with the multiresolution: it allows us to obtain the representation sequence (cj−1
n ) of the

function f in a finer scale, from the sequences (cj
n) and (dj

n) in a lower resolution scale and
its complement.
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The reconstruction diagram is shown below

(cJ0−j
n ) - (cJ0−j+1

n ) - (cJ0−1
n ) - (cJ0

n )

¡
¡

¡
¡

¡µ

¡
¡

¡
¡

¡µ

· · ·
¡

¡
¡

¡
¡µ

(dJ0−j
n ) (dJ0−j+1

n ) (dJ0−1
n )

In summary, using a representation of the signal f at a low resolution CJ0−j and the details
corresponding to the information differences at intermediate resolutions (dJ0−j

n ), (dJ0−j−1
n ),

. . . , (dJ0−1
n ), we reconstruct exactly the representation cJ0 of the signal at the scale 2J0 .

8.5 Computational Complexity

When we start with a function at some scale 2j we have j levels in the pyramid, which
correspond to j submatrices in the matrix that defines the filter bank of the multiresolution
analysis. If the associated lowpass and highpass filters have a kernel with T elements, we have
T non-zero entries in each line of the matrix. Therefore, we have a product of TL non-zero
elements in the computation of the first level of the filter bank, where L = 2j , is the number
of samples of the representation sequence of the input signal.

In the second level we have TL/2 products, in the third level TL/4 products, and so on.
The number of products is reduced by one half in each level. Therefore, the total number of
product to compute the analysis operation of the filter bank is given by

TL

(
1 +

1
2

+
1
4

+ · · · + 1
2j−1

)
< 2TL.

We conclude that the computational complexity in the decomposition computation of a
multiresolution analysis is linear with the length of the input signal.

In terms of matrices, the reconstruction is given by the conjugate transpose of the matrix S
in (8.9), because the analysis operator is orthogonal. It follows trivially that the computational
complexity of the reconstruction filter bank is the same as the decomposition bank: i.e. is
also linear with the length of the input signal

8.6 Comments and References

We have shown in this chapter that the multiresolution analysis defines a filter bank with
perfect reconstruction. The filter bank has a pyramidal structure, and the decomposition and
reconstruction operations can be computed in linear time relative to the length of the input
signal.

The study of filter banks with perfect reconstruction started in the beginning of the 80’s,
and advanced independently of the studies in the area of wavelets, which intensified in the
middle of the 80’s (the Haar wavelet is known since the beginning of this century, but it was
not associated with the context of wavelets).



BIBLIOGRAPHY 105

We already mentioned in the previous chapter that the concept of multiresolution analysis
was introduced by Stephane Mallat. In fact, Mallat also discovered the relation of filter banks
and multiresolution analysis as we described in this chapter. He also developed the recursive
algorithm to implement these operations, as we described in the previous chapter. This
algorithm is known in the literature by various names: Mallat algorithm, pyramid algorithm
or fast wavelet transform.

The multiresolution analysis is covered in various books (Daubechies, 1992), (Vetterli &
Kovacevic, 1995), (Hernandez & Weiss, 1996) e (Strang & Nguyen, 1996). This last reference
(Strang & Nguyen, 1996) is one of the few which adopts a matrix notation.

Bibliography

Daubechies, Ingrid. 1992. Ten Lectures on Wavelets. Philadelphia, PA: SIAM Books.

Hernandez, E., & Weiss, G. 1996. A First Course on Wavelets. Boca Raton: CRC Press.

Strang, Gilbert, & Nguyen, Truong. 1996. Wavelets and Filter Banks. Wellesley, MA:
Wellesley-Cambridge Press.

Vetterli, Martin, & Kovacevic, Jelena. 1995. Wavelets and Subband Coding. Englewood Cliffs,
New Jersey: Prentice Hall PTR.





Chapter 9

Constructing Wavelets

The proof of the existence of a wavelet associated with a multiresolution representation de-
scribed in Chapter 6 has a constructive flavor. In this chapter we will go over details of this
proof with the purpose of obtaining a recipe to construct wavelets.

9.1 Wavelets in the Frequency Domain

We start by analyzing the dilation equation, and looking at the bases functions φ and ψ in
the frequency domain.

9.1.1 The Relations of φ̂ with m0

Taking the Fourier transform of the two-scale equation

φ(x) =
√

2
∑
n

hnφ(2x − n) (9.1)

gives

φ̂(ω) =
1√
2

∑
n

hne−inω/2φ̂(ω/2) (9.2)

Equation (9.2) can be rewritten as

φ̂(ω) = m0(ω/2)φ̂(ω/2) (9.3)

with

m0(ω) =
1√
2

∑
n

hne−inω (9.4)

The function m0 is 2π–periodic, and m0 ∈ L2([0, 2π]), because
∑

n∈Z
|hn|2 < ∞.

We also know that, by definition, ∫ ∞

−∞
φ(x)dx = 1

107
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hence, φ̂(0) = 1, and therefore

m0(0) = 1 (9.5)

Applying equation (9.3) recursively for w/2, w/4, . . . , we get φ̂(ω) = m0(ω/2)m0(ω/4)φ̂(ω/4) . . . ,
and arrive at the infinite product formula

φ̂(ω) =
1√
2π

∞∏
j=1

m0(2−jω). (9.6)

A very important point is to show that this product converges to a function in L2(R). Details
of this proof can be found in (Daubechies, 1992).

We can see that φ̂ is completely characterized by m0, as φ is completely characterized
by the sequence (hn), Note also that knowing m0 gives us (hn). This is the first important
connection between wavelets in the spatial and frequency domains.

9.1.2 The Relations of ψ̂ with m1

Similarly, if we express the two scale relation for the wavelet function ψ in the frequency
domain,

ψ(x) =
√

2
∑
n

gnψ(2x − n) (9.7)

we get

ψ̂(ω) =
1√
2

∑
n

gne−inω/2φ̂(ω/2) (9.8)

or

ψ̂(ω) = m1(ω/2)φ̂(ω/2) (9.9)

with

m1(ω) =
1√
2

∑
n

gne−inω (9.10)

where m1 is also 2π-periodic.
Note that, ψ̂ is defined in terms of φ̂, through m1, in the same way ψ is defined in terms

of φ through (gn) in the spatial domain.

9.1.3 Characterization of m0

In order to define the properties of m0, we use the fact that φ(u − k), the integer translates
of φ form an orthonormal basis of V0. This imposes some restrictions on m0.∫ ∞

−∞
φ(x)φ(x − k)dx =

∫ ∞

−∞
|φ̂(ξ)|2eikξdξ = δk,0 (9.11)

=
∫ 2π

0
eikξ

∑
l∈Z

|φ̂(ξ + 2πl)|2dξ = δk,0 (9.12)
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The above equation implies that ∑
l

|φ̂(ξ + 2πl)|2 =
1
2π

(9.13)

Substituting equation (9.3) in (9.13), with ω = ξ/2, we have∑
l

|m0(ω + πl)|2|φ̂(ω + πl)|2 =
1
2π

(9.14)

We can split the sum into terms with even and odd l, and since m0 is 2π-periodic we have

|m0(ω)|2
∑

l

|φ̂(ω + 2lπ)|2 + |m0(ω + π)|2
∑

l

|φ̂(ω + (2l + 1)π)|2 =
1
2π

(9.15)

substituting (9.13), and simplifying, we obtain

|m0(ω)|2 + |m0(ω + π)|2 = 1 (9.16)

This is the first important condition characterizing m0, via orthonormality of φ.
If we put together equation (9.5) with (9.13) , we conclude that

m0(π) = 0 (9.17)

This gives us a hint that m0 is of the form (i.e. factorizes as)

m0(ω) =
(

1 + eiω

2

)m

Q(ω) (9.18)

with m ≥ 1, and where Q is a 2π-periodic function. (Observe that eiπ = −1. So, when ω = π
the first term vanishes, and the product has to vanish.) We impose Q(0) = 1, to ensure that
m(0) = 1, and also Q(π) 6= 0, so that the multiplicity of the root of m0 at π is not increased
by Q.

9.1.4 Characterization of m1

Now, to link m1 with m0 we use the orthogonality between φ and ψ. More precisely, the
constraint that W0 ⊥ V0 implies that ψ ⊥ φ0,k and∫ ∞

−∞
ψ̂(ω)φ̂(ω)eikωdω = 0 (9.19)

or, in terms of the Fourier series∫ 2π

0
eikω

∑
l

ψ̂(ω + 2πl)φ̂(ω + 2πl)dω = 0 (9.20)
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hence ∑
l

ψ̂(ω + 2πl)φ̂(ω + 2πl) = 0 (9.21)

for all ω ∈ R.
Substituting in the above equation the expressions (9.3) and (9.9) of φ̂ and ψ̂ in terms of,

respectively, m0 and m1, we obtain after regrouping the sums for odd and even l

m1(ω)m0(ω) + m1(ω + π)m0(ω + π) = 0 (9.22)

This is the second important condition that caracterizes m0 and m1.
We also know that m0(w) and m0(w + π) cannot be zero simultaneously because of (9.16),

therefore m1 can be written using m0 and a function λ

m1(ω) = λ(ω)m0(ω + π) (9.23)

such that λ satisfies

λ(ω) + λ(ω + π) = 0 (9.24)

The simplest choice is λ(ω) = eiw, which gives m1 satisfying the above equation

m1(ω) = e−iωm0(ω + π) (9.25)

Note that m1 is defined in terms of m0, as expected. This also gives ψ̂ in terms of φ̂

ψ̂(ω) = eiω/2m0(ω/2 + π)φ̂(ω/2) (9.26)

From the above relations, we can construct an orthogonal wavelet from a scaling function φ,
using (9.25) and choosing the coefficients {gn} as

gn = (−1)nh−n+1, (9.27)

that is,

ψ(x) =
√

2
∑
n

(−1)nh−n+1φ(2x − n) (9.28)

We conclude that, since m1 is trivially defined from m0, all we need to construct orthogonal
scale and wavelet bases, is to find a function m0 satisfying (9.16) and (9.22), or, equivalently,
find the coefficients (hn) of the representation sequence of m0.

Example 15 (Haar Wavelet). The scaling function of the Haar multiresolution represen-
tation is given by

φ(x) =

{
1 if x ∈ [0, 1)
0 otherwise.
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From the two scaling relation

φ(t) =
√

2
∑

k

ckφ(2t − k),

we have

cn =
√

2
∫ +∞

−∞
φ(t)φ(2t − n)dt.

It is easy to see that only φ(2t) and φ(2t − 1) are not disjoint from φ(t), therefore only
the coefficients of c0 and c1 are non-null (see Figure 9.1). An easy computation shows that

c0 = c1 =
√

2
2

.

Therefore the two scale equation can be written as

φ(x) = φ(2x) + φ(2x − 1),

This equation is illustrated in Figure 9.1: In (a) we have the graph of φ and in (b) we have
the sum of the functions φ(2x) and φ(2x − 1).

(a) (b)

Figure 9.1: Double scale relation of the Haar scaling function.

The two scale relation (9.28) for the wavelet in this case is given by

ψ(x) = φ(2x) − φ(2x − 1),

which gives the Haar wavelet already introduced before (See Figure 9.2).

Unfortunately the Haar example does not give a good view of the reality. The above
reasoning is correct and promising but taking this trail to get to the wavelets involves a lot
of work.
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Figure 9.2: Haar wavelet.

9.2 Orthonormalization Method

Given a function φ(u) satisfying the two scale relation (6.18), it may happen that the trans-
lated functions φ(x − n) do not constitute an orthonormal basis. We can overcome this fact.

In fact, we have stated before that the orthonormality condition (M5) in the definition of
a multiresolution representation could be relaxed with the weaker condition that φ(x−n) is a
Riesz basis. This fact is the essence of the orthonormalization process stated in the Theorem
below:

Theorem 6. If {φ(u − k}, k ∈ Z, is a Riesz basis of the space V0, and we define a function
φ# by

φ̂#(ξ) =
1√
2π

φ̂(ξ)√∑
k |φ̂(ξ + 2πk)|2

, (9.29)

then φ#(u − k), k ∈ Z, is an orthonormal basis of V0.

The proof of the theorem can be found in (Daubechies, 1992), page 139.
In spite of using a weaker condition on (M5), the task of showing that a set of functions

is a Riesz basis is not an easy one, in general. Moreover there exists the other conditions
which must be satisfied in order to have a multiresolution representation. This problem can
be solved using the result from

Theorem 7. If φ ∈ L2(R) satisfies the two scale relation

φ(x) =
∑

k

ckφ(2x − k),

with ∑
k

|ck|2 < ∞,



9.3. A RECIPE 113

and

0 < α <
∑

k

|φ̂(ξ + 2πk)|2 ≤ β < ∞, (9.30)

then φ defines a multiresolution representation.

9.3 A Recipe

In this section we will summarize the above results to construct a multiresolution representa-
tion, along with the associated wavelet.

Step 1. We start from a function φ which defines the kernel of a low-pass filter. A sufficient
condition for this is that φ satisfies ∫

R

φ(u)du 6= 0,

and also that φ and φ̂ have a good decay at infinity.

Step 2. We verify if the function φ of the previous step satisfies the two scale relation (6.18),
and the condition (9.30).

Step 3. If we have a function satisfying the two previous steps, but φ(u − k) is not an
orthonormal basis, then we can obtain an orthonormal basis from φ, according to Theorem 6.

Step 4. The wavelet associated to the multiresolution representation can be computed using
equation (6.13) from previous chapter.

9.4 Piecewise Linear Multiresolution

The Haar multiresolution representation allows us to obtain successive approximations of a
function using functions that are constant by parts. Now we will use the recipe from the
previous section to obtain a multiresolution representation whose scale space approximate a
function f ∈ L2(R) using piecewise linear functions.

We take as a candidate for the scaling function φ the function

φ(x) =

{
1 − |x| if x ∈ [0, 1]
0 if x < 1 or x > 1.

The graph of φ is shown in Figure 9.3(a).
Certainly the function φ satisfies all of the conditions in Step 1 of our recipe. Moreover,

it is easy to see that φ also satisfies the two scaling relation

φ(x) =
1
2
φ(2x + 1) + φ(2x) +

1
2
φ(2x − 1). (9.31)
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(a) (b)

Figure 9.3: Piecewise linear scaling function.

This relation is illustrated in Figure 9.3(b).
The Fourier transform of φ is given by

φ̂(ω) =
1√
2π

(
sin(ω/2)

ω/2

)2

. (9.32)

An immediate calculus shows that

2π
∑
k∈Z

|φ̂(ω + 2πk|2 =
2
3

+
1
3

cos ω =
1
3
(1 + cos2(

w

2
)). (9.33)

Therefore the condition (9.30) is satisfied. From Theorem 7, φ defines a multiresolution
representation.

Nevertheless, it is easy to verify that the family φ(u − k), k ∈ Z, is not orthonormal.
Therefore we must apply the orthonormalization process (Theorem 6) to obtain a scaling
function that defines a multiresolution orthonormal basis.

Substituting (9.32) and (9.33) in (9.29), we have

φ̂#(ξ) =

√
3
2π

4 sen2( ξ
2)

ξ2
(
1 + 2 cos2( ξ

2

)1/2 ,

that is the Fourier transform of the scaling function we are looking for. The graph of φ̂# is
shown in Figure 9.4(a). The graph of the associated wavelet ψ(x) is shown in Figure 9.4(b).

9.5 Shannon Multiresolution Analysis

From classical Fourier analysis we know the low-pass ideal filter φ : R → R, whose transfer
function is given by

φ̂(ω) = χ[−π,π] =

{
1 if x ∈ [−π, π]
0 if x < −π or x > π.
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(a) (b)

Figure 9.4: (a)Scaling function of the piecewise linear multiresolution; (b) Wavelet of the
piecewise linear multiresolution.

The impulse response of the filter is given by the function

φ(x) = sinc(x) =
sin(πx)

πx
.

The graph of this function is shown in Figure 9.5.
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Figure 9.5: Impulse response of the ideal reconstruction filter.

It is natural to expect that the function φ defines a multiresolution representation. This
is in fact true, but we will not give the details here. It is called Shannon multiresolution
representation. Shannon multiresolution representation divides the frequency domain into
bands according to the illustration shown in Figure 9.6.

The wavelet ψ associated to Shannon multiresolution representation is the ideal band-pass
filter, defined by

ψ̂ = χI , onde I = [−2π,−π) ∪ (π, 2π].

The graph of this filter is shown in Figure 9.7.
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Figure 9.6: Band decomposition using Shannon multiresolution representation.

Figure 9.7: Ideal band-pass filter.

This wavelet is called Shannon wavelet. It has an analytic expression given by

ψ(x) = −2
sen(2πx) + cos(2πx)

π(2x + 1)
.

The graph is shown in Figure 9.8.
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Figure 9.8: Shannon wavelet.
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9.6 Where to Go Now?

Up to this point we have seen how to obtain atomic decompositions using wavelets, we have
studied the role the wavelets in the multiresolution representation, we have shown the ex-
istence of orthonormal basis of wavelets and we have described a method to construct such
basis using multiresolution representation.

Certainly, in applications we need to have at our disposal a great abundance of basis
of wavelets. Therefore the natural path to follow should point in the direction of devising
methods to construct basis or frames of wavelets.

In order to amplify the range of possible applications, we should impose additional condi-
tions to the wavelets we construct. Among many conditions we could mention:

• regularity;

• symmetry;

• compact support;

• orthogonality with polynomials of degree ≤ n.

The construction of wavelets satisfying some of the above properties, as well as a discussion
about the importance of these properties in different types of applications is of fundamental
importance. In Chapter 10, we will present a framework for generating wavelets using a filter
design methodology.

9.7 Comments and References

In this chapter we have described how wavelets can be constructed. Devising robust techniques
to construct wavelets is a very important research topic. The reader should realize that each
application demands bases of wavelets with different properties. We will cover this in the
chapters to follow.

The Haar wavelet and the wavelet associated with the piecewise linear multiresolution
representation are part of a family of wavelets called spline wavelets. This family is related
to a multiresolution representation that approximates a function f ∈ L2(R) using piecewise
polynomials of degree ≤ n. These types of wavelets are studied in (Chui, 1992).
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Chapter 10

Wavelet Design

We have seen in the previous chapters that orthogonal wavelets can be defined from a mul-
tiresolution analysis. This framework provides the basic relations to construct wavelets, and
to compute the fast wavelet transform.

As we discussed in Chapter 9, the scaling and wavelet functions, φ and ψ, are com-
pletely characterized by the two-scale sequences (hn) and (gn), respectively. Therefore, a
direct method to generate new wavelets consists in finding φ and ψ that satisfy the two-scale
relations, and whose integer translates form orthonormal bases of V0 and W0.

This simple approach can be used to produce examples of wavelets, but it presents two
main difficulties: first, it does not give a systematic way to find the functions φ and ψ; second,
it relies on an orthonormalization step which produces infinitely supported bases.

It is clear that we need a more effective and flexible method to design wavelets. In this
chapter, we present an approach to generate wavelets based on a frequency domain analysis.
We will exploit the fact that the two-scale sequences are the coefficients of a two-channel
discrete filter bank. Consequently, we can use the filter design methodology for creating
wavelets.

10.1 Synthesizing Wavelets from Filters

In this section we review the restrictions on the filter function m0, with the purpose of
discovering an expression for it that can be computed.

10.1.1 Conjugate Mirror Filters

The functions m0 and m1 can be interpreted as the discrete Fourier transform of a pair of
discrete filters H = (hn) and G = (gn), respectively, as we discussed in the previous chapter.
The function m0 is a low pass filter for the interval [0, π/2], and the function m1 is a band
pass filter for the interval [π/2, π].

From these observations, and from the definition of φ and ψ in the frequency domain,
we conclude that the main part of the energy of φ̂ and ψ̂ is concentrated respectively in the
intervals [0, π] and [π, 2π].

119
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The fact that m0(0) = m1(π) and m1(0) = m0(π), together with the relation m1(ω)m0(ω)+
m1(ω+π)m0(ω + π) = 0 make H and G a pair of filters that are complementary. These filters
are called conjugate mirror filters, because their frequency responses are mirror images with
respect to the middle frequency π/2 (also known as the quadrature frequency).

The above means that the wavelet transform essentially decomposes the frequency space
into dyadic blocks [2jπ, 2j+1π] with j ∈ Z.

Note that is possible to construct m0 and m1 that are quadrature mirror filters, but do
not correspond to any functions φ and ψ in L2(R) as defined by a multiresolution analysis. In
order to guarantee that infinite product formula (9.6) will converge to the Fourier transform
of a valid φ, the function m0 must satisfy |m0(ω)|2 + |m0(ω + π)|2 = 1, the orthogonality
condition for φ(· − k). In addition, we have to impose extra conditions on m0 to ensure that∑

l |φ̂(ω + 2πl|2 = 1/2π. (See (Daubechies, 1992) for the technical details.)

10.1.2 Conditions for m0

First, let’s revisit the two main conditions, (9.16) and (9.22), that the function m0 must
satisfy to generate orthogonal scaling functions and wavelets. They can be summarized as:

Condition 1: m0(ω)m0(ω) + m0(ω + π)m0(ω + π) = 1

Condition 2: m1(ω)m0(ω) + m1(ω + π)m0(ω + π) = 0

where, in the first equation we expanded |m0(ω)|2 = m0(ω)m0(ω).
Notice that these two condition can be written in matrix form as(

m0(ω) m0(ω + π)
m1(ω) m1(ω + π)

)(
m0(ω)

m0(ω + π)

)
=

(
1
0

)
or Mx = y, where M is called the modulation matrix, in the filter bank theory.

M =
(

m0(ω) m0(ω + π)
m1(ω) m1(ω + π)

)
We will return to this matrix later, in the more general context of biorthogonal wavelets and
perfect reconstruction filters.

For orthogonal wavelets, we were able to transform condition 2, into

m1(ω) = e−iωm0(ω + π),

using the quadrature mirror filter construction (see equation (9.25) of previous Chapter).
Therefore, we only need to determine m0(ω) such that Condition 1 is satisfied.

The goal now, is to go from Condition 1 to a formula for m0.

10.1.3 Strategy for Computing m0

What we would really like at this point is to obtain a closed form expression for m0. Unfor-
tunately, this would not be possible. There are no simple formulas for the coefficients (hn) of
m0. But, we will be able to compute (hn) numerically.
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Instead of working directly with m0, we will consider |m0|2. We define the function P (ω)
as the product m0(ω)m0(ω)

P (ω) =

(
N∑

l=0

hle
ilω

) (
N∑

n=0

hne−inω

)

=
N∑

k=−N

ake
−ikω (10.1)

Our strategy is to decompose the problem of finding m0 satisfying Condition 1, into two
simpler subproblems:

1. Find a function P (ω) that satisfy P (ω) + P (ω + π) = 1;

2. From P obtain m0, factoring P (ω) into m0(ω)m0(ω)

It turns out that it is better to work with P than with m0, because using P , the analysis
of Condition 1 is much simpler. This strategy makes possible to find an explicit expression for
P (ω), and therefore, the formulas to compute its coefficients (ak). From that, we can obtain
m0 through the spectral factorization of P (i.e. taking a “square root”).

We will see, in the next two chapters, how to derive a closed form expression for P (ω),
respectively in the context of orthogonal scaling functions, where P (ω) = m0(ω)m0(ω), and
in the more general context of biorthogonal scaling functions, where P (ω) = m0(ω)m̃0(ω)
(i.e., the functions m0 and m̃0 can be different).

In the rest of this chapter, we will assume that P is known, and we will concentrate on
the details of how to get m0 from P .

10.1.4 Analysis of P

First, to simplify the exposition, we will make a change of notation. We express reiω = z,
with r = |z|, to convert from the ω notation to the z notation. Let P (z) restricted to the unit
circle r = 1 denote P (ω). So, equation (10.1) becomes

P (z) =
N∑

k=−N

akz
k (10.2)

There are many things we can say about P , even without knowing the specific expression
of P .

• P is a Laurent polynomial of degree N , with both positive and negative exponents. This
is apparent in equation (10.2).

• P (z) ≤ 0, is real and non-negative, because P (z) = |m0(z)|2 (in the orthogonal case).

• P has real coefficients ak, k = −N, . . . , N , because m0 has real coefficients.

• P is symmetric, with ak = a−k, because m0(z) multiplies its conjugate m0(z).
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Taking into consideration also Condition 1, we can say more about P . Using the fact that
eiw+π/2 = −eiw, we write Condition 1 in the z notation as:

P (z) + P (−z) = 1 (10.3)

The terms with odd coefficients cancel in equation (10.3) (and there is nothing we can
say about them). But, we can conclude that, except for the constant term, all other even
coefficients of P have to be zero to make (10.3) true.

a2m =
{

1/2 if m = 0
0 if m 6= 0

(10.4)

In the filter theory, the function P which satisfy (10.3) is called a halfband filter. When it
comes from P (z) = |m0(z)|2, it is the autocorrelation filter of m0. It gives the power spectral
response, and m0 is the spectral factor. Figure 10.1 shows a graph of P .

P (ω) P (ω + π)
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Figure 10.1: Halfband Filter

10.1.5 Factorization of P

The function P (z) is a Laurent polynomial of degree N . Since it is symmetric there are N +1
independent coefficients in P . In the next two chapters, we will derive a formula to compute
these coefficients. Assuming that the coefficients of P are known, the remaining problem is
to factor P to obtain m0.

A regular polynomial of degree d can be represented in two forms:

B(z) =
d∑

n=0

bnzn =
d∏

i=1

(z − zi)

where bn are the coefficients of B, and zi are the roots of B.
The factorization of the polynomial P can be done by finding the zeros (roots) of P . There

are several methods for this purpose. One of the most effective of these methods consists in
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computing the eigenvalues the companion matrix. The roots of a regular polynomial B of
degree d are the eigenvalues of the d × d companion matrix

B =


−bd−1

bd

−bd−2
bd

· · · −b1
bd

−b0
bd

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 · · · 1 0

 (10.5)

where B(z) = det(B − zI) is the characteristic polynomial of B.
In order to apply the factorization method, we need first to convert the Laurent polynomial

P (z) to the equivalent polynomial zNP (z) in regular form.

P (z) =
N∏

i=0

(z − zi)
N∏

j=0

(z−1 − zj)

zNP (z) =
1
2
aN

2N∏
i=0

(z − zi)

with aN 6= 0.
This polynomial can be factored using any numerical package that implements the eigen-

value method discussed above.
The factorization will give us the roots of P . Our knowledge about P will help us to

discriminate between the different types of roots:

i. Since P has real coefficients, the complex roots will occur in pairs that are conjugate
(i.e. if zk = x + iy is a root, then zk = x − iy is also a root). This ensures that, in the
orthogonal case, we will be able to compute the “square root” of m0.

ii. The coefficients of P are also symmetric. With real symmetric coefficients ak, we have
P (z) = P (1/z). If zi is a root, then 1/zi is also a root. Thus, when zi is inside the unit
circle, 1/zi is outside (roots with |zi| = 1, on the unit circle have even multiplicity).

In summary, P has 2N roots. The complex roots come in quadruplets zj , z
−1
j , zj , z−1

j , and
the real roots come in duplets rl, r

−1
l . Therefore, regrouping these types of roots, we have

zNP (z) =
1
2
aN

J∏
j=1

(z − zj)(z − 1
zj

)(z − zj)(z − 1
zj

)

K∏
k=1

(z − zk)2(z − zk)2
L∏

l=1

(z − rl)(z − 1
rl

)

Once we obtain the 2N roots of zNP (z), it is necessary to separate then, assigning factors
M to the polynomial m0(z), and the remaining 2N − M factors to the polynomial m0(z), (or
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m̃0(z)). In the orthogonal case, one factor is the transpose of the other, but in the biorthogonal
case, this restriction is not imposed, and the dual scaling functions can be different. Note
that, the polynomial m0(z) with degree N is not unique even for orthogonal scaling functions.
In the next two chapters we will discuss the rules for separating the roots of P , and effects of
different choices.

The function m0 is completely determined after we assign a set of roots from P to it. But,
we still don’t have the coefficients (hn) of m0, since it is in product form. Given the roots zk

of the degree N polynomial

m0(z) = c
N∏

k=1

(z − zk) (10.6)

the coefficients hn can be computed with an iterated convolution. Then, we normalize the
coefficients multiplying them by a scaling constant.

The coefficients (hn) give the filter m0, and from them we get the coefficients (gn) of the
filter m1, using (9.27).

Now, let’s summarize the steps required to generate a scaling and wavelet functions using
a filter design methodology:

1. Choose a Polynomial P satisfying Condition 1. Generate its coefficients ak using an
explicit formula (see Chapters 11 and 12).

2. Find the roots zk of P by a factorization method.

3. Separate the roots zk into two sets. Assign one set of roots to the polynomial factor m0
and the other set of roots to m0 (or to m̃0).

4. Compute the coefficients hn of m0 from its roots, using iterated convolution.

5. Obtain the coefficients gn of m1 from hn.

10.1.6 Example (Haar Wavelet)

A concrete example will illustrate the wavelet design methodology.
We choose the following degree 1 polynomial:

P (z) =
1
4
z−1 +

1
2

+
1
4
z

This is the lowest degree polynomial which satisfies Condition 1

P (z) + P (−z) = 1

We convert P to regular form, multiplying by z

zP (z) =
1
4

(
1 + 2z + z2)
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This polynomial has one root at z = −1 with multiplicity 2. Therefore P is factored into

P (z) =
1
2
z−1 (z + 1)

1
2
(z + 1)

=
(

1 + z−1

2

) (
1 + z

2

)
The low-pass filter is

m0(ω) =
1
2

+
1
2
e−iω =

1√
2

(
1√
2

+
1√
2
e−iω

)
with coefficients h0 = h1 = 1/

√
2 which gives the Haar scaling function

φ(x) =
√

2
(

1√
2
φ(2x) +

1√
2
φ(2x − 1)

)
= φ(2x) + φ(2x − 1)

Figure 10.2 shows a plot of m0(ω).

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

Figure 10.2: Haar filter m0

Notice that, since

m0(ω) =
1 + e−iω

2
=

(
e−iω/2 + eiω/2

2

)
e−iω/2 = cos(ω/2)e−iω/2

the scaling function in frequency domain φ̂ is the sinc function

φ̂(ω) =
1√
2π

∞∏
j=1

cos(2−jω/2)e−i2−jω/2 =
1√
2π

e−iω/2 sin(ω/2)
ω/2

which is the Fourier transform of the box function φ(x) = 1 for x in the interval [0, 1] (this
is the Haar scaling function, as expected). A derivation of this formula can be found in
(Daubechies, 1992), pg. 211. Figure 10.3 shows a plot of |φ̂(ω)|.
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Figure 10.3: Magnitude of the frequency response of φ̂(ω) for the Haar function

The coefficients of the high-pass filter m1 are given by gn = (−1)nh1−n

g0 =
1√
2
, g1 = − 1√

2

The function

ψ(x) =
√

2
(

1√
2
φ(2x) − 1√

2
φ(2x − 1)

)
= φ(2x) − φ(2x − 1)

is the Haar wavelet.

10.2 Properties of Wavelets

In the last section we have seen how to synthesize wavelets in the frequency domain. The
procedure was based on the factorization of a polynomial P (ω). In this section we will
investigate how the properties of the scaling and wavelet functions relate to characteristics of
P . This connection will reveal the “design variables” that we can control to generate wavelets
with desired properties.

10.2.1 Orthogonality

The multiresolution analysis, by definition, leads to orthogonal scaling functions and wavelets.
In this way, the functions {φj,n;n ∈ Z}, and {ψj,n;n ∈ Z} are, respectively, orthonormal basis
of the subspaces Vj and Wj , for all j ∈ Z. The subspaces Wj are mutually orthogonal, and
the projection operators produce optimal approximations in the L2(R) sense.

Orthogonality is very a desirable property, but it imposes severe restrictions on the can-
didate scaling and wavelet functions. We will see in Chapter 12 that orthogonality can be re-
placed by biorthogonality, which is less restrictive, giving us more freedom to design wavelets.
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10.2.2 Support of φ and ψ

In this chapter we have been concerned only with compactly supported basis functions.
The support width of the scaling and wavelet functions is determined, respectively, by the

length of the coefficient sequences (hn) and (gn). More precisely, if hn = 0 for n < 0, n > N ,
then the support of φ is the interval [0, N ]. When ψ is defined as in (9.28), then the support
of ψ is the interval [−M, M + 1], where M = (N − 1)/2.

The length of the coefficient sequences (hn) and (gn) is given by the degree of the polyno-
mial m0(z). Consequently, the degree of the product polynomial P (z), determines the support
width of the associated basis functions.

10.2.3 Vanishing Moments and Polynomial Reproduction

Two related properties of a multiresolution analysis are: the vanishing moments of the wavelet
functions; and the ability of the scaling functions to reproduce polynomials. These are prob-
ably the most important properties in the design of wavelets.

Given a mother wavelet function ψ(x) with p vanishing moments, that is∫
x`ψ(x)dx = 0 (10.7)

for ` = 0, 1, . . . , p − 1. Then, the following equivalent properties are verified:

• The wavelets ψ(x − k) are orthogonal to the polynomials 1, x, . . . , xp−1.

• The combination of scaling functions φ(x − k) can reproduce exactly the polynomials
1, x, . . . , xp−1.

These properties are important in the rate of convergence of wavelet approximations of
smooth functions and in singularity detection using wavelets.

Vanishing moments are also a necessary (but not sufficient) condition for a wavelet to be
p − 1 times continuously differentiable, i.e ψ ∈ Cp−1.

In order to make the connection between the number of vanishing moments of a wavelet
and the condition imposed on the filter function m1(ω), we note that equation (10.7) implies
that

d`

dω`
ψ̂

∣∣∣∣
ω=0

= 0 (10.8)

for ` < p. (This can be verified expanding ψ in a Taylor series.) But, we know from (9.26)
that ψ̂(ω) = e−iω/2m0(ω/2 + π)φ̂(ω/2), and also from (9.5) that φ̂(0) 6= 0, this means that
m0 is p − 1 times differentiable in ω = π. Furthermore

d`

dω`
m0

∣∣∣∣
ω=π

= 0 (10.9)

for ` < p.
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As a consequence of the above, m0 must have a zero of order p at ω = π. Therefore, m0
is of the form

m0(ω) =
(

1 + eiω

2

)p

Q(ω) (10.10)

with m0 ∈ Cp−1 and Q ∈ Cp−1.
We already knew that a wavelet should integrate to zero, i.e. it should have at least one

vanishing moment. We also knew that m0 should have at least one zero at π, i.e. it should
be of the form (10.10) with p >= 1.

The zero at π from m0 produces factor (1+z
2 )2p in the polynomial P .

10.2.4 Regularity

Smooth basis functions are desired in applications where derivatives are involved. Smoothness
also corresponds to better frequency localization of the filters.

The local regularity of a function at a point x0 can be studied using the notion of Lipschitz
continuity. A function f(x) is Cα at x0, with α = n + β, n ∈ N and 0 < β < 1, if f is n times
continuously differentiable at x0 and its nth derivative is Lipschitz continuous with exponent
β.

|f(x)(n) − f(x0)(n)| ≤ C|x − x0|β (10.11)

For global regularity, the above must hold for all x0.
Typically, compactly supported scaling functions and wavelets are more regular in some

points than in others. They also have non-integer Lipschitz exponents.
The regularity of scaling functions and wavelets is difficult to determine. The techniques

for this investigation involve either the estimation of the decay of φ̂ in the frequency domain,
or the estimation of the convergence rate of the recursive construction of φ in the spatial
domain. The first class of techniques is more suitable for a global analysis, while the second
class of techniques is better for a local analysis.

The regularity of φ and ψ is related with the number of vanishing moments of ψ, and
consequently is related with the multiplicity p of the zeros at π of m0. The regularity is at
most p − 1 if we consider integer exponents, and at most p − 1/2 if we consider fractional
exponents. We remark that in many cases, the regularity is much smaller than p − 1 because
of the influence of the factor Q.

Another important observation is that, for a fixed support width of φ, the choice of fac-
torizations of P that leads to maximum regularity is different from the choice with maximum
number of vanishing moments for ψ.

10.2.5 Symmetry or Linear Phase

Symmetry is important in many applications of wavelets, such as image processing and com-
puter vision. This property can be exploited in the quantization of images for compression,
and in the boundary processing of finite signals using symmetric extension (i.e. periodicization
by reflection of the data).
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The symmetry of the basis functions implies in symmetric filters. It is easy to see from
(9.1), that φ will be symmetric only if the coefficients (hn) are symmetric.

Symmetric filters are called linear phase filters. This is because filters with symmetric
coefficients have a linear phase response.

The phase angle (or argument) of a complex number z = a + bi is the angle between the
vector (a, b) and the horizontal axis. The tangent of this angle is the ratio of the imaginary
and real parts of z:

tan(ω) =
=(z)
<(z)

=
b

a
. (10.12)

The same definition extends to a complex function m(z). This notion becomes more evident if
we use the polar representation of a complex number z = |z|eiθ(ω), where |z| is the magnitude
of z and θ(ω) is the phase angle of z.

A filter function m(ω) =
∑

k ake
ikω is said to have linear phase if θ(ω) is of the form Kω

where K is a constant (i.e. it is linear in ω). This means that m(ω) can be written as

m(ω) = ceiKωM(ω) (10.13)

where c is a complex constant, and M is a real valued function of ω, not necessarily 2π-periodic.
Linear phase filters have symmetric or antisymmetric coefficients around the central coefficient
N/2. Therefore, hk = hN−k for symmetric filters and hk = −hN−k for antisymmetric filters.
Note that, when filter coefficients ak are symmetric, or anti-symmetric, the phase is linear
because terms with same coefficients can be grouped. For example, if the filter is symmetric
and has an even number of coefficients

m(ω) =
N/2∑
k=0

hk(e−ikω + e−i(N−k)ω) = e−i N
2 ω

N/2∑
k=0

hk(eikω + e−ikω)


= e−i N

2 ω

N/2∑
k=0

2hk cos(kω)

 .

We can see that in this case the phase is N/2ω. Similar expressions hold for the case of
symmetric filters with odd number of coefficients, as well as for antisymmetric filters.

We can conclude from the above discussion that, in order to obtain symmetric (anti-
symmetric) scaling functions and wavelets, it is necessary to factor the polynomial P into
symmetric polynomials m0 (and m̃0). Therefore, in the factorization of P the roots zj and
z−1
j must stay together. We remark that, although P is a symmetric polynomial, it obviously

can be factorized into two polynomials that are not symmetric.
In the next chapter, we will demonstrate that symmetry and orthogonality are incompati-

ble properties, except for the case of Haar wavelets. This is because orthogonal filters require
that the roots zj and z−1

j are separated and assigned one to m0 and the other to m0.
Nonetheless, despite of the orthogonality restriction, it is possible to design filters that

are close to linear phase and result in basis functions that are least assymmetric. This can
be accomplished by selecting from each pair of roots z, z−1, the one which contributes the
least to non-linearity of the filter phase. For this purpose, we have to compute the non-linear
contribution of the factors (z − zk) and (z − z−1

k ) to the total phase of m0.
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10.2.6 Other Properties

There are several other properties that are relevant to applications, but are only achievable
by some types of wavelets. Below we discuss a few of them.

• Analytic Form: The analytic expression for the scaling function and wavelet is, in
general, not available. These functions are defined indirectly through the filter coeffi-
cients (h) and (g). Nonetheless, the definition of the scaling function and wavelet in
analytic form is very useful in many applications. One important example of wavelet
basis with closed form analytic expression is the family of B-Spline wavelets.

• Interpolation: The interpolation property makes it trivial to find the values of the
scaling coefficients from samples of the function. When the scaling function φ(k) = δk,
for k ∈ Z, the coefficients cj

k =< f, φj > of the projection ProjVj
(f) of f on Vj , are just

the values f(2jk) of f sampled on a grid with spacing 2−j .

• Rational Coefficients: Filter coefficients that are rational numbers make computer
implementation more efficient and precise. It is even better if the coefficients are dyadic
rational numbers. In this case, division by a power of two corresponds to shifting bits.

10.3 Classes of Wavelets

From our discussion of the various properties of wavelets, we can conclude that it is not
possible to achieve all of them at the same time. The reason is that different properties may
be incompatible with each other, and imply in conflicting requirements on the filter function
m0. For example, on one hand, the support width is proportional to the number of filter
coefficients and consequently small support requires a low-degree m0. On the other hand,
the number of vanishing moments depends on the multiplicity of the zero at π of m0, and
consequently a large number of vanishing moments requires a high degree m0.

To make things even more complicated, there is a great interdependency among the dif-
ferent requirements. For instance, m0 is of the form 1/2(1− eiω)nQ(ω). While the first factor
controls the vanishing moments, the second factor is necessary to guarantee orthogonality. If
we increase the degree of the first, we also have to increase the degree of the second.

Naturally, as in any design process, there is always a trade-off between different properties
relative to their importance in a given application.

In general terms, there are two main classes of wavelets that combine some of the above
properties in the best way.

10.3.1 Orthogonal Wavelets

Orthogonal wavelets are the best choice in some cases. Unfortunately, except for the Haar
case, orthogonal wavelets cannot be symmetric.

It is possible to design orthogonal wavelets with more or less assymmetry.
Other properties that are important for orthogonal wavelets are: support width, number

of vanishing moments, and regularity.
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In Chapter 11, we will discuss how to generate compactly supported wavelets, and how to
control the various properties.

10.3.2 Biorthogonal Wavelets

Biorthogonal wavelets have most of the qualities of orthogonal wavelets, with the advantage
of being more flexible.

There are many more biorthogonal wavelets than orthogonal ones. For these reason, they
make possible a variety of design options and constitute class of wavelets most used in practical
applications.

Biorthogonal wavelets can have symmetry. The are associated with perfect analysis /
reconstruction filter banks.

In Chapter 12 we will discuss how to generate biorthogonal wavelets.

10.4 Comments and References

The framework for wavelet design in the frequency domain has been developed since the
early days of wavelet research by Yves Meyer, (Meyer, 1990), and Stephane Mallat, (Mallat,
1989), among others. The initial methods investigated could only produce orthogonal wavelets
with infinite support. The major breakthrough was made by Ingrid Daubechies in 1988,
(Daubechies, 1988).

Gilbert Strang presents in his book, (Strang & Nguyen, 1996), a complete and detailed
framework for generating wavelets using the filter design methodology.

Carl Taswell developed a computational procedure to generate wavelet filters using the
factorization of the polynomial P , (Taswell, 1997).
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Chapter 11

Orthogonal Wavelets

In this chapter we will investigate the construction and design of compactly supported or-
thogonal wavelets. We will derive a closed form expression for the polynomial P , introduced
in the previous chapter, and we will show how to factor P in order to generate orthogonal
wavelets with different properties.

11.1 The Polynomial P

We saw in the previous chapter that the trigonometric polynomial P (z), with z = eiω is
the key element in the construction of compactly supported wavelets. There, we described a
method to synthesize wavelets by factoring P as a product of two polynomials. But, in order
to apply this method, we need first an explicit expression for P , i.e. a formula to compute
the coefficients ak of P (eiω)

∑n
k=−n ake

ikω.
To find a closed form expression for P we recall the two conditions that P must satisfy in

the context of orthogonal filter banks.

• P is a reciprocal product polynomial

P (eiω) = |m0(eiω)|2 (11.1)

where m0 has a zero of order n at ω = π (or eiω = −1).

• P is a halfband filter

P (eiω) + P (eiω+π) = 1 (11.2)

We need to find a polynomial P of the form (11.1), such that equation (11.2) is true. We
will address these two conditions one at time, and we will combine them afterwards to obtain
an expression for P

11.1.1 P as a Product Polynomial

The polynomial P (z) = |m0(z)|2 is generated from m0, which in turn, is of the form

m0(eiω) =
(

1 + eiω

2

)n

Qn(eiω) (11.3)

133
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The factor (1 + eiω)n is a consequence of the fact that m0 has a zero of order n at π.
We get an expression for P by substituting equation (11.3) into (11.1)

P (eiω) = |m0(eiω)|2 (11.4)
= m0(eiω) m0(eiω) (11.5)
= m0(eiω) m0(e−iω) (11.6)

=
(

1 + eiω

2

)n (
1 + e−iω

2

)n

|Qn(eiω)|2 (11.7)

Since |1 + e−iω|2/2 = (1 + cos ω)/2, the condition of n zeros at π appears in P as

P (ω) =
(

1 + cos(ω)
2

)n

|Qn(eiω)|2 (11.8)

The factor |Qn(eiω)|2 in P gives extra degrees of freedom to satisfy the halfband property
expressed in equation (11.2).

A question comes up at this point. Is it possible to factor every polynomial P (eiω) ≥ 0
into a product |m0(eiω)|2? The answer is yes. This is guaranted by the Riesz Lemma.

Lemma 11.1 (Riesz). If A(ω) ≥ 0 is a trigonometric polynomial of degree M , invariant
under the substitution ω → −ω; A has to be of the form

A(ω) =
M∑

m=0

am cos mω

with am ∈ R. Then there exists a polynomial B of order M

B(ω) =
M∑

m=0

bmeimω

with bm ∈ R, such that |B(ω)|2 = A(ω)

A proof of this lemma can be found in (Daubechies, 1992), page 172.
The above result guarantees that a factorization of P using the method described in the

previous chapter is possible. In fact, the proof is constructive and follows the steps necessary
for the spectral factorization. Note that, P is a polynomial in cos ω as enunciated by the
lemma.

11.1.2 P and the Halfband Property

We derived above a partial expression for P . We found that P has to be decomposed into
two factors P (ω) = p1(ω)q1(ω), where p1(ω) = (1 + cos ω)n/2 provides the zeros at π and q1
is chosen such that the halfband property is verified.

To relate P and the halfband filter property in equation (11.2), we use the following
theorem:
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Theorem 1 (Bezout). If p1 and p2 are two polynomials with no common zeros, then there
exist unique polynomials q1 and q2 such that

p1(y)q1(y) + p2(y)q2(y) = 1 (11.9)

where p1, p2, q1, q2, are of degree n1, n2, n2 − 1, n1 − 1, respectively.

A proof of this theorem can be found (Daubechies, 1992), page 169.
For reasons that will become clear later, let’s apply Bezout’s theorem to the particular

case where p1(y) = (1 − y)N and p2(y) = yN . The theorem says that there exists unique
polynomials q1, q2 of degree ≤ N − 1, such that

(1 − y)Nq1(y) + yNq2(y) = 1 (11.10)

When we substitute y for 1 − y, equation (11.10) becomes

(1 − y)Nq2(1 − y) + yNq1(1 − y) = 1 (11.11)

Because q1 and q2 are unique, necessarily q1(y) = q2(1 − y), and also q2(y) = q1(1 − y).
This allows us to find an explicit formula for q1.

q1(y) = (1 − y)−N [1 − yNq1(1 − y)]

= (1 − y)−N − yNR(y)

=
N−1∑
k=0

(
N + k − 1

k

)
yk − yNR(y)

(11.12)

where we expanded the first N terms of the Taylor series for (1 − y)−N . Since the degree of
(q1) ≤ N − 1, q1 is equal to its Taylor expansion truncated after N terms. Therefore, we can
drop yNR(y) and make q1(y) = (1 − y)−N . This gives a closed form expression for q1, which
is the unique lowest degree solution solution for (11.10).

(1 − y)NBn(y) + yNBn(1 − y) = 1 (11.13)

where Bn(y) is the binomial series for (1 − y)−N , truncated after N terms

Bn(y) =
N−1∑
k=0

(
N + k − 1

k

)
yk (11.14)

Higher degree solutions for (11.10) also exist with q1(y) = Bn(y) − yNR(y), provided that
R(y) satisfies R(y) − R(1 − y) = 0.

11.1.3 The Expression of P

Now we put together the two results above to obtain an expression for P . So far we know the
following:
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i. P is of the form P (ω) =
(

1+cos(ω)
2

)n |Qn(eiω)|2

ii. A polynomial of the form P (y) = (1 − y)nBn(y) has the halfband property.

To relate (i) and (ii) we make a change of variables

eiω + e−iω

2
= cos(ω) = 1 − 2y

which gives

y =
1 − cos(ω)

2
and 1 − y =

1 + cos(ω)
2

Therefore, we can write P as

P (ω) =
(

1 + cos(ω)
2

)n n−1∑
k=0

(
n + k − 1

k

) (
1 − cos(ω)

2

)k

(11.15)

It is clear that Bn is the solution for |Qn|2 which makes P satisfy the halfband property.
Making another change of variables we obtain an expression for P in terms of the complex

variable z = eiω.

1 + cos(ω)
2

=
(

1 + eiω

2

) (
1 + e−iω

2

)
=

(
1 + z

2

) (
1 + z−1

2

)
1 − cos(ω)

2
=

(
1 − eiω

2

) (
1 − e−iω

2

)
=

(
1 − z

2

) (
1 − z−1

2

)
Substituting this into equation (11.15) we arrive at the closed form expression for P in

the z-domain

P (z) =
(

1 + z

2

)n (
1 + z−1

2

)n n−1∑
k=0

(
n + k − 1

k

) (
1 − z

2

)k (
1 − z−1

2

)k

(11.16)

Note that to produce P in the form of a Laurent polynomial P (z) =
∑n

k=−n akz
k, it is

necessary to expand the factors in each term, and then collect the resulting terms with same
exponent. This would be required to factorize P (z) directly, but we will see that it is more
efficient to compute the roots of P (y) = (1 − y)nBn(y), and make the change of variables
afterwards.

11.1.4 The Factorization of P

The two forms of the polynomial P (z) and P (y) are related by the change of variables

(z + z−1)/2 = 1 − 2y (11.17)
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We write this as a composition of conformal maps (f ◦ g)(z) = y, where f is the Joukowski
transformation (Markushevich, 1977),

x = f(z) =
z + z−1

2
z = f−1(x) = x ±

√
x2 − 1

and g is an affine transformation

y = g(x) = (1 − x)/2
x = g−1(y) = 1 − 2y

The expressions for the change of variables are

y = g(f(z)) = (1 − (z + z−1)/2)/2 (11.18)
z = f−1(g−1(y)) = 1 − 2y ±

√
(1 − 2y)2 − 1 (11.19)

Notice that this change of variables in (11.19) associates two values of z for each value of
y. Equation (11.18) is, in fact, a quadratic equation for z. It is clear from (11.17) that one z
is inside the unit circle and the other 1/z is outside.

The polynomial P (y) = (1 − y)nBn(y), from subsection 11.1.3, has degree 2n − 1, but
because the change of variables, it will result in a polynomial P (z) of degree 4n − 2. Thus,
P (z) will have 4n − 2 roots. From these, 2n roots come from the first factor (1 − y)n, and
correspond the the multiple root at z = −1. The remaining 2n − 2 complex roots come from
the binomial factor Bn(y).

The polynomial |Qn(eiω)|2 is a reciprocal polynomial with real coefficients. Thus, its
roots are in reciprocal and complex conjugate pairs. The change of variables z = f−1(g−1(y))
yields a doubly-valued solution with reciprocal pairs {z, z−1}. The polynomial |Qn(z)|2, ex-
pressed in regular form, can be factored by regrouping these pairs as complex quadruplets
{z, z−1, z̄, z̄−1}, and real duplets {r, r−1}

|Qn(z)|2 =
K∏

i=1

U(z; zi)
L∏

j=1

V (z; rj) (11.20)

U(z; zi) = (z − zi)(z − z−1
i )(z − z̄i)(z − z̄−1

i ) (11.21)
U(z; rj) = (z − rj)(z − r−1

j ) (11.22)

where K = (n − 1)/2 and L = (n − 1) mod 2.
The factored polynomial z2n−1P (z), in regular form, is obtained by including the multiple

zeros at z = −1.

z2n−1P (z) = (z + 1)2n
K∏

i=1

U(z; zi)
L∏

j=1

V (z; rj) (11.23)

The filter function m0(z) can be computed from this factorization by noting that

P (z) = |m0(eiω)|2 = m0(eiω)m0(eiω) = m0(eiω)m0(e−iω) = m0(z)m0(z−1).
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m0(z) = c
K∏

i=1

(z − zi)(z − z̄i)
L∏

j=1

(z − rj) (11.24)

where c is a constant, and zi and rj are selected from the elements of each reciprocal pair
{z, z−1}.

In consequence of the special structure of P , it is more efficient to compute the 2n−1 roots
of P (y) first, and using a change of variables, generate the 4n − 2 roots of P (z). The roots of
m0 are then selected from those roots. Therefore, the spectral factorization of m0 is done in
two steps:

1. Find the n − 1 roots of Bn(y), and make a change of variables to produce the 2n − 2
roots of |Qn(z)|2. From these, select appropriately n − 1 roots and assign them to m0.

2. Include the n roots at z = −1 from the factor (1+z
2 )n of (1+z

2 )n(1+z−1

2 )n, and assign
them also to m0.

The orthogonal filter function m0(z) will have these 2n − 1 roots.

11.1.5 Analysis of P

The family of orthogonal filters generated from the polynomial P (y) = (1−y)nBn(y) is called
maxflat in the filter design literature. This is because the factor (1 − y)n give a maximum
number of zeros at y = 1 (or z = −1). Consequently, the filter response of the filter is
maximally flat at ω = π.

In fact, the polynomial P of degree 2n−1 is determined from n conditions at y = 1 and at
y = 0. P (y) is the unique polynomial with 2n coefficients which satisfies these n conditions at
the endpoints, i.e. P (y) and its first n − 1 derivatives are zero at y = 0 and at y = 1, except
that P (0) = 1.

Figure 11.1 shows a graph of P (y) for n = 2 and 4. Observe that P decreases monotonically
from P (0) = 1 to P (1) = 0. The slope of P at y = 1

2 is proportional to
√

n. As n increases,
P becomes simultaneously steeper at the midpoint and flatter at both endpoints.
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Figure 11.1: P
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This property is very important because it means that P (and its “square root” m0) as a
filter will preserve low frequencies (near ω = 0) and will cut off high frequencies (near ω = π).

Gilbert Strang studied the asymptotic behavior of the zeros of P (y) as n → ∞. In (Strang
& Shen, 1996), there is an insightful analysis of the factors Bn(y) in P (y) = (1 − y)nBn(y),
and |Qn(z)|2 in P (z) = |(1+z

2 )n|2|Qn(z)|2. We recall that P (y) and P (z) are related by the
change of variables (1 − 2y) = (z + z−1)/2. Also, it is shown that, as n → ∞, the roots of
Bn(y) approach the limiting curve |4y(1−y)| = 1, whereas the roots of |Qn(z)|2 approach the
curve |z − z−1| = 2.

Figure 11.2 shows a plot of the graphs ot these two curves in the complex plane. Note
that, because the change of variables yields a doubly valued solution, the curve in y actually
corresponds to two curve segments |z + 1| =

√
2 and |z − 1| =

√
2. These curves meet at

z = ±i, which correspond to y = 1/2.
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Figure 11.2: Limit curves for the roots of Bn(y) and |Qn(z)|2 (from (Strang & Shen, 1996))

11.2 Examples of Orthogonal Wavelets

In this section we show how to generate, from the polynomial P , particular families of or-
thogonal wavelets.

We have seen in the previous section that the factorization of P (z) produces roots that
can be grouped as quadruplets of complex zeros (z − zi)(z − z−1

i )(z − z̄i)(z − z̄−1
i ) and duplets

of real zeros (z − rj)(z − r−1
j ). In the spectral factorization of P (z) = |m0(z)|2, we have to

choose from each pair of reciprocal roots {zk, z
−1
k } of P , either zk or z−1

k as a root of m0.
Also, if we require that m0 is a polynomial with real coefficients, complex conjugate pairs
must stay together. Therefore, in this case, we can select either z̄k with zk or z̄−1

k with z−1
k .

Even with these restrictions for separating the roots of P (z), we have many choices to
taylor m0 according to design constraints. Typically, for P of degree m, there are 2

m
4 different

choices for m0. Let’s now take a look at the most important ones.
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11.2.1 Daubechies Extremal Phase Wavelets

The simplest systematic choice for designing orthogonal wavelets produces the so called ex-
tremal phase wavelets. This corresponds to selecting always the roots inside (or outside) the
unit circle, with |z| < 1 (or |z| > 1), from each reciprocal pair of roots {z, 1

z} of P .
The resulting orthogonal wavelets will have the minimum (or maximum) phase among

all compactly supported wavelets of degree m. This corresponds to scaling functions and
wavelets that are the most assymmetric basis functions. We remark also that the minimum
and maximum phase are complementary choices. They lead to m0 and the complex conjugate
of m0. Thus, the basis functions are mirror images of each other for these two choices.

Example 16 (Daubechies Wavelets of Order 2). In this case n = 2. Therefore P (y) =
(1 − y)2B2(y), with B2(y) = 1 + 2y.

P (y) = (1 − y)2(1 + 2y) (11.25)

The change of variables y → z gives

P (z) =
(

1 + z

2

)2 (
1 + z−1

2

)2 1
2

(−z + 4 − z−1) (11.26)

The factor B2(y) has one root at y = −1/2. Equation (11.17) for the change of variables
gives the roots of |Q2(z)|2 at z = 2 ± √

3. The factor (1 − y)2 will produce the four zeros at
z = −1 of P . The roots of P (z) include all these zeros, and are (−1,−1,−1,−1, 2−√

3, 2+
√

3).
The choice of the root for Q2(z) inside the unit circle z = 2 − √

3 leads to the minimum
phase m0 with roots (−1,−1, 2 − √

3) Figure 11.3 shows the roots of P and m0.

4

Figure 11.3: Roots of P (z) with n = 2.

The filter function m0 is then

m0(z) =
(

1 + z

2

)2

Q2(z) (11.27)

= c(1 + z−1)2(1 − (2 −
√

3)z−1) (11.28)

=
1

4
√

2

(
(1 −

√
3) + (3 +

√
3)z−1 + (3 −

√
3)z−2 + (1 −

√
3)z−3

)
(11.29)

= h0 + h1z
−1 + h2z

−2 + h3z
−3 (11.30)
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The coefficients {hn} of m0 are approximately 0.4830, 0.8365, 0.2241,−0.1294.
Figure 11.4 shows a plot of the Daubechies scaling function φD,2 and wavelet ψD,2. Figure

11.5 shows the graphs of the Fourier Transform of the Daubechies scaling function φD,2 and
wavelet ψD,2.
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Figure 11.4: Daubechies (D2) Scaling Funtion and Wavelet
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Figure 11.5: Fourier Transform of (D2) Scaling Funtion and Wavelet

11.2.2 Minimal Phase Orthogonal Wavelets

The choice of m0 having all roots with absolute value less (or greater) than one leads to
wavelets with a very marked assymmetry.

Symmetry and orthogonality are conflicting requirements for compactly supported wavelets.
It can be shown that the Haar basis constitute the only scaling functions and wavelets with
compact support which are orthogonal.

We are not going to demonstrate this result, but it is intuitive to understand, from the
requirements on filter m0, why orthogonality and symmetry are incompatible. Recall from
the rules for separating the roots of P (z) that:

• for orthogonal filters, z and z−1 must go separately; and
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• for symmetric filters z and z−1 myst stay together.

The above facts imply that a symmetric orthogonal FIR filter m0(z) can only have two
non-zero coefficients. In this case,

P (z) = (
1 + z

2
)(

1 + z−1

2
),

which corresponds to the Haar wavelets with

m0(z) = (1 + z−1)/
√

2.

Nonetheless, it is possible to construct compactly supported orthogonal wavelets that are
less assymmetric than the ones in the previous subsection.

In order to generate the least assymmetric basis functions, we have to select the roots of
P such that m0 is as close as possible to linear phase. Therefore, we need to estimate the
contribution of each root to the phase non-linearity of m0.

Since m0 is of the form

m0(ω) =
(

1 + e−iω

2

)n ∏
`

(e−iω − z`)(e−iω − z̄`)
∏
k

(e−iω − rk) (11.31)

where z`, z̄`, rk are the roots of m0 and we have substituted z = e−iω in equation (11.23). The
phase of m0 can be computed from the phase of each z`, z̄` and rk.

Since z` = r` e−iα` and z̄` = r` eiα`

(e−iω − r` e−iα`)(e−iω − r` eiα`) = e−iω(e−iω − 2r` cos α` + r2
` e

iω) (11.32)

their phase contribution tanω = =z/<z is

arctan
(

(r2
` − 1) sinω

(r2
` + 1) cos ω − 2r` cos α`

)
(11.33)

Similarly, since

(e−iω − rk) = e−iω/2(e−iω/2 − rke
iω/2) (11.34)

the phase contribution of rk is

arctan
(

(rk + 1)
(rk − 1)

tan
ω

2

)
(11.35)

To find the polynomial m0 of degree n with the smallest phase non-linearity it is necessary
to compare all possible combination of roots. In practice, there are 2

n
2 −1 choices. For n = 2

or 3, there is effectively only one set of basis φD,n, ψD,n. For n ≥ 4, we have to evaluate the
total phase non-linearity of m0 for all 2

n
2 −1 solutions.
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Figure 11.6 shows the graph of the least assymmetric φ and ψ for n = 4.
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Figure 11.6: Least Assymmetric Scaling Funtion and Wavelet, with n = 4

11.2.3 Coiflets

Up to this point we have assumed that m0 is the unique lowest degree polynomial which
satisfy (11.2), i.e. |m0(y)|2 = (1 − y)nBn(y). We can use a higher degree |m0(y)|2 = (1 −
y)n[Bn(y) − ynR(y)] to provide more freedom in the design o orthogonal wavelets. The price
to pay is a wider support of the basis functions for a given number of vanishing moments.
The minimum support width 2n−1 for ψ with n vanishing moments is achieved when R ≡ 0.

Daubechies resorted to such higher degree solutions to construct a family of wavelets
named “coifflets”, because R. Coiffman requested them motivated by the research in (Beylkin
et al. , 1991). This basis functions are more regular and symmetric than the ones presented
in the previous subsections. More precisely, the scaling functions and wavelets are designed
so that: ∫

φ(x)dx = 1,

∫
x`φ(x)dx = 0 (11.36)

for ` = 1, . . . , L − 1 and ∫
x`ψ(x)dx = 0 (11.37)

for ` = 0, . . . , L − 1.
In other words, both ψ and φ have n vanishing moments, except that the scaling function

integrates to one. This implies that < f, φ−J,k >≈ 2J/2f(2−Jk), making very simple to obtain the fine
scale coefficients < f, φ−J,k > from samples of f .

Figure 11.7 shows a plot of the coifflets of order 4

11.3 Comments and References

The main result for the construction of compactly supported orthogonal wavelets is due to
Ingrid Daubechies. She formulated the expression for the halfband polynomial P based on
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Figure 11.7: Coifflets of order 4

the multresolution analysis conditions in the frequency domain and also in the restriction of
finite length filters, (Daubechies, 1988). Based on this formulation, she discovered the family
of extremal phase compactly supported orthogonal wavelets, which are knwon as Daubechies
Wavelets. In her book, (Daubechies, 1992), she gives a good overview of this methodology,
and also presents examples of several other families of compactly supported wavelets.

Carl Taswell in,(Taswell, 1995; Taswell, 1997), presents algorithms for the generation of
the Daubechies orthogonal wavelets and for the computation of their regularity.

The book by Gilbert Strang and Truong Nguyen gives a comprehensive treatment of the
framework for generating wavelets from a filter bank viewpoint, (Strang & Nguyen, 1996).

Bibliography

Beylkin, G., Coifman, R., & Rokhlin, V. 1991. Fast wavelet transforms and numerical algo-
rithms. Comm. in Pure and Applied Math., 44, 141–183.

Daubechies, I. 1988. Orthonormal Bases of Compactly Supported Wavelets. Comm. Pure
Applied Math., XLI(41), 909–996.

Daubechies, Ingrid. 1992. Ten Lectures on Wavelets. Philadelphia, PA: SIAM Books.

Markushevich, A. I. 1977. Theory of Functions of a Complex Variable. Chelsea Publishing
Co.

Strang, G., & Shen, J. 1996. The zeros of the Daubechies polynomials. Proc. Amer. Math.
Soc.).

Strang, Gilbert, & Nguyen, Truong. 1996. Wavelets and Filter Banks. Wellesley, MA:
Wellesley-Cambridge Press.

Taswell, Carl. 1995 (Aug.). Algorithms for the Generation of Daubechies Orthogonal Least
Asymmetric Wavelets and the Computation of Their Holder Regularity. Tech. rept. Sci-
entific Computing and Computational Mathematics, Stanford University, Stanford, CA.



BIBLIOGRAPHY 145

Taswell, Carl. 1997. Computational Algorithms for Daubechies Least-Asymmetric, Symmetric,
and Most-Symmetric Wavelets. Miller Freeman. Pages 1834–1838.





Chapter 12

Biorthogonal Wavelets

We have seen in the previous chapters that orthogonality is a very strong constraint for the
construction of wavelets. This restricts significantly the design choices of wavelet basis. For
example, we showed in Chapter 11 that the Haar wavelet is the only orthogonal basis which
is symmetric and has compact support.

A practical solution, that allows more flexibility on the choice of wavelet functions with
desirable properties, is to replace orthogonality by a biorthogonality condition.

In this chapter we will introduce biorthogonal wavelet basis, will discuss its relations with
perfect reconstruction filter banks and will present a framework for the design of biorthogonal
wavelets.

12.1 Biorthogonal Multiresolution Analysis and Filters

12.1.1 Biorthogonal Basis Functions

Biorthogonal wavelets constitute a generalization of orthogonal wavelets. Under this frame-
work, instead of a single orthogonal basis, a pair of dual biorthogonal basis functions is em-
ployed: One for the analysis step and the other for the synthesis step, i.e. we have reciprocal
frames as defined in Chapter 2.

Recall that, in the context of orthogonal multiresolution analysis, we have defined the
projection operators onto the subspaces Vj and Wj , respectively:

ProjVj
(f) =

∑
k

analysis︷ ︸︸ ︷
〈f, φj,k〉 φj,k︸ ︷︷ ︸
synthesis

, and ProjWj
(f) =

∑
k

analysis︷ ︸︸ ︷
〈f, ψj,k〉 ψj,k︸ ︷︷ ︸
synthesis

,

where the functions φ and ψ perform a double duty, i.e. they are used for:

• analysis: compute the coefficients of the representation of f in terms of the basis φ and
ψ of the spaces Vj and Wj , respectively cj

k = 〈f, φj,k〉 and dj
k = 〈f, ψj,k〉;

• synthesis: reconstruct the projection of f onto Vj and Wj , from the coefficients of the
representation, respectively ProjVj

(f) =
∑

k cj
kφj,k and ProjWj

(f) =
∑

k dj
kψj,k.

147
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The more general framework of biorthogonal multiresolution analysis employ similar pro-
jection operators

Pjf =
∑

k

〈f, φj,k〉φ̃j,k , and Qjf =
∑

k

〈f, ψj,k〉ψ̃j,k ,

where the pair of functions φ, φ̃ and ψ, ψ̃ are used to share the workload: one function of the
pair act as the analyzing function, while the other act as the reconstruction function.

The functions φ and ψ are called, respectively, primal scaling function and wavelet. The
functions φ̃ and ψ̃ are called, respectively, dual scaling function and wavelet. The fact the
the roles of these functions can be interchanged is called duality principle. Although other
conventions are possible, here we will assume that the primal functions are used for analysis,
while the dual functions are used for synthesis.

In terms of a multiresolution analysis, this scheme leads to a family of biorthogonal scaling
functions and wavelets that are dual basis of the approximating and detail spaces.

More precisely, we define a pair of scaling functions φj and φ̃j that are, respectively, Riesz
basis of the subspaces Vj and Ṽj . Similarly we define a pair of wavelet functions ψj and ψ̃j

that are, respectively, Riesz basis of the subspaces Wj and W̃j .
These functions generate dual multiresolution analysis ladders

· · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · ·
· · · ⊂ Ṽ1 ⊂ Ṽ0 ⊂ Ṽ−1 ⊂ · · ·

where V0 = Span{φ0,k|k ∈ Z} and Ṽ0 = Span{φ̃0,k|k ∈ Z}. The spaces Wj and W̃j generated
by ψj,k and ψ̃j,k are respectively the complements of Vj in Vj−1 and of Ṽj in Ṽj−1. In other
words, Vj−1 = Vj + Wj and Ṽj−1 = Ṽj + W̃j . The intersection of these spaces is null, i.e.
Vj ∩Wj = {∅} and Ṽj ∩W̃j = {∅}, but the spaces Vj , Wj , and also Ṽj , W̃j , are not orthogonal,
in general.

In order to compensate for the lack of orthogonality within the approximating and detail
spaces, we impose instead a biorthogonality relation between the primal and dual multireso-
lution ladders, such that

Vj ⊥ W̃j and Ṽj ⊥ Wj (12.1)

and, consequently,

Wj ⊥ W̃l (12.2)

for j 6= l.
The two multiresolution hierarchies and their sequences of complement spaces fit together

according to an intertwining pattern.
The above biorthogonality condition implies that the basis of these spaces must relate as

〈φ̃(x), ψ(x − k)〉 =
∫

φ̃(x)ψ(x − k)dx = 0 (12.3)

〈ψ̃(x), φ(x − k)〉 =
∫

ψ̃(x)φ(x − k)dx = 0 (12.4)
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and

〈φ̃(x), φ(x − k)〉 =
∫

φ̃(x)φ(x − k)dx = δk (12.5)

〈ψ̃(x), ψ(x − k)〉 =
∫

ψ̃(x)ψ(x − k)dx = δk (12.6)

Which can be extended to the multiresolution analysis by a scaling argument resulting in

〈φ̃j,k, φj,m〉 = δk,m, j, k, m ∈ Z (12.7)

〈ψ̃j,k, ψl,m〉 = δj,lδk,m, j, k, l, m ∈ Z (12.8)

12.1.2 Biorthogonality and Filters

The two pairs of scaling function and wavelet, φ, ψ, and φ̃, ψ̃, are defined recursively by the
two pairs of filters m0, m1, and m̃0, m̃1.

In the frequency domain these relations are

φ̂(ω) = m0(ω/2)φ̂(ω/2), ψ̂(ω) = m1(ω/2)φ̂(ω/2)̂̃
φ(ω) = m̂0(ω/2)̂̃φ(ω/2), ̂̃

ψ(ω) = m̂1(ω/2)̂̃φ(ω/2)

where

m0(ω) =
1√
2

∑
k

hk e−ikω, m1(ω) =
1√
2

∑
k

gk e−ikω

m̃0(ω) =
1√
2

∑
k

h̃k e−ikω, m̃1(ω) =
1√
2

∑
k

g̃k e−ikω

By computing the Fourier Transform of the inner products in equations (12.3) to (12.6),
and using the same argument of Chapter 10 for the characterization of m0 and m1, we can
see that the biorthogonality condition in the frequency domain is equivalent to∑

k

̂̃
φ(ω + k2π)φ̂(ω + k2π) = 1

∑
k

̂̃
ψ(ω + k2π)ψ̂(ω + k2π) = 1

∑
k

̂̃
ψ(ω + k2π)φ̂(ω + k2π) = 0

∑
k

̂̃
φ(ω + k2π)ψ̂(ω + k2π) = 0

for all ω ∈ R.
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This means that the filters m0, m1 and their duals m̃0, m̃1 have to satisfy

m̃0(ω)m0(ω) + m̃0(ω + π)m0(ω + π) = 1 (12.9)
m̃1(ω)m1(ω) + m̃1(ω + π)m1(ω + π) = 1 (12.10)
m̃1(ω)m0(ω) + m̃1(ω + π)m0(ω + π) = 0 (12.11)
m̃0(ω)m1(ω) + m̃0(ω + π)m1(ω + π) = 0 (12.12)

The set of equations above can be written in matrix form as(
m̃0(ω) m̃0(ω + π)
m̃1(ω) m̃1(ω + π)

)(
m0(ω) m1(ω)

m0(ω + π) m1(ω + π)

)
=

(
1 0
0 1

)
or

M̃(ω)MT (ω) = I (12.13)

where M is the modulation matrix introduced in Chapter 10

M(ω) =
[

m0(ω) m0(ω + π)
m1(ω) m1(ω + π)

]
(12.14)

and I is the identity matrix.

12.1.3 Fast Biorthogonal Wavelet Transform

Because φ and ψ define a multiresolution analysis, we have that

φ(x) =
∑

k

hkφ(2x − k) and ψ(x) =
∑

k

gkφ(2x − k) (12.15)

Similarly, φ̃ and ψ̃, also define a multiresolution analysis, and therefore

φ̃(x) =
∑

k

h̃kφ̃(2x − k) and ψ̃(x) =
∑

k

g̃kφ̃(2x − k) (12.16)

We can derive the coefficients of the filters m̃0 and m̃1 by combining the above two
equations with the biorthogonality relations 〈φ̃j,k, φj,m〉 = δk,m and 〈ψ̃j,k, ψl,m〉 = δj,lδk,m.
This gives us

h̃k−2l = 〈φ̃(x − l), φ(2x − k)〉 (12.17)
g̃k−2l = 〈ψ̃(x − l), φ(2x − k)〉 (12.18)

and also

hk−2l = 〈φ(x − l), φ̃(2x − k)〉 (12.19)
gk−2l = 〈ψ(x − l), φ̃(2x − k)〉 (12.20)
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By writing φ(2x − k) ∈ V−1 in terms of the bases of V0 and W0, we get the two-scale
relation

φ(2x − k) =
∑

l

h̃k−2lφ(x − l) +
∑

l

g̃k−2lψ(x − l) (12.21)

and, since primary and dual functions are interchangeable, we also have

φ̃(2x − k) =
∑

l

hk−2lφ̃(x − l) +
∑

l

gk−2lψ̃(x − l) (12.22)

The fast biorthogonal wavelet transform uses the above decomposition/reconstruction
relation. The algorithm employs the two pairs of primary and dual filters and except for this
difference, it is essentially similar to the orthogonal case, presented in Chapter 7.

The pair of filters m̃0, m̃1 is employed in the decomposition step and the pair of filters
m0, m1 in the reconstruction step.

In the decomposition step we employ a discrete convolution with the filter coefficients (hk)
and (gk) of the filters m0 and m1.

cj+1
n =

∑
k

hk−2ncj
k (12.23)

and

dj+1
n =

∑
k

gk−2ncj
k (12.24)

Conversely, in the reconstruction step, we employ a discrete convolution with the filter
coefficients, (h̃k) and (g̃k), of the filters m̃0 and m̃1

cj−1
l =

∑
n

h̃l−2ncj
n +

∑
n

g̃l−2ncj
n (12.25)

Remember that, as we already noted, the roles of these two filter banks can be inter-
changed.

12.2 Filter Design Framework for Biorthogonal Wavelets

12.2.1 Perfect Reconstruction Filter Banks

The filters m0, m̃0, m1, m̃1, define a two-channel filter bank, where m0, m1, are respectively
the lowpass and highpass filters used in the analysis step and, m̃0, m̃1, are respectively the
lowpass and highpass filters used in the synthesis step, as shown in Figure 12.1. Once again,
we note that the role of these filters can be interchanged,

We would like this two-channel filter bank to have the property of perfect reconstruction.
This means that a signal can be exactly reconstructed by the synthesis filters from the co-
efficients of the representation constructed by the analysis filters. These conditions can be
derived by following a a discrete signal, (xn), through the filter bank.
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m0 - ↓ 2 - cj - ↑ 2 - m̃0

¡
¡
¡µ @

@
@R

cj−1 <
⊕

- ĉj−1

@
@
@R ¡

¡
¡µ

m1 - ↓ 2 - dj - ↑ 2 - m̃1

Figure 12.1: Biorthogonal Filter Bank

The output of the lowpass channel can be written in a compact notation using the z-
notation (see Appendix B).

We will do this in three stages: First, we perform a discrete convolution of analysis lowpass
filter with the signal, whose z-transform is m0(z)x(z). This is followed by downsampling and
upsampling, which in the z-domain is 1/2 [m0(z)x(z) + m0(−z)x(−z)]. Finally, we perform
a discrete convolution of the resulting coefficient sequence with the synthesis filter, whose
z-transform is

1
2

m̃0(z)[m0(z)x(z) + m0(−z)x(−z)] (12.26)

The output of the highpass channel is obtained in a similar manner

1
2

m̃1(z)[m1(z)x(z) + m1(−z)x(−z)] (12.27)

The filter bank combines the outputs of the lowpass and highpass channel by adding these
two expressions, which gives

x̂(z) =
1
2

[m̃0(z)m0(z) + m̃1(z)m1(z)] x(z) +

1
2

[m̃0(z)m0(−z) + m̃1(z)m1(−z)] x(−z)

where we rearranged the expression to separate the term involving x(z) from the terms in-
volving x(−z).

Note that the downsampling/upsampling operators introduced aliasing in the signal, man-
ifested by the appearance of terms x(−z), as well as x(z). By substituting, z = e−iω and
−z = e−iω+π, it is apparent that the frequencies w + π appear as aliases of frequencies w in
the signal (see Appendix A for details).

For perfect reconstruction we must have x̂(z) = x(z), which implies in two conditions:
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• alias cancellation: the aliasing components caused by subsampling in the lowpass
channel and in the highpass channel cancel each other.

m̃0(z)m0(−z) + m̃1(z)m1(−z) = 0

or, making z = e−iω

m̃0(ω)m0(ω + π) + m̃1(ω)m1(ω + π) = 0 (12.28)

• no distortion: the signal is reconstructed without loss or gain of energy.

m̃0(z)m0(z) + m̃1(z)m1(z) = 2

or

m̃0(ω)m0(ω) + m̃1(ω)m1(ω) = 2 (12.29)

12.2.2 Conjugate Quadrature Filters

We have four filters to design, m0, m1, m̃0, m̃1. These filters must satisfy the conditions for
perfect reconstruction. An interesting option is to investigate how we can determine some of
the filters from the others, such that conditions (12.28) and (12.29) are automatically satisfied.

First, we use a conjugate quadrature scheme as done in Chapter 10, to define the highpass
filters in terms of the lowpass filters:

m1(ω) = e−iωm̃0(ω + π) (12.30)

m̃1(ω) = e−iωm0(ω + π) (12.31)

This option takes care of the alias cancelation, and guarantees that equation (12.28) is satis-
fied, as it can seen by substituting (12.30), (12.31), into (12.28).

Next, to express the no-distortion condition in terms of only m0 and m̃0, we rewrite
equation (12.29) using (12.30), (12.31).

m̃0(ω)m0(ω) + m̃0(ω + π)m0(ω + π) = 2 (12.32)

Note that, when we normalize the filters (multiplying their coefficients by 1/
√

2), equation
(12.32) is exactly (12.9), the first condition for biorthogonality of the filters m0, m̃0, m1,
m̃1. The other conditions (12.10), (12.12) and (12.11), can be derived from the perfect
reconstruction conditions (12.28) and (12.29), using the conjugate quadrature relations (12.30)
and (12.31). This demonstrates that biorthogonal wavelets are associated with a subband
filtering scheme with exact reconstruction.
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12.2.3 The Polynomial P and Wavelet Design

Now, we define the product filter P (ω) = m̃0(ω)m0(ω), and equation (12.32) becomes

P (ω) + P (ω + π) = 2 (12.33)

To design the filters m0, m̃0, m1, m̃1 that generate biorthogonal wavelets, we use the
following procedure:

1. Choose a polynomial P satisfying equation (12.33)

2. Factor P into m̃0 m0

3. Use (12.30) and (12.31) to obtain m1 and m̃1.

Observe that this procedure is very similar to the one described in Chapter 10. In fact,
we are using the same filter design framework to create wavelet basis. The main difference is
that now, the analysis filters can be different from the synthesis filters, because we have two
biorthogonal multiresolution hierarchies. This gives us more freedom to design wavelets with
desired properties.

As we have seen in Chapter 10, in order to satisfy the perfect reconstruction condition,
the polynomial P (ω) =

∑N
k=−N = ake

ikω, must be a halfband filter, i.e. the terms with index
k even must have coefficient ak = 0, except for a0 = 1, such that the terms with index k odd,
which have coefficients ak 6= 0, will cancel in equation (12.33), because ei2k(ω+π) = −ei2kω.
The only remaining term will be a0 = 1, resulting in P (ω)+P (ω +π) = 2 (or when the filters
are normalized a0 = 1/2 and P (ω) + P (ω + π) = 1).

Also, because both φ and φ̃ define multiresolution analyses, the polynomials m0(ω) and
m̃0(ω) must have, at least one zero at π (see Chapter 11 for details). Therefore, P (ω) =
m̃0(ω)m0(ω) has to be of the form

P (ω) =
∣∣∣(1 + eiω

)n
∣∣∣2 B(eiω) (12.34)

The advantage of biorthogonal wavelets over orthogonal wavelets is that we can factorize P (ω)
in two different polynomials m0, m̃0 instead as the “square” of a single polynomial m0.

12.2.4 Factorization of P for Biorthogonal Filters

Let us see one example of the different design choices for the factorization of P (ω) into m0(ω)
and m̃0(ω), from (Strang & Nguyen, 1996).

We will design the polynomial P such that it will have four zeros at π

P (ω) = |(1 + e−iω)2|2B(eiω)
= (1 + e−iω)2(1 + eiω)2B(e−iω)

Making z = e−iω

P (z) = (1 + z−1)2(1 + z)2B(z)
= (z−2 + 4z−1 + 6 + 4z + z2)B(z)
= z2(1 + z−1)4 B(z)
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We have to choose B so that even powers are eliminated from P , making it a halfband
polynomial. The solution is B(z) = −z−1 + 4 − z

P (z) = (z−2 + 4z−1 + 6 + 4z + z2)(−z−1 + 4 − z)
= −z−3 + 9z−1 + 16 + 9z − z3

We normalize it to make a0 = 1

P (z) =
1
16

(−z−3 + 9z−1 + 16 + 9z − z3) (12.35)

Note that P satisfy the perfect reconstruction conditions and also have four zeros at −1.
We have several choices to factorize P (z) into m̃0(z)m0(z). The polynomial P has six

roots {−1,−1,−1,−1, 2 − √
3, 2 +

√
3}. The four roots at z = −1 come from (1 + z−1)4, and

the other two roots at c = 2 − √
3 and 1/c = 2 +

√
3 come from B(z).

Each of the polynomials m0(z) and m̃0(z) will have, at least, one root at z = −1. There-
fore, we can select the roots for the filter m0 (or m̃0) in one of the following ways, — the
other filter m̃0 (or m0) will have the remaining roots:

i. m0 of degree 1: (1 + z−1)

ii. m0 of degree 2: (1 + z−1)2, or (1 + z−1) (c − z−1), or (1 + z−1) (1/c − z−1)

iii. m0 of degree 3: (1 + z−1)3, or (1 + z−1)2 (c − z−1)

We have six different choices for the factorization of P . For each choice the roots are
separated in two sets, and we can select which set of roots go to the analysis filter m0 and to
the synthesis filter m̃0.

In option (i), one factor is (1 + z−1), which is the filter for a box function. The other
factor is a degree 5 polynomial 1

16(−1 + z−1 + 8z−2 + 8z−3 + z−4 − z−5). The filter bank will
have filters with 2 and 6 coefficients for analysis and synthesis respectively.

In option (ii), the first possibility is one factor equal to 1
2(1 + 2z−1 + z−2), which is the

filter for the hat function, and the other factor equal to 1
8(−1 + 2z−1 + 6z−2 + 2z−3 − z−4).

This choice corresponds to the order 2 B-spline biorthogonal wavelet, that will be discussed
in the next section. It is best to use the hat scaling function for synthesis, resulting in a 5/3
filter bank. The other possibilities are not so interesting.

In option (iii), we have two different possibilities, both very important. The first possibility
is a factorization as 1

8(1+3z−1 +3z−2 +z−3), and 1
2(−1+3z−1 +3z−2 −z−3). Notice that this

choice results in a pair of linear phase filters which correspond to symmetric scaling functions
and anti-symmetric wavelets. The second possibility is a factorization with m0(z) = m̃0(z) =

1
4
√

2
[(1+

√
3)+(3+

√
3)z−1 +(3−√

3)z−2 +(1−√
3)z−3]. This choice gives us the Daubechies

orthogonal wavelet of order 2, that we presented in the previous chapter. Notice that the
orthogonal filters have extremal phase, which correspond to the most assymmetric scaling
functions and wavelets.



156 CHAPTER 12. BIORTHOGONAL WAVELETS

Figure 12.2 shows the graph of the biorthogonal scaling functions and wavelets derived in
case (i), and Figure 12.3 plots the frequency response of the corresponding filters.
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Figure 12.2: Biorthogonal box scaling functions (a) and wavelets (b).
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Figure 12.3: Frequency response of low-pass (a) and high-pass (b) filters.



12.2. FILTER DESIGN FRAMEWORK FOR BIORTHOGONAL WAVELETS 157

Figure 12.4 shows the graph of the biorthogonal scaling functions and wavelets derived in
case (ii), and Figure 12.5 plots the frequency response of the corresponding filters.
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Figure 12.4: Biorthogonal Hat scaling functions (a) and wavelets (b).
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Figure 12.5: Frequency response of low-pass (a) and high-pass (b) filters.
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Figure 12.6 shows the graph of the biorthogonal scaling functions and wavelets derived
in option (a) of case (iii), and Figure 12.7 plots the frequency response of the corresponding
filters.
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Figure 12.6: Biorthogonal quadratic B-spline scaling functions (a) and wavelets (b).
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Figure 12.7: Frequency response of low-pass (a) and high-pass (b) filters.
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Figure 12.8 shows the graph of the orthogonal D2 Daubechies scaling functions and
wavelets derived in option (b) of case (iii), and Figure 12.9 plots the frequency response
of the corresponding filters.
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Figure 12.8: D2 Daubechies scaling functions (a) and wavelets (b).
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Figure 12.9: Frequency response of low-pass (a) and high-pass (b) filters.
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12.3 Symmetric Biorthogonal Wavelets

One of the advantages of biorthogonal over orthogonal wavelets is that we can have symmetry.
In this section we present some families of symmetric biorthogonal wavelets, developed by
Ingrid Daubechies (Daubechies, 1992), using different factorizations of the polynomial P .

For symmetric filters we have to factorize P such that the roots zi and z−1
i must stay

together when we split the roots between m0 and m̃0. Therefore, we have

zNP (z) = aN
N∏

i=1

(z − zi)(z − 1
zi

) (12.36)

where each pair of roots, {zi, 1/zi}, must be assigned either to m0 or to m̃0.

12.3.1 B-Spline Wavelets

B-Splines of order N are piecewise polynomials that come from the convolution of N box
functions. In terms of the two-scale relations, they can be constructed from a filter function
m0(z) of the form

m0(z) =
(

1 + z−1

2

)N

(12.37)

Each factor, (1+z−1

2 ), corresponds to a convolution with a box function.
To construct biorthogonal B-spline wavelets we can split the polynomial P introduced in

the previous chapter as:

m̃0(z) =
(

1 + z−1

2

)M̃

(12.38)

where M̃ = 2˜̀ is even or M̃ = 2˜̀+ 1 is odd, and

m0(z) =
(

1 + z−1

2

)M `+˜̀−σ∑
m=0

(
` + ˜̀− σ + m

m

) (
1 − z

2

)m (
1 − z−1

2

)m

(12.39)

where M = 2` is even, or M = 2` + 1 is odd, and σ = 0 if M is odd, or σ = 1 if M is even.
Note that this formulas give explicit expressions for m̃0 and m0. We have, thus a family of

biorthogonal B-spline wavelets, in which the synthesis scaling function φ̃ is a B-spline of order
M̃ . For a fixed M̃ , there is an infinity of choices for M , resulting in biorthogonal functions
with increasing regularity and support width. Also, we remark that m̃0 depends only on M̃ ,
while m0 depends on both M and M̃ .

In Figure 12.10 we show one example of a biorthogonal B-spline wavelets and scaling
functions of order 2 (linear spline), M̃ = 2, with M = 2 and 4.

This family of wavelets has two main advantages: First, there is a closed form expression
for the B-spline scaling functions φ̃ and wavelets ψ̃; Second, the coefficients for all filters m̃0,
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Figure 12.10: Biorthogonal B-spline Wavelets of order 2 (from (Daubechies, 1992)).

m̃1, m0, m1, are dyadic rationals, which makes them suitable for fast and exact computer
implementations.

The major disadvantage of biorthogonal B-spline wavelets is that the analysis and synthesis
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functions have very different support widths, as can be seen in Figure 12.10. This may or
may not be a problem in some applications.

12.3.2 Wavelets with Closer Support Width

It is possible to construct wavelets with closer support width by choosing an appropriate
factorization of the polynomial P . The goal is to find filter functions m0 and m̃0, that have
both linear phase and similar degree.

We determine all roots of P , real zeros ri and pairs of complex conjugate zeros {zj , zj}

P (z) = c
∏
i=1

(z − ri)
∏
j=1

(z − zj)(z − zj) (12.40)

For a fixed degree N = ` + ˜̀, we have a limited number of factorizations. Therefore, we
can generate all the different combinations of roots, such that ri, {zj , zj} are assigned either
to m0 or to m̃0, and select the option ` + ˜̀, that makes the lengths of m0, and m̃0 as close as
possible.

Figure 12.11 shows an example of symmetric biorthogonal wavelets designed using this
method.

Figure 12.11: Biorthogonal Wavelets with Similar Support,(from (Daubechies, 1992))
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12.3.3 Biorthogonal Bases Closer to Orthogonal Bases

Motivated by a suggestion of M. Barlaud, Ingrid Daubechies developed a family of biorthogo-
nal wavelet bases that are close to an orthogonal basis. Barlaud tried to construct biorthogonal
wavelets using the Laplacian pyramid filter, designed by P. Burt (Burt & Adelson, 1983), as
either m0 or m̃0. These experiments lead to the discovery that the Burt filter is very close to
an orthonormal wavelet filter.

The particular construction for the Burt filter, was then generalized by Daubechies to a
family of biorthogonal wavelets that are close to orthogonal. She used the extended formula
for the polynomial P , including the factor R(zN ), as discussed in the previous chapter.

The filter functions for this family are defined as

m0(z) = S(z) + aR(z), and m̃0(z) = S(z) + bR(z) (12.41)

where the S, R are given below, and the constants a, b are computed by an optimization
procedure to guarantee the biorthogonality of the filters.

S(z) =
(

1 + z

2

)2K (
1 + z−1

2

)2K K−1∑
k=0

(
K − 1 + k

k

) (
1 − z

2

)2k (
1 − z−1

2

)2k

(12.42)

R(z) =
(

1 − z−2

4

)2K (
1 − z2

4

)2K

(12.43)

Note that, the filters m0 and m̃0, differ only by the constants a and b, therefore they are
very close to an orthogonal filter.

Figure 12.12 shows a plot of a wavelet constructed using this procedure.

12.4 Comments and References

The first examples of biorthogonal wavelets were developed independently by (Cohen et al. ,
1992) and (Vetterli & Herley, 1992).

It is possible to construct biorthogonal wavelets such that the primal and dual scaling and
wavelet bases generate a single orthogonal multiresolution analysis. In this case, the scaling
function and wavelets are called semi-orthogonal. The name “pre-wavelets” is also employed
to designate this type of wavelets. An extensive treatment of this subject can be found in
(Chui, 1992).
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Chapter 13

Directions and Guidelines

In this concluding chapter we will review the material covered in the notes, and give some
directions for further studies on the subject of wavelets.

13.1 History and Motivation

The field of wavelets, despite being relatively recent, is vast and is developing very rapidly.
This is true both in relation to theoretical aspects of wavelets, as well as to applications of
wavelets.

Wavelets are a product of ground work from many areas, ranging from pure mathematics
and physics to engineering and signal processing. Independent research in these areas pur-
sued similar goals using different approaches. The objective was to develop tools to describe
functions in time and frequency simultaneously. The separate lines of investigation reached
a mature point, and in the beginning of the 1980’s, the confluence of this interdisciplinary
sources, was formalized originating the theory of wavelets. The subsequent unification of the
field was a key factor to make wavelets popular in applied mathematics, and also to give a
significant impulse to new research.

Today, wavelets are well established. The basic theory is completely developed with suc-
cessful applications in a large number of areas. Nonetheless, research is perhaps even more
active than before, with new results appearing from a growing scientific community. Also, the
application base is consolidating and expanding to new areas, with new experimental systems
and commercial products being released.

Considering the facts mentioned above, it would not be possible to cover the whole field
of wavelets in a single text. Indeed, there are currently more than 20 textbooks, entirely
dedicated to the various aspects of wavelets. Not to mention, the enormous number of con-
ference proceedings and special issues of journals devoted to wavelets. Most of these texts are
for experts, or for people with basic knowledge of wavelets. Even some of the introductory
books cover a lot of material with a fast pace, assuming maturity and dedication from the
reader. For this reason, we believe that there is still a need for a conceptual textbook about
the fundamentals of wavelets.
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13.2 A Look Back

In these course notes, we tried to give a comprehensive, but accessible, introduction to the field
of wavelets. Our goal was to follow a route from Fourier Analysis to wavelets, showing how
the traditional tools for function representation in frequency domain evolved to the new tools
for joint time-frequency descriptions. This approach combined the concepts from function
analysis with the intuition from signal processing.

It is instrumental to take a look back and review the main topics that we covered in these
notes. They include:

• motivation and schemes for representation of functions;

• the Fourier transform as a tool for frequency analysis;

• the Windowed Fourier transform and the search for time-frequency localization;

• the continuous Wavelet transform as an adapted time-frequency function decomposition;

• the multiresolution representation as a tool to discretize and reconstruct functions;

• discrete wavelet bases and a filter bank methodology for design and computation;

• and finally we described the main families of wavelet bases.

As we stated earlier, these items constitute only the fundamental concepts behind wavelets.
In order to go from this basic level to more advanced topics and to practical applications, the
reader can continue the learning process in various directions. Below, we will discuss some of
the important aspects of wavelets not covered in these notes, and will indicate some of the
possible options for further studies.

In these notes, we restricted ourselves to functions defined on the whole real line, which
correspond to signals with infinite duration. This is the simplest case, and certainly makes
the theory more accessible.

We also discussed only the basic schemes for time-frequency decomposition of a function.
In particular, we have emphasized descriptions using non-redundant wavelet bases. This is
perhaps the most important representation in practical applications.

Lastly, we didn’t consider any concrete application of wavelet, besides a few simple example
scattered throughout the notes.

13.3 Extending the Basic Wavelet Framework

The basic wavelet framework presented in these notes can be further developed in three main
directions:

1. extending wavelets to general domains;

2. defining generalized representations using time-frequency decompositions, and

3. applying the wavelet framework to solve problems in applied mathematics.

We now briefly discuss what has been done in these three areas.
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13.3.1 Studying Functions on other Domains

The first generalization is to study wavelets other domains different than the real line.
It is natural to define wavelets in n-dimensional Euclidean spaces. The path to follow

consists in extending the 1-D results that we have obtained to dimension n > 1. That is, to
study wavelet transforms and multiresolution analyses on the space L2(Rn). We have several
options in this direction. Some concepts and results extend naturally. There are two ways
to construct wavelets in R

n. The first way is based on a tensor product of one-dimensional
wavelets. This extension is straightforward, and leads to a separable wavelet transform which
can be implemented efficiently by multi-pass 1-D methods. (Daubechies, 1992). The second
way is through a multidimensional multiresolution hierarchy generated by a single multivariate
scaling function in R

n (Stöckler, 1992).
Another important extension is to define wavelets on compact subsets of the Euclidean

space R
n. A particular case concerns wavelets that are adapted to the unit interval I = [0, 1].

For this purpose, we have to construct a multiresolution of L2(I), which is not generated
from a single function anymore, but includes functions that adapt to the boundaries of the
interval (Cohen et al. , 1993) This construction extends naturally to rectangular regions of
higher dimensions.

The final relevant extension should point us in the direction of defining wavelets and
multiresolution analysis on arbitrary manifolds. Note that the methods we have described
in these notes make strong use of the Euclidean space structure, because of the translations
used to obtain the wavelet basis. For this extension, we clearly need a methodology different
from the Fourier Analysis. The Lifting scheme (Sweldens, 1995) and the similar construction
in (Dahmen & Schneider, 1998) are promising approaches in this direction.

13.3.2 Defining other Time-Frequency Decompositions

The second extension is to formulate function representations based on other time-frequency
decomposition schemes.

Redundant wavelets bases are required for some operations. In particular, dyadic wavelets
give a translation invariant representation that can be used for characterization of singularities
and edge detection (Mallat & Hwang, 1992; Mallat & Zhong, 1992). Also, the steerable
pyramid provides a orientation tuning mechanism (Simoncelli & Freeman, 1995).

Another generalization consists of decompositions based on different tilings of the time-
frequency plane. Some examples are the wavelet packet basis (Wickerhauser, 1994), and the
local cosine basis, also known as Malvar wavelets (Malvar, 1990). Some of these representa-
tions rely on a redundant dictionary of time-frequency atoms that can be used to construct
descriptions adapted to individual functions. Best basis selection (Coifman & Wickerhauser,
1992), and matching pursuit (Mallat & Zhang, 1993) are some of the optimization methods
used to generate these representations. Similar techniques have been reported in (Chen &
Donoho, 1994) and (Chen & Donoho, 1995).

A last generalization is a decomposition using a basis composed of several different func-
tions, known as multiwavelets (Malvar, 1990; Strang & Strela, 1994).
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13.3.3 Solving Mathematical Problems

The third direction is to study how wavelets can be applied in the solution of mathematical
problems. This means that we will use wavelets to represent operators and to exploit the
properties of this representation in order to derive more efficient computational schemes.

Wavelets have been used to solve integral equations (Beylkin et al. , 1991), differential
equations (Bacry et al. , 1992), and optimization problems. We remark that this last scheme
has strong connections with multigrid methods.

13.4 Applications of Wavelets

Wavelets have been applied in may different areas. Here we will give an overview only of the
applications in Computer Graphics and related areas.

We list below some of the main problems associated with the representation and process-
ing of: geometric models, images, animation video sound and multimedia, that have been
successfully solved using wavelets.

• Signal and Image Processing

– Data compression

– Progressive Transmission

– Noise reduction

– Filtering

• Vision

– Edge detection

– Texture Analysis

– Feature Classification

• Visualization and Graphics

– Radiosity

– Volume Rendering

– Paint Systems

• Geometric Modeling

– Wavelets on surfaces and Variable resolution meshes

– Mulitscale Editing

– Optimization of geometry

– Synthesis of fractal surfaces
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• Animation

– Time-space constraints

– Motion learning

• Other Areas

– Medical Imaging

– Geology

– GIS and Cartography

– Music

– Speech synthesis and recognition

– Databases for images and video.

A good review of wavelet application in computer graphics can be found in (Schroder,
1996) and (Stollnitz et al. , 1995a; Stollnitz et al. , 1995b). A book dedicated entirely to this
subject is (Stollnitz et al. , 1996).

Other sources of reference are the previous SIGGRAPH courses dedicated to wavelets
(Schroder & Sweldens, 1995; Fournier, 1994).

13.5 Comments and References

As a last remark, we mention that the Internet is a valuable source of information on current
research and application of wavelets. From the many excellent websites, and other on-line
resources, we would like to single out one: “The Wavelet Digest”, an electronic newsletter
moderated by Win Sweldens (http://www.wavelet.org/).
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Appendix A

Systems and Filters

In this appendix we will review the basic concepts of Signal Processing to introduce the
terminology and notation.

A.1 Systems and Filters

The word “system” has a very generic meaning in engineering. A system may change the
input signal in different ways, producing an output signal.

A good example of a system is the human sound perception. It capture sounds, classifies
and interprets them, in a way that we are not only able to understand the meaning, but we are
also capable to identify the source of the sound. This complex task is accomplished by a long
chain of processes. Among other things, the input sound is analyzed, separating its various
frequency components using a set of filters with different sensibilities (this is performed by
the cochea, the basilar membrane, and other elements of the auditory system).

The term “filter” is employed to designate certain types of systems that alter only some
frequencies of an input signal. The name has exactly this meaning: it implies that a selection
is taking place and some frequency bands are altered, either attenuated or emphasized.

In the mathematical universe, a signal is modeled by a function. Therefore, we can model
a system by a transformation S : F1 → F2 between two function spaces, as illustrated in
Figure A.1.

f −→ System −→ S(f) = g

Figure A.1: Basic System.

The systems constitute the mathematical model to study the various operations involving
processing of signals in the physical universe. We can give some examples:

• The human eye is a system that process electromagnetic signals in the visible range of
the spectrum;

173



174 APPENDIX A. SYSTEMS AND FILTERS

• A television camera has as input an electromagnetic signal (as the human eye), and its
output is a video signal.

A.1.1 Spatial Invariant Linear Systems

In general, a system is characterized by some of its properties. Below, we describe the most
relevant properties for our study:

Linearity

A system S is linear if:

1. S(f + g) = S(f) + S(g)

2. S(αf) = αS(f)

where f and g are two input functions (signals) and λ ∈ R. In particular, S(0) = 0.
If a system S is linear and a signal f is represented by an atomic decomposition, as for

example:

f =
∞∑

j=−∞
〈f, ϕj〉ϕj

Its output S(f) can be written as:

S(f) =
∞∑

j=−∞
〈f, ϕj〉S(ϕj)

That is, it is sufficient to known the output of the system for the basic decomposition atoms
to predict the processing of any signal in this representation.

Spatial Invariance

A system S is spatial invariant if it is possible to perform shifts in the signal, before or after
its processing by the systems, and yet obtain the same result. That is,

S(f(t − t0)) = S(f)(t − t0).

This class of system is generally called “time invariant” when the functions are of type f :
R → R, i.e. they have only one variable which usually represents the time evolution. When
we work in higher dimensions, this time analogy is not valid anymore (even though time may
still be one of the variables).

Given t0 ∈ R , the operator R : F1 → F2 defined by

R(f) = f(t − t0)

is called delay operator by t0, or translation operator by t0. Geometrically it makes a transla-
tion of t0 units to the right in the graph of f , which is equivalent to a delay of t0 time units
in the signal (see Figure A.2).
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Figure A.2: Delay Operation.

A system S is linear and spatial invariant if a delay in the input is equal to the same delay
in the output

SRt0 = Rt0S

Impulse Response

In this subsection we will characterize the spatial invariant linear systems.
The impulse response, h of a system S is the image h = L(δ) of the signal Dirac δ by the

system.
If f is an arbitrary signal, we have:

f(x) =
∫ ∞

−∞
f(t)δ(x − t)dt

If the system is spatial invariant, it follows from the above equation that:

S(f(x)) =
∫ ∞

−∞
f(t)S(δ(x − t))dt

=
∫ ∞

−∞
f(t)h(x − t)dt

The integral above is indicated by f ∗ h, and is called convolution product. It is easy to
verify that f ∗ h = h ∗ f . This result is summarized in the theorem below:

Theorem 8. A spatial invariant linear system S is completely determined by its impulse
response h = S(δ). More precisely, S(f) = h ∗ f for any signal f .

The impulse response h gives a complete characterization of the system and, for this
reason, it is called filter kernel.

A.1.2 Other Characteristics

For the moment, we will concentrate our attention only on these two properties mentioned
above: linearity and time invariance. Nonetheless, there are many other important charac-
teristics that deserve to be mentioned:
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Finite Impulse Response

A system S has finite impulse response, (FIR), if its impulse response has compact support,

supp(S(δ)) ⊂ [−L, L], L < ∞.

The name originates from the fact that in the discrete domain, the impulse response of these
filters is represented by a finite sequence.

Causality

Causality is a property which says that the output of the system depends only of previous
facts in the input. That is, the system does not have any knowledge of the future.

A good example of a system in this class is the human ear, because sounds are processed
strictly in chronological order.

Stability

Many stability conditions can be defined for a system, each of them related to the needs of
different applications. A common stability condition is to enforce continuity of the operator
which defines the system:

||S(f) ≤ c||f ||
In other words, if the input signal has finite energy, the same occurs with the output signal.

Taking the norm of sup: ||f || = sup(f), this condition reduces to:

sup(S(f)) ≤ c sup(f)

A system which satisfy this condition is called in the literature BIBO system (“Bounded Input
– Bounded Output”).

A.2 Discretization of Systems

We have to work with discrete systems to be able to implement the model of continuous
systems in the computer. Therefore, we need to resort to methods to represent systems,
which ultimately are methods to represent functions. Discrete systems operate with discrete
signals.

A.2.1 Discrete Signals

As we have seen, various phenomena in the physical universe clearly have a discrete nature,
such as turning a light on or off. Other phenomenon, may even be conceived as continuous,
but they are observed (measured) at discrete instants of time, for example, the variation of
the tides.

Independently of a system being intrinsically continuous or discrete, in actual computer
implementations we need to work with discrete representations of the system.
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When we represent a signal f we obtain a discretization that associates to the signal a
sequence of “samples” (fn), n ∈ Z. We will use the notation f [n], f(n) or even fn to indicate
the nth “sample” of the signal. A sequence of samples of the signal will be indicated by (fn).
Sometimes, we will write (fn)n∈Z to emphasize that we are referring to a sequence.

The representation of a finite energy signal is defined by an operator R : F → `2, of the
space of signals into the space `2 of the square summable sequences: R(f) = (fn). The most
common form of representation of a signal is given by its projection in a closed subspace
V ⊂ F . If {ϕj} is an orthonormal base of this space, then

R(f) =
∑

k

〈f, ϕj〉ϕj ,

Therefore, the samples of the signal are given by f(j) = 〈f, ϕj〉. Nonetheless, the reader could
imagine that a sampling sequence is represented by uniform sampling the signal with rate ∆t:
f(n) = f(n∆t) (we have seen that this is a good approximation for most cases of interest).

When the signal f is represented by a sequence (fn), the description of the data elements
which represent the physical measurements of the signal, is done through the integer variable
n. It is important to have a memory about the representation method employed, specially to
make possible the reconstruction of the signal. In the case of point sampling, for example, it
is important to know the sampling rate ∆t.

If the representation sequence is finite, he have in fact a representation vector

(fn) = (f(i), f(i + 1), . . . , f(j)).

Otherwise, the representation sequence is an infinite vector

(fn) = (. . . , f(−2), f(−1), f(0), f(1), f(2), . . . )

A.2.2 Discrete Systems

Given a system S : F1 → F2, we can take the representation R1 : F1 → `2 e R2 : F2 → `2, to
produce the following diagram,

F1
S−−−→ F2

R1

y yR2

`2 S−−−→ `2

where S is the representation of the system S, that is, the discretized system S.
If S is linear and F1, F2 have a finite dimensional representation, that is, R(F1) = R

m

and R(F2) = R
n, then S : R

m → R
n is a linear transformation, and can be represented by a

matrix of order n × m: 
a11 · · · a1m

a21 · · · a2m
...

. . .
...

an1 · · · anm
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In case the representation of the spaces F1, F2 is not finite dimensional, we have S : `2 →
`2. It is useful to represent these operators by infinite matrices

...
y(−1)
y(0)
y(1)

...

 =



. . .
a−1,−1 a−1,0 a−1,1
a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1

. . .

 .



...
x(−1)
x(0)
x(1)

...


If the system S is linear and spatially invariant, we know that,

S(f) = h ∗ f

where h is the kernel of the filter, h = S(δ). In the discrete domain h = (hn) and f = (fn),
hence:

S(fn)(n) = ((hn) ∗ (fn))(n)

=
+∞∑

k=−∞
h(k)f(n − k),

(A.1)

which is the direct expression for the convolution product.
Taking (fn) = (δn), where (δn) is the discrete version of the Dirac delta:

(δn)(k) =

{
1 if k = 0;
0 if k 6= 0.

then
S(δn) = h ∗ δn = h,

As it was expected.
The reader should observe that equation (A.1) which defines the output of a discrete linear

system is a finite difference linear equation:

y(n) =
+∞∑

k=−∞
h(k)f(n − k),

where S(fn) = (yn).
Because S is linear, we know that S is given by a matrix (possibly infinite). Now, we

will obtain the matrix S using equation (A.1) below. For this, we need some linear algebra
notation.

Indicating by R the unit delay operator: that is R(fn) = (fn−1) we have that

f(n − k) = Rk(fn)
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in other words, f(n − k) is obtained from the signal (fn) applying k delay operations. In
particular, if k = 0, we have

f(n − 0) = f(n) = R0(fn) = I(fn)

where I is the identity operator. In this way, equation (A.1) can be written in operator form:

S(fn) =
+∞∑

k=−∞
h(k)Rk(fn) (A.2)

Given a matrix (aij), which can be infinite, the elements ajj constitute the main diagonal.

. . .
a0,0

a1,1
a2,2

. . .


For each d ∈ Z, d > 0, the elements (aj+d,j) are the elements of the d-th lower diagonal.

. . .
0
0 0
• 0 0
0 • 0 0

0 • 0 0
. . .


Similarly, the elements (aj,j+d) are the elements of the d-th upper diagonal.

The identity operator is represented by the identity matrix

I =

{
aj,j = 1
ai,j = 0 if i 6= j.

whose elements in the main diagonal are equal to 1, and the other elements are zero.
The unit delay operator

R(fn) = f(n − 1)

is represented by the matrix I−1 whose first lower diagonal consists of ones and the other
elements are zero:

I−1 =

{
aj+1,j = 1
ai,j = 0 if i 6= j + 1.
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. . .
0
1 0
0 1 0

0 1 0
. . .


(A.3)

More generally, the matrix of the operator Rk, shifted by k units is:

I−k =

{
aj+k,j = 1
ai,j = 0 if i 6= j + k.

that is, all elements outside the k-th lower diagonal are zero, and the elements of this diagonal
are equal to one.

Similar results hold for the operation

f(n) −→ f(n + k)

of time advance, considering the upper diagonals.
Observing equation A.2 we see that the matrix of S is a matrix whose main, lower and

upper diagonals are constant. More precisely, the k-th diagonal is constituted by the elements
h(k). 

. . .
· · · h(1) h(0) h(−1) · · ·

· · · h(1) h(0) h(−1) · · ·
· · · h(1) h(0) h(−1) · · ·

· · · h(1) h(0) h(−1) · · ·
. . .


Observe that in the rows of this matrix we have the vector of the system impulse response,

translated by one unit to the right from one line to the next. Because the output (yn) will
be the result of the inner product of the n-th line of the matrix by the input vector (xn), we
can either shift the input (xn) before the multiplication, or shift the output (yn) after the
multiplication: the result will be the same. This was expected, because the system represented
by this matrix is linear and spatially invariant.

It is easy for the reader to verify that if the system is causal, all upper diagonals are zero
(because the system cannot use advances of the signal in time). Therefore, the matrix is lower
triangular.

Example 17. Consider the filter defined by the difference equation

y(n) = 3x(n − 1) + 2x(n − 2) + x(n − 3)

Then, we can rewrite this difference equation in the form of a convolution product

y(n) =
∑

k

h(k)x(n − k)
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where,

h(k) =



0 if k ≤ 0,

3 if k = 1,

2 if k = 2,

1 if k = 3,
0 if k ≥ 4.

or, alternatively (hn) = (. . . , 0, 0, 3, 2, 1, 0, 0, . . . ).
The matrix of this filter is given by



...
x̂(3)
x̂(4)
x̂(5)
x̂(6)
x̂(7)

...


=



. . .
0
3 0
2 3 0
1 2 3 0
0 1 2 3 0

0 1 2 3 0
. . .


.



...
x(0)
x(1)
x(2)
x(3)
x(4)
x(5)

...


Note that the filter is causal

Question 1. What would happen if the coefficients of the difference equation were not con-
stant?

The equation would be described as,

yn = · · · + h0(n)xn + h1(n)xn−1 + h2(n)x

In this case the filter kernel (hn), is a sequence which varies with the index (time), therefore,
it is necessary now to represent it as:

(hn) = (. . . , h−1(n), h0(n), h1(n), . . . )

The convolution product cannot be used to characterize the operation and its “general-
ization” is

(yn) =
∑

k

hk(n)xn−k

Finally, the matrix representation does not have constant diagonals:

...
y−1
y0
y1
...

 =



. . .
· · · h1(−1) h0(−1) h−1(−1) · · ·
· · · h2(0) h1(0) h0(0) · · ·
· · · h3(1) h2(1) h1(1) · · ·

. . .

 .



...
x−1
x0
x1
...
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A.3 Upsampling and Downsampling Operators

Besides the delay operator, two other operators are important in the study of discrete filters:
they are the downsampling and upsampling operators.

The downsampling operator of order q, ↓ q: `2 → `2, is defined as

(↓ q)(un) = (unq).

That is, the operator discards all terms of a sequence, except the terms which are multiple of
q. This operator is also known in the literature as the decimation operator of order q.

Here, we will only study the case where q = 2. In this case the operator discards alternating
terms in the sequence, retaining only the terms with even index:

(↓ 2)(un) = (u2n).

The matrix of this operator is given by
1
0 0 1

0 0 1
0

· · ·

 .

This matrix is obtained from the identity matrix I, by including a column of zeros in alterna-
tion. Or equivalently, we can shift the lines of the matrix one unit to the right in alternation.

It is immediate to verify that the downsampling operator is not invertible. However, it
has a inverse to the right, which is the upsampling operator:

(↑ 2)(. . . , x−1, x0, x1, . . . ) = (. . . , x−1, 0, x0, 0, x1, 0, . . . ).

That is,

(↑ 2)(un)(k) =

{
u(k) if n = 2k

0 if n=2k+1.

The upsampling operator simply intercalates zeros in between the elements of the represen-
tation sequence. 1

It is easy for the reader to verify that the upsampling operator ↑ 2 is the inverse to the
right downsampling operator ↓ 2, that is (↓ 2)(↑ 2) = I. However, (↑ 2)(↓ 2) 6= I, as we can
see below:

(↑ 2)(↓ 2)



...
u−1
u0
u1
...

 =



...
u−2
0
u0
0
u2
0
...


.

1we can define the upsampling operator of order q, intercalating q zeros.
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In terms of matrices, it is easy to see that the matrix of the operator ↑ 2 is obtained by
intercalating rows of zeros in the identity matrix

↑ 2 =



1 0
0 0
1 0 0

0 0
1 0

· · ·

 .

This is equivalent to translate the columns of the identity matrix by one unit to the bottom.
It is immediate to verify that the matrix of the upsampling operator is the transpose of

the matrix of the downsampling operator, and vice-versa. The relation between the operators
of downsampling and upsampling can be stated using matrices:

(↓ 2)(↑ 2) = I,

and

(↑ 2)(↓ 2) =



1
0

1
0

1
. . .


.

Once more, we observe that the upsampling operator is the inverse to the right, but is not
an inverse to the left. At this point we can argue that the nature of the mathematical
objects is against us: as we will see, the most important operation is to recover a signal after
downsampling, and not the other way around.

A.4 Filter Banks

A filter bank is a system composed of several filters, together with delay, upsampling and
downsampling operators.

A filter bank with two filters, downsampling, and upsampling is illustrated in FigureA.3.

x H 2 2 G x̂

Figure A.3: Example of a Filter Bank
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A.5 Comments and References

A basic reference for signal processing is (Oppenhein & Willsky, 1983). It includes the whole
theory of signals and systems, from the continuous to the discrete. Another good source, but
somewhat older, discussing only continuous systems is (Lathi, 1974).

For a book more applied to the project and analysis of filters, the reader can use (Antoniou,
1993).

The literature of signal processing has several sources for the reader interested in systems
with multirate filter banks, one of them is (Vaidyanathan, 1993).
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Appendix B

The Z Transform

The behavior of filters in the frequency domain gives a good intuition of some of its char-
acteristics, which are difficult to grasp by looking only at the filter coefficients in the time
domain. We have seen that the Fourier transform is a tool used to study a signal in the
frequency domain. In this appendix, we will introduce a similar, but more general transform,
the Z-transform, which in fact contains the Fourier transform.

B.1 The Z Transform

Given a linear, time invariant, discrete system S with impulse response (hn), and an input
signal (xn), the output is then (yn) = (hn) ∗ (xn). However, let’s choose an input signal with
a special structure:

x(n) = zn , z ∈ Z

in this case, the output signal is then:

(yn) = (hn) ∗ (xn) =
+∞∑

k=−∞
h(k)x(n − k)

=
+∞∑

k=−∞
h(k)zn−k = zn

+∞∑
k=−∞

h(k)z−k

that is, the value of the output signal y(n) is obtained by multiplying x(n) by a constant This
constant, however, varies with the value of z, which was fixed for each input signal:

y(n) = H(z)zn

where,

H(z) =
+∞∑

k=−∞
h(k)z−k

We should remark that if an arbitrary signal is decomposed as a direct sum of basic atoms,
it would be sufficient to know the effect of the system over its atoms to be able to predict the
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result of the system on any input signal. For this reason, we have chosen our input signal as
a sum of different complex exponentials:

x′(n) =
∑

k

akz
n
k

and, applying it to the system S, we can use its linearity property to obtain:

y′(n) =
∑

k

akH(zk)zn
k

Using a linear algebra terminology, the complex exponentials zn
k , are eigenvector functions

of S, and H(zk) are their respective eigenvalues.
Exploiting the above intuition, we will introduce the Z transform.
Given a discrete signal (xn), its Z transform is given by:

X(z) = Z{x(n)} =
∞∑

k=−∞
z−kx(k) (B.1)

Together with X(z) it is necessary to know the corresponding Convergence Region, that
is, the regions of the complex plane in which the variable z is defined, such that this transform
converges.

Remark 1. Based on this transform, making z = ei2πw, we obtain the Fourier transform for
discrete aperiodic signals (DTFT – “Discrete Time Fourier Transform”).

B.1.1 Some Properties

Several important properties of the Z transform will help in the manipulation of discrete
systems. We will see that these properties contribute to the intuitive view alluded to in the
beginning of this Appendix.

• Linearity;
Z{x1(n) + x2(n)} = Z{x1(n)} + Z{x2(n)}

• Time Shift;

Z{x(n − l)} =
∞∑

k=−∞
z−kx(k − l) =

∞∑
k=−∞

z−k+lx(k)

= zlZ{x(n)}

• Time Reversal;
x(n) ↔ X(z) ←→ x(−n) ↔ X(z−1)

This property, as the next one, is easily verified, just by applying the definition of the
transform.
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• Convolution in Time is Multiplication in Frequency;

Z{x1(n) ∗ x2(n)} = X1(z)X2(z)

Remark 2. The function delta, δ, exhibits an special behavior. We have seen when it was
the input of a system, the output was the impulse response function, which characterizes
the filter. This has two main reasons: First, the convolution product in the time domain is
equivalent to multiplication in frequency; Second, the representation of the delta function in
the frequency domain is:

Z{δ(n)} = 1

This means that the function delta δ(n) is the neutral element of the convolution operation
in time and of the multiplication operation in frequency.

B.1.2 Transfer Function

The impulse response h(t) of a filter has a correspondent in the frequency domain, which is
called Transfer Function.

Given a system S, its impulse response h = S(δ) completely defines the filtering operation

S(f) = h ∗ f.

What would be the interpretation of the fact above in the frequency domain, using the Z
Transform?

Suppose that S(xn) = (yn), that is,

(yn) = (hn) ∗ (xn).

Going to the frequency domain, and using the properties of the Z transform, we have:

Y (z) = Z{(hn) ∗ (xn)} = Z{(hn)}.Z{(xn)} = H(z)X(z)

We isolate H(z) = Z{(hn)}, and call this expression Transfer Function:

H(z) =
Y (z)
X(z)

Again, it is necessary to be careful with the convergence of this expression, and the division
operation takes care that the zeros of X(z) are outside the convergence region.

The transfer function H(z) gives exactly information on how the input frequencies (xn)
will be altered in order to produce the output (yn). This connection was one of the goals of
our intuitive view. A linear, time invariant, discrete system will react in a predictable manner
according to the complex exponentials applied to its input. Its output will be given as the
same input exponential, but with a different “amplitude”.

Considering that a filter is exactly the system that makes this type of transformation,
then the Z transform is a good way to describe filters. What would be the disadvantages of
using (hn)?
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One is immediate: the variable z is not discrete, it is also defined in the entire complex
plane (in the Convergence Region). To store it in the computer it is necessary to do some
kind of “sampling”. The other option would be the use of a symbolic machinery, but the
manipulation would be more difficult and less efficient.

For the tasks of filter design and evaluation, the importance of the Z transform is undis-
putable. To obtain the transfer function H(z) from the linear difference equation with constant
coefficients, i.e. the convolution product, is a direct operation: the coefficients of the equation
are exactly the coefficients of a polynomial in z:

Z{y(n)} = Z{
∑

k

bkx(n − k)}

Y (z) = (
∑

k

bkz
−k)X(z)

and then,

H(z) =
∑

k

bkz
−k

In a more general form, we can have:

Z{
N∑

k=0

aky(n − k)} = Z{
∑

k

bkx(n − k)}

(
N∑

k=0

akz
−k)Y (z) = (

∑
k

bkz
−k)X(z)

in this case H(z) is a ratio of polynomials

H(z) =

∑
k

bkz
−k

N∑
k=0

akz−k

Example 18. Going back to the system of example 17, in the previous chapter, it will be
instructive to determine the system transfer function, and look at its frequency behavior

x̂(n) = 3x(n − 1) + 2x(n − 2) + x(n − 3)

Z{y(n)} = Z{3x(n − 1) + 2x(n − 2) + x(n − 3)}
Exploiting the linearity and time shift properties, we have:

Y (z) = 3z−1X(z) + 2z−2X(z) + z−3X(z)

and factoring out X(z),

H(z) =
Y (z)
X(z)

= 3z−1 + 2z−2 + z−3
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In order to really visualize the behavior of a filter in the different frequencies that compose
the input signal, it is sufficient to evaluate the transfer function H(z) for the values of z = eiw,
where w = [0, π]. In this last example |H(ejw)| is shown in Figure B.1:

-3 -2 -1 1 2 3

1

2

3

4

5

6

Figure B.1: Modulus of the frequency response of a filter.

B.1.3 The Variable z and Frequency

Writing the complex variable z in polar form, we obtain

z = αeiw, where 0 < w < π

The discrete domain has a limited interval of possible frequencies due to the sampling
process. Making a normalization, all these possible frequencies will be contained in the in-
terval [0, π], where π has a direct relation with 1/2 of the sampling frequency used in the
discretization process.

Therefore, it makes sense to consider the function H(eiw) as a periodic function. Again,
H(eiw) is also the DTFT of the non-periodic filter (hn) and every DTFT is periodic with a
period of 2π

Through the behavior of systems in the various frequency regions, it is possible also to
classify the filters into basic types, such as lowpass, highpass, bandpass, etc, as we have seen
in Chapter 3.

B.2 Subsampling Operations

In this section we will discuss the downsampling and upsampling operators in the frequency
domain. We will derive the expressions for these operators using the z-notation.

B.2.1 Downsampling in the Frequency Domain

The downsampling operator, introduced in the previous chapter, takes a discrete sequence
(xk)k∈Z and removes all elements with odd indices, keeping only even index elements. There-
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fore, v = (↓ 2)x implies that vk = x2k.
In order to derive the expression for the downsampling operator in the frequency domain,

we will take a sequence (un), which has all the elements with even index from an arbitrary
sequence (xn), and the elements with odd indices equal to zero

un =

{
xn if n is even
0 if n is odd.

That is, u = (. . . , x0, 0, x2, . . . ). Clearly, (↓ 2)x = (↓ 2)u. So, let’s write the Fourier transform
of u

U(ω) =
∑

n even

xne−inω

=
1
2

∑
all n

xne−inω +
1
2

∑
all n

xne−in(ω+π)
(B.2)

The expression for U was split into two terms, so that when they are added together only
the terms with even indices remain. This is because, if n = 2l is even, then e−i(2l)(ω+π) =
e−i2lω+2lπ = e−i2lω, preserving the even index elements. But, if n = 2l + 1 is odd, then
e−i(2l+1)(ω+π) = e−i(2l+1)ω+(2l+1)π = e−i(2l+1)ω+π = −e−i2lω, removing the odd index ele-
ments.

Therefore, the expression of U(ω) in the frequency domain can be written in terms of
X(ω) as U(ω) = 1

2 [X(ω) + X(ω + π)].
Now, using U(ω) which contains only even index terms, we can write the formula for the

downsampling operator in frequency domain just by halving the frequencies V (ω) = U(ω/2).

V (ω) =
1
2
[X(

ω

2
) + X(

ω

2
+ π)] (B.3)

The downsampling operation corresponds to a change in the sampling rate, as it is implied
by halving the frequencies ω → ω/2. This may cause aliasing, which is essentially a frequency
folding, manifested by the introduction of a new term in ω/2 + π. This process is illustrated
in Figure B.2.

X(w)
X(w)X(w +       )π

Figure B.2: Downsampling Operator.

In the Z-domain, the downsampling operator is

V (z) =
1
2
[X(z1/2) + X(−z1/2)] (B.4)
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B.2.2 Upsampling in the Frequency Domain

The upsampling operator, also introduced in the previous chapter, takes a discrete sequence
(xk)k∈Z and an interleave zeros inbetween the sequence elements.

u = (↑ 2)v ⇔
{

u2k = vk

u2k+1 = 0

In the frequency domain, this operation has a simple expression. We only retain the terms
with even index n = 2k, because terms with odd index are zero, u2k+1 = 0.

U(ω) =
∑

une−inω =
∑

u2ke
−i2kω

=
∑

vke
−i2kω

(B.5)

So, u = (↑ 2)v is U(ω) = V (2ω), or U(z) = V (z2).
The upsampling operation causes imaging. A bandlimited function V (ω) with period 2π

is mapped into a function U(ω) = V (2ω) with period π. Compressed copies of the graph
V (2ω) appear in the spectrum of U(ω). This is illustrated in Figure B.3.

X(w) U(w) = X(2w)
π

Figure B.3: Upsampling Operator.

B.2.3 Upsampling after Downsampling

In a filter bank it is common to apply both the downsampling and upsampling operations.
This is because, usually downsampling is part of the analysis bank, and upsampling is part
of the synthesis bank.

Let’s see how these two operations can be combined together:

v = (↓ 2)x and u = (↑ 2)v

this result is u = (↑ 2)(↓ 2)x, which in the frequency domain is

U(ω) =
1
2
[X(ω) + X(ω + π)] (B.6)

or in the Z-domain

U(z) =
1
2
[X(z) + X(−z)] (B.7)
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B.3 Comments and References

A good reference for the use of filter banks and their relations with wavelets is (Strang &
Nguyen, 1996). A more general book about multirate systems and filter banks is (Vaidyanathan,
1993).
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