
OpenGL Shading Language

Jian HuangJian Huang
Joshua New

CS594, Spring 2006

Why the need?
• Until late 90’s, when it comes to OpenGL programming

(hardware accelerated graphics) an analogy as below was(hardware accelerated graphics), an analogy as below was
mostly true:
– A machinery operator turns a few knobs and sets a few switches,

d th h b tt ll d “ d ” O t f th th d fand then push a button called “render”. Out of the other end of a
magical black box, images come out

• All the controls offered by the OpenGL API comes as just
knobs and switches

• Although knowing more about the intrinsic OGL states,
one could (become a professional knob operator and)
achieve better performance (but few new functionalityachieve better performance (but few new functionality
could the operator discover)

Why the need? (cont.)

• But the graphics industry is mostly driven to create “new”
and “newer” effects so to get more leverage on graphicsand newer effects, so to get more leverage on graphics
hardware, programmers started to perform multi-pass
rendering and spend more and more time to tweak a few g p
standard knobs for tasks beyond the original scope of
design, e.g.
– to compute shading using texture transformation

matrices

– to combine multi-texture unit lookups using equations
beyond just blending or modulatingy j g g

Software Renders
• During the early days of graphics special effects creation

(when there was no OpenGL) Pixar developed their own(when there was no OpenGL), Pixar developed their own
in-house software renderer, RenderMan

• What’s unique about RenderMan is its interface that allows
highly programmable control over the appearance of each
fragment (latest package comes with over 150 shaders)fragment (latest package comes with over 150 shaders)

• This part of RenderMan was later opened up to public and• This part of RenderMan was later opened up to public and
is nowadays widely known as RenderMan shading
language (v3.1 1998, v3.2 2000, v3.3 coming soon)

Cg
• When graphics hardware vendors started to develop an

interface to expose inner controls/programmability of theirinterface to expose inner controls/programmability of their
hardware …
– Like the birth of every domain specific programming/scripting

l h di l d t b l i l h ilanguage, a shading language seemed to be a logical choice

• nVidia was the first vendor to do so and their shading• nVidia was the first vendor to do so, and their shading
language is called Cg.

• Cg was an immense success and became a widely adopted
cutting edge tool throughout the whole industry

OpenGL Shading LanguageOpenGL Shading Language
(GLSL)(GLSL)

• A few years after the success of Cg, in loom of a highly
diverse and many times confusing set of languages ordiverse and many times confusing set of languages or
extensions to write shaders with, the industry started its
effort of standardization.

• The end result is OpenGL Shading Language, which is a
part of the OpenGL 2 0 standard (October 22 2004)part of the OpenGL 2.0 standard (October 22, 2004)

• GLSL is commonly referred to as “GLslang”• GLSL is commonly referred to as GLslang

• GLSL and Cg are quite similar, with GLSL being a lotGLSL and Cg are quite similar, with GLSL being a lot
closer to OpenGL

The Graphics Pipeline

• If GLSL and Cg are both just an interface, what do they
expose?expose?
– The graphics pipeline

• Here is a very simplified view• Here is a very simplified view

Fixed Functionality VertexFixed Functionality – Vertex
TransformationTransformation

• A vertex is a set of attributes such as its location in space,
color normal texture coordinates etccolor, normal, texture coordinates, etc.

• Inputs: individual vertices attributes.
• Operations:• Operations:

– Vertex position transformation
Li hti t ti t– Lighting computations per vertex

– Generation and transformation of texture coordinates

Fixed Functionality PrimitiveFixed Functionality – Primitive
Assembly and RasterizationAssembly and Rasterization

• Inputs: transformed vertices and connectivity information
O 1 li i i i f d b k f lli• Op 1: clipping against view frustum and back face culling

• Op 2: the actual rasterization determines the fragments,
and pixel positions of the primitiveand pixel positions of the primitive.

• Output:
iti f th f t i th f b ff– position of the fragments in the frame buffer

– interpolated attributes for each fragment

Fixed Functionality FragmentFixed Functionality – Fragment
Texturing and ColoringTexturing and Coloring

• Input: interpolated fragment information
A l h l d b d i h i• A color has already been computed in the previous stage
through interpolation, and can be combined with a texel

• Texture coordinates have also been interpolated in the• Texture coordinates have also been interpolated in the
previous stage. Fog is also applied at this stage.

• Output: a color value and a depth for each fragment• Output: a color value and a depth for each fragment.

Fixed Functionality RasterFixed Functionality – Raster
OperationsOperations

• Inputs:
i l l i– pixels location

– fragments depth and color values
i• Operations:

– Scissor test
– Alpha test
– Stencil test
– Depth test

Fixed Functionality

• A summary (common jargons: T&L, Texturing etc.)

Replacing Fixed Functionalities

• Vertex Transformation stage: vertex shaders
F T i d C l i f h d• Fragment Texturing and Coloring stage: fragment shaders

• Obviously, if we are replacing fixed functionalities with
programmable shaders “stage” is not a proper term anyprogrammable shaders, “stage” is not a proper term any
more

• From here on let’s call them vertex processors and• From here on, let s call them vertex processors and
fragment processors

Vertex Processors

• The vertex processor is where the vertex shaders are run
I h d l i i i l l• Input: the vertex data, namely its position, color, normals,
etc, depending on what the OpenGL application sends

• A piece of code that sends the inputs to vertex shader:• A piece of code that sends the inputs to vertex shader:
glBegin(...);

lC l 3f(0 2 0 4 0 6)glColor3f(0.2,0.4,0.6);

glVertex3f(-1.0,1.0,2.0);

glColor3f(0.2,0.4,0.8);glColor3f(0.2,0.4,0.8);

glVertex3f(1.0,-1.0,2.0);

glEnd();

Vertex Processors
• In vertex shaders, sample tasks to perform include:

– vertex position transformation using the modelview and projection p g p j
matrices

– normal transformation, and if required its normalization
t t di t ti d t f ti– texture coordinate generation and transformation

– lighting per vertex or computing values for lighting per pixel
– color computationcolor computation

• Note:
it is not required that your vertex shader– it is not required that your vertex shader

does any particular task
– no matter what vertex shader is provided,
you have already replaced the entire fixedyou have already replaced the entire fixed
functionality for vertex transformation stage

Vertex Processors
• The vertex processor processes vertices individually and has

no information regarding connectivity, no operations that
i t l i l k l d 't b f d i hrequire topological knowledge can't be performed in here.

– for example, no back face culling

Th t h d t it t l t i bl l P iti• The vertex shader must write at least a variable: gl_Position
– often transforming with modelview and projection matrices

A h O G• A vertex processor has access to OpenGL states
– so it can do lighting and use materials.

• A vertex processor can access textures (not on all hardware)• A vertex processor can access textures (not on all hardware).
• A vertex processor cannot access the frame buffer.

Fragment Processors
• Inputs: the interpolated values computed in the previous

stage of the pipeline
– e.g. vertex positions, colors, normals, etc...

• Note, in the vertex shader these values are computed per
H ' i l i f h fvertex. Here we're interpolating for the fragments

• When you write a fragment shader it replaces all the fixed
f ti lit Th t d ll ff t th t thfunctionality. The programmer must code all effects that the
application requires.

• A fragment shader has two output options:
– to discard the fragment, hence outputting nothing

to compute either gl FragColor (the final color of the– to compute either gl_FragColor (the final color of the
fragment), or gl_FragData when rendering to multiple
targets.

Fragment Processors
Th f t t i l f t i it• The fragment processor operates on single fragments, i.e. it
has no clue about the neighboring fragments.

• The shader has access to OpenGL states• The shader has access to OpenGL states
– Note: a fragment shader has access to but cannot change the pixel

coordinate. Recall that modelview, projection and viewport
matrices are all used before the fragment processor.

• Depth can also be written but not required
• Note the fragment shader has no access to the framebuffer
• Operations such as blending occur only after the fragment

h d hshader has run.

Using GLSL

• If you are using OpenGL 2.0, GLSL is part of it
• If not, you need to have two extensions:

GL_ARB_fragment_shader
GL_ARB_vertex_shader

• In OGL 2.0, the involved functions and symbolic
constants do not have “ARB” in the name any
more.

Shader Review

• Hardware
– Video cards only [300,650]Mhz (CPUs are 2-4Ghz)

but [2,16] vertex, [8,48] fragment processorsbut [2,16] vertex, [8,48] fragment processors
• Fragment Programs: FX1000:8x300=2.4Ghz; 7800GT: 20x400Mhz=8.0Ghz

– SLI for 2-4 video cards (www.tomshardware.com)

Shader Review

• Programming GPU:
– Store data as texture (similar to 2D array)
– RoT: data structures, kernels, matrices, reduce

i i d di i lcommunication, reduce conditionals

Triangleg
~3,042 pixels

Each pixel
processed by

fragment processor
each frame

Shader Review

• GPU uses:
G ft f t

Example Shader

– Games often use for custom
lighting, dynamic contrast,
etc.

– Shader programs: 3-100
lines of code (10 avg.)

– General uses: particle– General uses: particle
engines, illumination, signal
processing, image
compression comp tercompression, computer
vision, sorting/searching
(www.gpgpu.org)

The Overall Process Creating a Shader
• The first step is creating an object which will act as a

shader container. The function available for this purpose
returns a handle for the container
GLhandleARB glCreateShaderObjectARB(GLenum shaderType);

Parameter:

shaderType - GL_VERTEX_SHADER_ARB or
GL_FRAGMENT_SHADER_ARB.

• You can create as many shaders as needed, but there can
only be one single main function for the set of vertex
h d d i l i f ti f th t fshaders and one single main function for the set of

fragment shaders in each single program.

Creating a Shader
• The second step is to add some source code (like this is a

surprise ).
– The source code for a shader is a string array, although you can use

a pointer to a single string.

The s nta of the f nction to set the so rce code for a• The syntax of the function to set the source code for a
shader is
void glShaderSourceARB(GLhandleARB shader, int numOfStrings, const char
** t i i t *l OfSt i)**strings, int *lenOfStrings);

Parameters:

shader - the handler to the shader.

numOfStrings - the number of strings in the array.

strings - the array of strings.

lenOfStrings - an array with the length of each string, or g y g g,
NULL, meaning that the strings are NULL terminated.

Creating a Shader
• The final step, the shader must be compiled.
• The function to achieve this is:

void glCompileShaderARB(GLhandleARB program);

Parameters:

program - the handler to the program.

Creating a Program
• The first step is creating an object which will act as a

program container.
• The function available for this purpose returns a handle for

the container GLhandleARB glCreateProgramObjectARB(void);

• One can create as many programs as needed. Once
rendering, you can switch from program to program, and

b k t fi d f ti lit d i i l feven go back to fixed functionality during a single frame.
– For instance one may want to draw a teapot with refraction and

reflection shaders, while having a cube map displayed for , g p p y
background using OpenGL's fixed functionality.

Creating a Program
• The 2nd step is to attach the shaders to the program you've just created.
• The shaders do not need to be compiled nor is there a need to have src

d F thi t l th h d t i i i dcode. For this step only the shader container is required
void glAttachObjectARB(GLhandleARB program, GLhandleARB shader);

Parameters:
program the handler to the program

• If you have a pair vertex/fragment of shaders you'll need to attach both to

program - the handler to the program.
shader - the handler to the shader you want to attach.

the program (call attach twice).
• You can have many shaders of the same type (vertex or fragment)

attached to the same program (call attach many times)attached to the same program (call attach many times)

•As in C, for each type of shader there can only be one shader
with a main function. You can attach a shader to multiplewith a main function. You can attach a shader to multiple
programs, e.g. to use the same shader in several programs.

Creating a Program
• The final step is to link the program. In order to carry out

this step the shaders must be compiled as described in the
previous subsection.

void glLinkProgramARB(GLhandleARB program);

Parameters:

Aft li k th h d ' b difi d d

Parameters:

program - the handler to the program.

• After link, the shader's source can be modified and
recompiled without affecting the program.

Using a Program
• After linking, the shader's source can be modified and

recompiled without affecting the program.
• Because calling the function that actually load and use the

program , glUseProgramObjectARB, causes a program to be
ll l d d (h l i h) d dactually loaded (the latest version then) and used.

• Each program is assigned an handler, and you can have as
li k d d d t t (dmany programs linked and ready to use as you want (and

your hardware allows).
id lU P Obj tARB(GLh dl ARB)void glUseProgramObjectARB(GLhandleARB prog);

Parameters:

prog - the handler to the program to use, or zero to return to fixed functionality

A program in use, if linked again, will automatically be placed in use
again. No need to useprogram again.

Setting up - setShaders
H i l f ti t t h d Y ll• Here is a sample function to setup shaders. You can call
this in your main function

void setShaders() /* GLhandleARB p,f,v; are declared as globals */
{
char *vs,*fs;
const char * vv = vs;
const char * ff = fs;

lC Sh d Obj ARB(GL VERTEX SHADER ARB)v = glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
f = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);
vs = textFileRead("toon.vert");
fs = textFileRead("toon.frag");

lSh d S ARB(1 & NULL)glShaderSourceARB(v, 1, &vv, NULL);
glShaderSourceARB(f, 1, &ff, NULL);
free(vs); free(fs);
glCompileShaderARB(v);

lC il Sh d ARB(f)
textFileRead is provided
i th l di tglCompileShaderARB(f);

p = glCreateProgramObjectARB();
glAttachObjectARB(p,v);
glAttachObjectARB(p,f);

lLi kP ARB()

in the class directory

glLinkProgramARB(p);
glUseProgramObjectARB(p);

}

Cleaning Up
• A function to detach a shader from a program is:

void glDetachObjectARB(GLhandleARB program, GLhandleARB shader);

Parameter:

program - The program to detach from.

shader - The shader to detach

• Only shaders that are not attached can be deleted
shader The shader to detach.

• To delete a shader use the following function:
void glDeleteShaderARB(GLhandleARB shader);

Parameter:

shader - The shader to delete.

Getting Error

• There is alos an info log function that returns compile &
linking information errorslinking information, errors

void glGetInfoLogARB(GLhandleARB object,void glGetInfoLogARB(GLhandleARB object,
GLsizei maxLength,
GLsizei *length,G
GLcharARB *infoLog);GLcharARB infoLog);

seeShader

• Shader setup (slides 20-30) has been implemented in a
generic API which can be used for your shader labgeneric API which can be used for your shader lab
– www.cs.utk.edu/~new (these slides are there also)

• seeShader provides a very simple way to load and switch
between your own shaders with error reportingbetween your own shaders with error reporting

• Included support: makefile VC6 workspace VC7Included support: makefile, VC6 workspace, VC7
solution, necessary shader libraries for Windows and
Linux, a handy-dandy glut framework, readme.txt

seeShader

• seeShader API (supports up to 32 concurrent shaders):
T thi API ll t b d t hi it()– To use this API, a call must be made to shinit()

– sd = shopen(char* filename) (Funeral March)

• A shader in [filename].vert and [filename].frag will be loaded and a [] [] g
shader descriptor is returned for referencing this shader

– shuse(int sd) (Prada)

• S itch to sing shader descriptor sd (d 0 fi d f i li)• Switch to using shader descriptor sd (sd=0 fixed functionality)

– shclose(int shd)
• Necessary if you wish to have more shaders than you have room fory y y

• Extra functionality added to glut framework to auto-load
shaders (loads files: shader-1.vert, shader-1.frag, shader-2.vert, …,shader-32.frag)

GLSL Data Types
• Three basic data types in GLSL:

– float, bool, int
– float and int behave just like in C,and bool types can take on the

values of true or false.
• Vectors with 2 3 or 4 components declared as:Vectors with 2,3 or 4 components, declared as:

– vec{2,3,4}: a vector of 2, 3,or 4 floats
– bvec{2,3,4}: bool vector
– ivec{2,3,4}: vector of integers

• Square matrices 2x2, 3x3 and 4x4:
mat2– mat2

– mat3
– mat4

GLSL Data Types
• A set of special types are available for texture access,

called sampler
– sampler1D - for 1D textures
– sampler2D - for 2D textures
– sampler3D - for 3D textures– sampler3D - for 3D textures
– samplerCube - for cube map textures

• Arrays can be declared using the same syntax as in C, but ays ca be dec a ed us g e sa e sy a as C, bu
can't be initialized when declared. Accessing array's
elements is done as in C.

• Structures are supported with exactly the same syntax as C
struct dirlight
{

vec3 direction;
vec3 color;

};

GLSL Variables
• Declaring variables in GLSL is mostly the same as in C

float a,b; // two vector (yes, the comments are like in C)
int c = 2; // c is initialized with 2
bool d = true; // d is true

• Differences: GLSL relies heavily on constructor for
initialization and type casting

bool d = true; // d is true

yp g
float b = 2; // incorrect, there is no automatic type casting
float e = (float)2;// incorrect, requires constructors for type casting
int a = 2;
float c = float(a); // correct. c is 2.0

• GLSL is pretty flexible when initializing variables using other

();
vec3 f; // declaring f as a vec3
vec3 g = vec3(1.0,2.0,3.0); // declaring and initializing g

GLSL is pretty flexible when initializing variables using other
variables vec2 a = vec2(1.0,2.0);

vec2 b = vec2(3.0,4.0);
vec4 c = vec4(a,b) // c = vec4(1.0,2.0,3.0,4.0);

2 2(1 0 2 0)vec2 g = vec2(1.0,2.0);
float h = 3.0;
vec3 j = vec3(g,h);

GLSL Variables
• Matrices also follow this pattern

mat4 m = mat4(1.0) // initializing the diagonal of the matrix with 1.0
vec2 a = vec2(1.0,2.0); (,);
vec2 b = vec2(3.0,4.0);
mat2 n = mat2(a,b); // matrices are assigned in column major order
mat2 k = mat2(1.0,0.0,1.0,0.0); // all elements are specified

• The declaration and initialization of structures is
demonstrated below

struct dirlight { // type definition
vec3 direction;
vec3 color;

};
dirlight d1;
dirlight d2 = dirlight(vec3(1.0,1.0,0.0),vec3(0.8,0.8,0.4));

GLSL Variables
• Accessing a vector can be done using letters as well as

standard C selectors.
vec4 a = vec4(1.0,2.0,3.0,4.0);
float posX = a.x;

O th l tt t t t

p ;
float posY = a[1];
vec2 posXY = a.xy;
float depth = a.w;

• One can the letters x,y,z,w to access vectors components;
r,g,b,a for color components; and s,t,p,q for texture
coordinatescoordinates.

• As for structures the names of the elements of the structure
can be used as in Cc be used s C

d1.direction = vec3(1.0,1.0,1.0);

GLSL Variable Qualifiers
• Qualifiers give a special meaning to the variable. In GLSL

the following qualifiers are available:
– const - the declaration is of a compile time constant
– attribute – (only used in vertex shaders, and read-only in shader)

global variables that may change per vertex that are passed fromglobal variables that may change per vertex, that are passed from
the OpenGL application to vertex shaders

– uniform – (used both in vertex/fragment shaders, read-only in
both) global variables that may change per primitive (may not be
set inside glBegin,/glEnd)

– varying - used for interpolated data between a vertex shader and avarying used for interpolated data between a vertex shader and a
fragment shader. Available for writing in the vertex shader, and
read-only in a fragment shader.

GLSL Statements

• Control Flow Statements: pretty much the same as in C.
if (bool expression) (p)

...
else

...

for (initialization; bool expression; loop expression)
...

while (bool expression) (p)
...

do
...

while (bool expression)

Note: only “if” are available on most current hardwareNote: only if are available on most current hardware

GLSL Statements

• A few jumps are also defined:
continue available in loops causes a jump to the next iteration of the loop•continue - available in loops, causes a jump to the next iteration of the loop

•break - available in loops, causes an exit of the loop

•Discard - can only be used in fragment shaders. It causes the termination of the
shader for the current fragment without writing to the frame buffer or depthshader for the current fragment without writing to the frame buffer, or depth.

GLSL Functions
• As in C, a shader is structured in functions. At least each type of

shader must have a main function declared with the following syntax:
void main() ()

• User defined functions may be defined.
• As in C a function may have a return value, and use the

return statement to pass out its result. A function can be
void. The return type can have any type, except array.

• The parameters of a function have the following qualifiers:• The parameters of a function have the following qualifiers:
– in - for input parameters
– out - for outputs of the function. The return statement is also an

option for sending the result of a function.
– inout - for parameters that are both input and output of a function
– If no qualifier is specified, by default it is considered to be in.If no qualifier is specified, by default it is considered to be in.

GLSL Functions
• A few final notes:

– A function can be overloaded as long as the list of parameters is
different.

– Recursion behavior is undefined by specification.

Finall let’s look at an e ample• Finally, let’s look at an example
vec4 toonify(in float intensity)
{

vec4 color; vec4 color;
if (intensity > 0.98)

color = vec4(0.8,0.8,0.8,1.0);
else if (intensity > 0.5)

color = vec4(0.4,0.4,0.8,1.0); (, , ,);
else if (intensity > 0.25)

color = vec4(0.2,0.2,0.4,1.0);
else color = vec4(0.1,0.1,0.1,1.0);
return(color); ();

}

GLSL Varying Variables
• Let’s look at a real case, shading

– Current OGL does Gouraud Shading
– Phong shading produces much higher visual quality, but turns out

to be a big deal for hardware

• Illumination takes place in vertex transformation thenIllumination takes place in vertex transformation, then
shading (color interpolation) goes in the following stage

• But Phong shading basically requires per fragmentBut Phong shading basically requires per fragment
illumination

GLSL Varying Variables
• Varying variables are interpolated from vertices, utilizing

topology information, during rasterization
• GLSL has some predefined varying variables, such as

color, texture coordinates etc.
U f l l i f h• Unfortunately, normal is not one of them

• In GLSL, to do Phong shading, let’s make normal a
i i blvarying variable

GLSL Varying Variables

• Define varying variables in both vertex and fragment
shadersshaders

• Varying variables must be written in the vertex shader

varying vec3 normal;

• Varying variables must be written in the vertex shader
• Varying variables can only be read in fragment shaders

More Setup for GLSL UniformMore Setup for GLSL- Uniform
VariablesVariables

• Uniform variables, this is one way for your C program to
communicate with your shaders (e.g. what time is it since the y (g
bullet was shot?)

• A uniform variable can have its value changed by primitive
only, i.e., its value can't be changed between a glBegin /
glEnd pair.

• Uniform variables are suitable for values that remain
constant along a primitive, frame, or even the whole scene.
U if i bl b d (b t t itt) i b th• Uniform variables can be read (but not written) in both
vertex and fragment shaders.

More Setup for GLSL UniformMore Setup for GLSL- Uniform
VariablesVariables

• The first thing you have to do is to get the memory
location of the variablelocation of the variable.
– Note that this information is only available after you link the

program. With some drivers you may be required to be using the
program, i.e. glUseProgramObjectARB is already called

• The function to use is:
GLint glGetUniformLocationARB(GLhandleARB program, const char *name);

Parameters:

program - the handler to the program p g p g

name - the name of the variable.

The return value is the location of the variable, which can be used to assign values to it.

More Setup for GLSL UniformMore Setup for GLSL- Uniform
VariablesVariables

• Then you can set values of uniform variables with a family
of functionsof functions.

• A set of functions is defined for setting float values as
below A similar set is available for int’s just replace “f”below. A similar set is available for int s, just replace f
with “i”

void glUniform1fARB(GLint location, GLfloat v0);
id lU if 2fARB(GLi t l ti GLfl t 0 GLfl t 1)void glUniform2fARB(GLint location, GLfloat v0, GLfloat v1);

void glUniform3fARB(GLint location, GLfloat v0, GLfloat v1, GLfloat v2);
void glUniform4fARB(GLint location, GLfloat v0, GLfloat v1, GLfloat v2, GLfloat v3);

GLint glUniform{1,2,3,4}fvARB(GLint location, GLsizei count, GLfloat *v); g { , , , } (, ,);
Parameters:

location - the previously queried location.
v0,v1,v2,v3 - float values.
count - the number of elements in the arraycount the number of elements in the array
v - an array of floats.

More Setup for GLSL UniformMore Setup for GLSL- Uniform
VariablesVariables

• Matrices are also an available data type in GLSL, and a set
of functions is also provided for this data type:of functions is also provided for this data type:

GLint glUniformMatrix{2,3,4}fvARB(GLint location, GLsizei count, GLboolean transpose, GLfloat *v); g { , , } (, , p ,);

Parameters:

location - the previously queried location.

co nt the n mber of matrices 1 if a single matri is being set or n for an arra of ncount - the number of matrices. 1 if a single matrix is being set, or n for an array of n
matrices.

transpose - wheter to transpose the matrix values. A value of 1 indicates that the matrix
values are specified in row major order, zero is column major order p j , j

v - an array of floats.

More Setup for GLSL UniformMore Setup for GLSL- Uniform
VariablesVariables

• Note: the values that are set with these functions will keep
their values until the program is linked againtheir values until the program is linked again.

• Once a new link process is performed all values will be
reset to zeroreset to zero.

More Setup for GLSL UniformMore Setup for GLSL- Uniform
VariablesVariables

• A sample:
Assume that a shader with the followingAssume that a shader with the following
variables is being used:

uniform float specIntensity;
if 4 C l

In the OpenGL application, the code for setting the variables could
be:

uniform vec4 specColor;
uniform float t[2];
uniform vec4 colors[3]; GLint loc1,loc2,loc3,loc4;

float specIntensity = 0.98;
float sc[4] = {0.8,0.8,0.8,1.0};float sc[4] {0.8,0.8,0.8,1.0};
float threshold[2] = {0.5,0.25};
float colors[12] = {0.4,0.4,0.8,1.0, 0.2,0.2,0.4,1.0, 0.1,0.1,0.1,1.0};
loc1 = glGetUniformLocationARB(p,"specIntensity");
glUniform1fARB(loc1,specIntensity);glUniform1fARB(loc1,specIntensity);
loc2 = glGetUniformLocationARB(p,"specColor");
glUniform4fvARB(loc2,1,sc);
loc3 = glGetUniformLocationARB(p,"t");
glUniform1fvARB(loc3,2,threshold);glUniform1fvARB(loc3,2,threshold);
loc4 = glGetUniformLocationARB(p,"colors");
glUniform4fvARB(loc4,3,colors);

More Setup for GLSL AttributeMore Setup for GLSL- Attribute
VariablesVariables

• Attribute variables also allow your C program to
communicate with shaders

• Attribute variables can be updated at any time, but can
only be read (not written) in a vertex shader.

• Attribute variables pertain to vertex data, thus not useful in
fragment shader

• To set its values, (just like uniform variables) it is
necessary to get the location in memory of the variable.
– Note that the program must be linked previously and some drivers

may require the program to be in use.
GLint glGetAttribLocationARB(GLhandleARB program,char *name); g (p g ,);
Parameters:

program - the handle to the program.
name - the name of the variable

More Setup for GLSL AttributeMore Setup for GLSL- Attribute
VariablesVariables

• As uniform variables, a set of functions are provided to set
attribute variables (replacing “f” with “i” gives the API for int’s)attribute variables (replacing f with i gives the API for int s)

void glVertexAttrib1fARB(GLint location, GLfloat v0);
2f (G G f 0 G f 1)void glVertexAttrib2fARB(GLint location, GLfloat v0, GLfloat v1);

void glVertexAttrib3fARB(GLint location, GLfloat v0, GLfloat v1,GLfloat v2);
void glVertexAttrib4fARB(GLint location, GLfloat v0, GLfloat v1,,GLfloat v2, GLfloat v3);

oror

GLint glVertexAttrib{1,2,3,4}fvARB(GLint location, GLfloat *v);

Parameters:

l ti th i l i d l tilocation - the previously queried location.

v0,v1,v2,v3 - float values.

v - an array of floats.

More Setup for GLSL AttributeMore Setup for GLSL- Attribute
VariablesVariables

• A sample snippet

Assuming the vertex shader has:

attribute float height;

In the main Opengl program, we can do the following:

l lG tAtt ibL ti ARB("h i ht")loc = glGetAttribLocationARB(p,"height");
glBegin(GL_TRIANGLE_STRIP);
glVertexAttrib1fARB(loc,2.0);
glVertex2f(-1,1);

lV t Att ib1fARB(l 2 0)glVertexAttrib1fARB(loc,2.0);
glVertex2f(1,1);
glVertexAttrib1fARB(loc,-2.0);
glVertex2f(-1,-1);

lV t Att ib1fARB(l 2 0)glVertexAttrib1fARB(loc,-2.0);
glVertex2f(1,-1); glEnd();

Appendix

• Sample Shaders
• List of commonly used Built-in’s of GLSL
• Shader Tools• Shader Tools

Ivory – vertex shader
uniform vec4 lightPos;
varying vec3 normal;varying vec3 normal;
varying vec3 lightVec;
varying vec3 viewVec;
void main(){

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
vec4 vert = gl ModelViewMatrix * gl Vertex;vec4 vert gl_ModelViewMatrix gl_Vertex;
normal = gl_NormalMatrix * gl_Normal;
lightVec = vec3(lightPos - vert);g (g);
viewVec = -vec3(vert);

}

Ivory – fragment shader
varying vec3 normal;
varying vec3 lightVec;
varying vec3 viewVec;
void main(){

vec3 norm = normalize(normal);
vec3 L = normalize(lightVec);(g);
vec3 V = normalize(viewVec);
vec3 halfAngle = normalize(L + V);
float NdotL = dot(L, norm);
float NdotH = clamp(dot(halfAngle norm) 0 0 1 0);float NdotH = clamp(dot(halfAngle, norm), 0.0, 1.0);
// "Half-Lambert" technique for more pleasing diffuse term
float diffuse = 0.5 * NdotL + 0.5;
float specular = pow(NdotH, 64.0);
float result = diffuse + specular;
gl_FragColor = vec4(result);

}

Gooch – vertex shader
uniform vec4 lightPos;
varying vec3 normal;
varying vec3 lightVec;
varying vec3 viewVec;
void main(){

gl_Position = gl_ModelViewProjectionMatrix *gl Vertex;gl_Vertex;
vec4 vert = gl_ModelViewMatrix * gl_Vertex;
normal = gl NormalMatrix * gl Normal;normal gl_NormalMatrix gl_Normal;
lightVec = vec3(lightPos - vert);
viewVec = -vec3(vert);

}}

Gooch – fragment shader
uniform vec3 ambient;
varying vec3 normal;varying vec3 normal;
varying vec3 lightVec;
varying vec3 viewVec;
void main(){void main(){

const float b = 0.55;
const float y = 0.3;
const float Ka = 1.0;
const float Kd = 0.8;co st oat d 0.8;
const float Ks = 0.9;
vec3 specularcolor = vec3(1.0, 1.0, 1.0);
vec3 norm = normalize(normal);
vec3 L = normalize (lightVec);
vec3 V = normalize (viewVec);
vec3 halfAngle = normalize (L + V);g ();

Gooch – fragment shader (2)

vec3 orange = vec3(.88,.81,.49);
vec3 purple = vec3(.58,.10,.76);vec3 purple vec3(.58,.10,.76);
vec3 kCool = purple;
vec3 kWarm = orange;
float NdotL = dot(L, norm);
float NdotH = clamp(dot(halfAngle, norm), 0.0, 1.0);
float specular = pow(NdotH, 64.0);
float blendval = 0.5 * NdotL + 0.5;
vec3 Cgooch = mix(kWarm, kCool, blendval);
vec3 result = Ka * ambient + Kd * Cgooch + specularcolor * Ks * g pspecular;
gl_FragColor = vec4(result, 1.0);

}

Built-in variables

• Attributes & uniforms
• For ease of programming
• OpenGL state mapped to variables• OpenGL state mapped to variables
• Some special variables are required to be

written to, others are optional

Special built-ins

• Vertex shader
vec4 gl_Position; // must be written
vec4 gl_ClipPosition; // may be written
float gl PointSize; // may be writtenfloat gl_PointSize; // may be written

• Fragment shader• Fragment shader
float gl_FragColor; // may be written
float gl FragDepth; // may be read/writtenfloat gl_FragDepth; // may be read/written
vec4 gl_FragCoord; // may be read
bool gl_FrontFacing; // may be read_

Attributes

• Built-in
attribute vec4 gl Vertex;attribute vec4 gl_Vertex;
attribute vec3 gl_Normal;
attribute vec4 gl_Color;
attribute vec4 gl_SecondaryColor;
attribute vec4 gl_MultiTexCoordn;
attribute float gl FogCoord;attribute float gl_FogCoord;

• User-definedUser defined
attribute vec3 myTangent;
attribute vec3 myBinormal;
Etc…

Built-in Uniforms
uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl ModelViewProjectionMatrix;uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat3 gl_NormalMatrix;
uniform mat4 gl_TextureMatrix[n];
struct gl_MaterialParameters {
vec4 emission;
vec4 ambient;
vec4 diffuse;vec4 diffuse;
vec4 specular;
float shininess;

};
uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;

Built-in Uniforms
struct gl_LightSourceParameters {
vec4 ambient;
vec4 diffuse;vec4 diffuse;
vec4 specular;
vec4 position;
vec4 halfVector;
vec3 spotDirection;
float spotExponent;
float spotCutoff;
float spotCosCutoff;float spotCosCutoff;
float constantAttenuation
float linearAttenuation
float quadraticAttenuation

};
Uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];

Built-in Varyings

varying vec4 gl_FrontColor // vertex_
varying vec4 gl_BackColor; // vertex
varying vec4 gl_FrontSecColor; // vertex
varying vec4 gl BackSecColor; // vertexy g g _ ; //
varying vec4 gl_Color; // fragment
varying vec4 gl SecondaryColor; // fragmentvarying vec4 gl_SecondaryColor; // fragment
varying vec4 gl_TexCoord[]; // both
varying float gl FogFragCoord; // bothvarying float gl_FogFragCoord; // both

Built-in functions

• Angles & Trigonometry
– radians, degrees, sin, cos, tan, asin, acos,

atan
• Exponentials

– pow, exp2, log2, sqrt, inversesqrtp , p , g , q , q
• Common

abs sign floor ceil fract mod min max– abs, sign, floor, ceil, fract, mod, min, max,
clamp

Built-in functions

• Interpolations
– mix(x,y,a) x*(1.0-a) + y*a)
– step(edge,x) x <= edge ? 0.0 : 1.0step(edge,x) x edge ? 0.0 : 1.0
– smoothstep(edge0,edge1,x)

t = (x-edge0)/(edge1-edge0);
t = clamp(t, 0.0, 1.0);
return t*t*(3.0-2.0*t);

Built-in functions

• Geometric
– length, distance, cross, dot, normalize,

faceForward, reflect
• Matrix

– matrixCompMultp
• Vector relational

lessThan lessThanEqual greaterThan– lessThan, lessThanEqual, greaterThan,
greaterThanEqual, equal, notEqual, any, all

Built-in functions

• Texture
– texture1D, texture2D, texture3D,

textureCube
– texture1DProj, texture2DProj,

texture3DProj, textureCubeProj
– shadow1D, shadow2D, shadow1DProj,

shadow2Dproj
• Vertex

– ftransform

Tools

• OpenGL Extensions Viewer
– http://www realtech-vr com/glview/download htmlhttp://www.realtech vr.com/glview/download.html

• Simple Shaders
– ogl2brick (http://developer.3dlabs.com/downloads/glslexamples/)ogl2brick (http://developer.3dlabs.com/downloads/glslexamples/)

– Hello GPGPU (http://www.gpgpu.org/developer/)

• ShaderGenShaderGen
– http://developer.3dlabs.com/downloads/shadergen/

• Shader data structures – Brook, glift
• Recommended literature – OpenGL RedBook,

OpenGL OrangeBook, GPU Gems 2

