# Ray Tracing

Kadi Bouatouch IRISA Email: kadi@irisa.fr

IRISA

# Introduction to Computer Graphics

IRISA

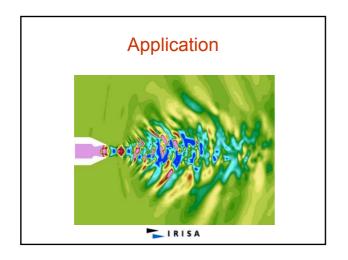
# Context

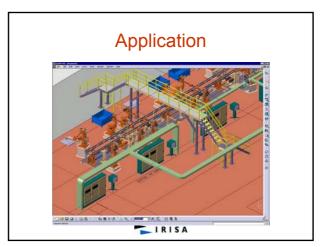
- Representation and visualization of things which do not exist
  - Create 3D virtual worlds
    - Choose the model of the objects we want to represent
  - Visualize them
    - Choose a representation model
  - Animate these worlds

IRISA

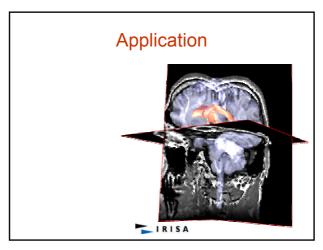
# Interest in 3D virtual worlds

- · Computer aided design
- Manufacturing
- Movies
- Entertainement: video games
- Data Visualization
- Virtual Reality
- · Working without risk
- Simulation





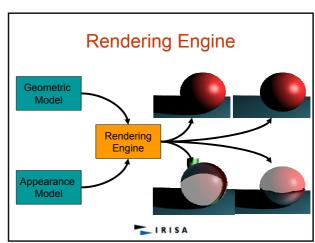












# Rendering Engine

- · Real-time
  - Z-buffer
    - 10 images per second >> 0,1s • 25 images per second >> 0.04 s
    - 60 images per second >> 0,016 s
    - 120 images per second >> 0,008 s
- · Non real-time
  - Ray Tracing, Path Tracing, Photon Mapping
  - Radiosity



# **Illumination Model**

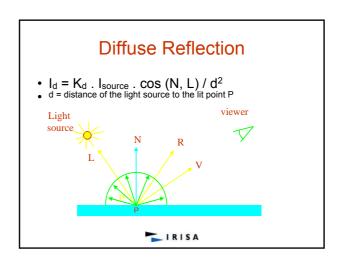
- Expresses the light intensity at a point due to:
  - The light sources giving rise to :
    - diffuse and specular reflections
    - shadows
  - The reflectance and the transmittance of the object
- $I_r = I_d + I_s$ 
  - Id: diffuse intensity
  - Is: specular intensity

### IRISA

# **Diffuse Reflection**

- Lambert Reflection (Diffuse):
  - Part of the incident light penetrates the object then arises from the object with the same intensity in all the directions
  - I<sub>d</sub> = K<sub>d</sub> . I<sub>source</sub> . cos (N, L) / d<sup>2</sup>
    - K<sub>d</sub>: diffuse color of the object
    - I<sub>source</sub>: intensity of the light source
       N: normale at point P

    - L : light direction
      d : distance between the light source and point P



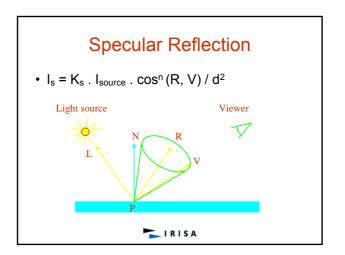
# **Specular Reflection** Phong Model: - reflection by the object's surface of the part of the incident light that did not penetrates into the object; it depends on the view direction V

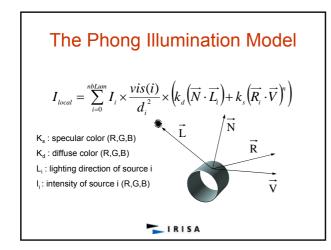
- I<sub>s</sub> = K<sub>s</sub> . I<sub>source</sub> . cos<sup>n</sup> (R, V) / d<sup>2</sup>
   K<sub>s</sub> : specular color of the object

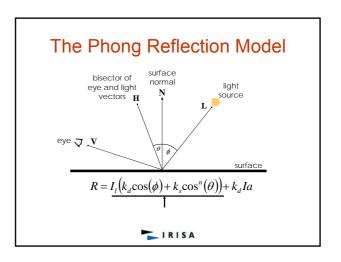
  - Isource: intensity of the light source
     R: direction of ideal specular reflection
  - V : view direction
  - n : shininess or roughness

    - n high: shiny, tight reflection cone
       n small: mat object, wide reflection cone

    - For glass, n = 200Gives the size of highlight







# Some Remarks ...

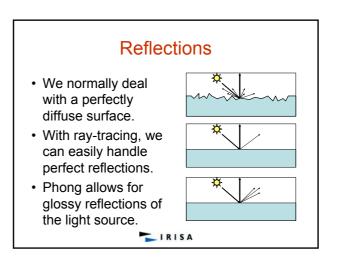
- · If multiple sources, sum their contributions
- · Several directions have to be known
  - The normal to the objects, the light source directions and the view direction:
    - the directions L, N et R are coplanar
    - The angle (L, N) is equal to (N, R)
- K<sub>s</sub> and K<sub>d</sub> are 3-component vectors:
  - Red, Green, Blue
- $I_d + I_s = (k_d \cdot \cos(N, L) + k_s \cdot \cos^n(R, V)) \cdot I_{source} / d^2$ 
  - The term between () = BRDF

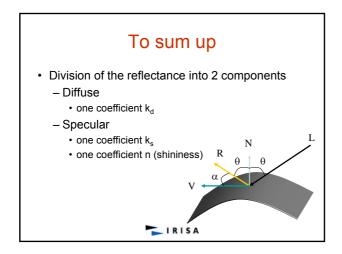


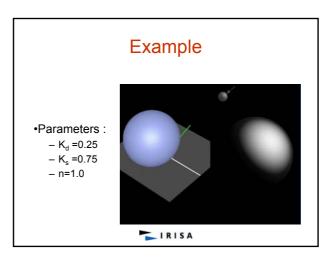
# Some Remarks ... I<sub>s</sub> = ks . <N,H><sup>n</sup> . I<sub>source</sub> If the surface is perfectly specular, n is very large <N,H><sup>n</sup> is not negligible only for (N,H) = 0 Thus Ir = ks . I<sub>source</sub> (N,H) = 0 means that the incident and reflection angles are equal Only 1 reflected ray: because we assume the surface perfectly specular

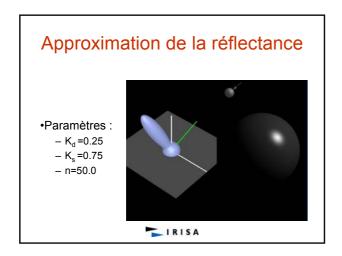
IRISA

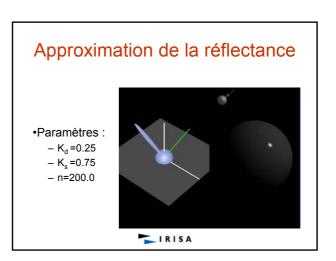
# Some Remarks ... Suppose (L',N) = (V,N) and (V',N) = (L,N) Then: (N,H) = (N,H') Ir = ks . < N,H>n . ls If = ks . < N,H>n . ls' Thus: ks . < N,H>n = ks . < N,H'>n This is the reciprocity of the reflection model

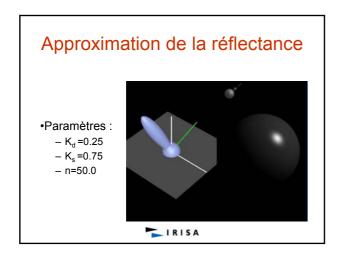


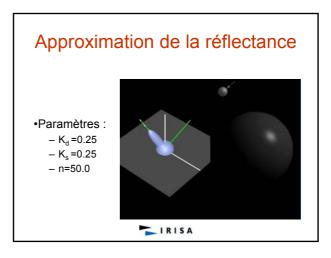


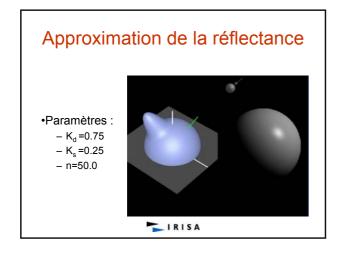


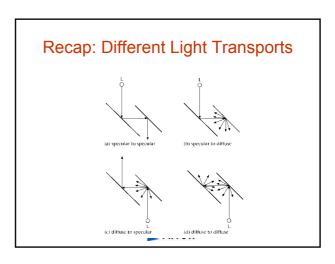


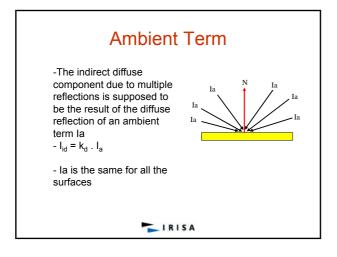


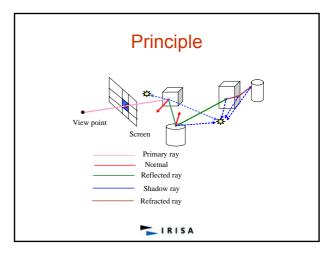










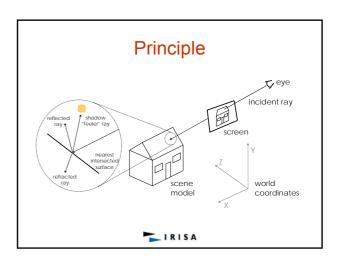


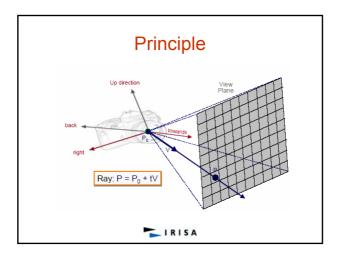


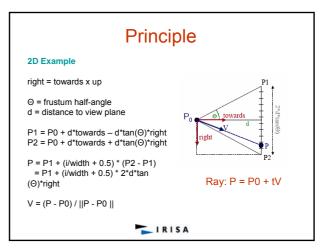
- Trace a primary ray passing through a pixel P: intersection point Compute the contribution of the sources to P by tracing shadow rays toward the light sources.
- If a shadow ray intersects an opaque object between P and the light source then P is shadowed
- Compute the contribution to P of other points within the scene by tracing secondary rays: reflected and refracted
  A reflected ray is traced only if the material is specular
  A refracted ray is traced only if the material is transparent
  A secondary ray intersects the scene at a point P'

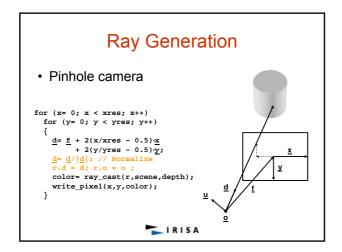
- Again compute the contribution of the sources to  $\mathsf{P}'$  by tracing shadow rays toward the light sources.
- Repeat the process
  Each ray brings its contribution to the luminance of a point

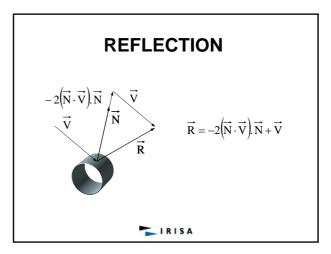


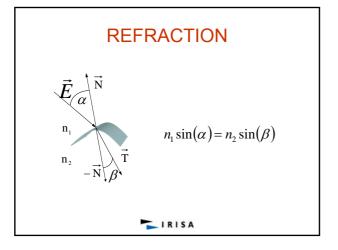












# Refraction: Using Snell's Law

$$\frac{\sin\alpha}{\sin\beta} = \frac{\eta_2}{\eta_1} = \eta_{21}$$

• Using this law it is possible to show that:

$$T = -\eta_{12}E + N\left(\eta_{12} \cdot \cos\alpha - \sqrt{1 + \eta_{12}^2 \cdot (\cos^2\alpha - 1)}\right)$$

 Note that if the root is negative then total internal reflection has occurred and you just reflect the vector as normal

IRISA

# Ray-Tracing: Pseudocode

For each ray **r** from eye to pixel, color the pixel with the value returned by ray\_cast(**r** , scene,depth):

```
ray_cast(r, scene,depth)

{

If(depth >Max_Depth) {color ← black}
else {

If (intersection(r,scene)) {

p ← point_of_intersection(r, scene);

u ← reflect(r, p);

v ← refract(r, p);

color ← phong_direct(p, r) +

k_x × ray_cast(u, scene, depth+1) +

kt× ray_cast(v, scene, depth+1);
} else color ← background_color;
}

return(color);
}
```

# Pseudocode Explained

- $\mathbf{p} \leftarrow \text{point\_of\_intersection}(\mathbf{r}, \text{scene});$ 
  - Compute  ${\bf p}$ , the point of intersection of ray  ${\bf r}$  with the scene
- $u \leftarrow reflect(r, p); v \leftarrow refract(r, p);$ 
  - Compute the reflected ray  ${\bf u}$  and the refracted ray  ${\bf v}$  using Snell's Laws

# Pseudocode Explained

- $phong(\mathbf{p}, \mathbf{r})$ 
  - Evaluate the Phong reflection model for the ray r at point p on surface s, taking shadowing into account
- $k_s \times ray\_cast(\mathbf{u},\mathbf{scene},\mathbf{depth})$ 
  - Multiply the contribution from the reflected ray  ${\bf u}$  by the specular color  ${\bf k}_s$  for surface  ${\bf s}$  containing  ${\bf p}$ . Only (specular-to-specular)\* light transport is handled. Ideal specular (mirror) reflection
- $k_t \times ray\_cast(v,scene,depth)$ 
  - Multiply the contribution from the refracted ray  ${\bf v}$  by the specular-refraction coefficient  ${\bf k}_t$  for surface  ${\bf s}.$  Only (specular-refraction)\* light transport is handled

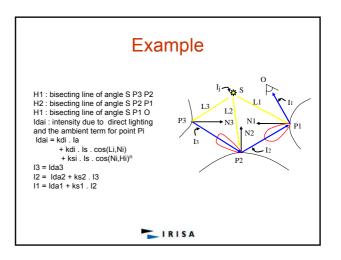


# About Those Calls to ray\_cast()...

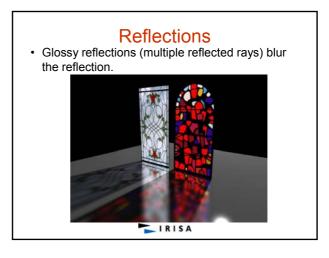
- The function ray\_cast() calls itself recursively
- · There is a potential for infinite recursion
  - Consider a "hall of mirrors"
- · Solution: limit the depth of recursion
  - A typical limit is five calls deep
  - Note that the deeper the recursion, the less the ray's contribution to the image, so limiting the depth of recursion does not affect the final image much

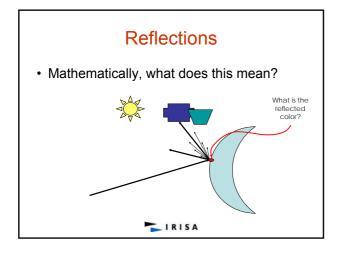
IRISA

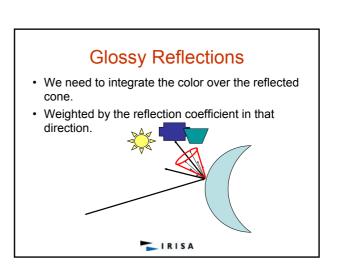
# 

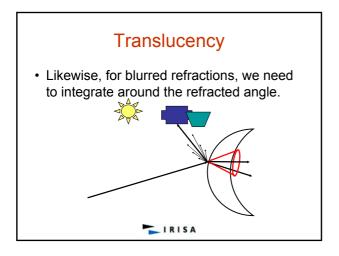


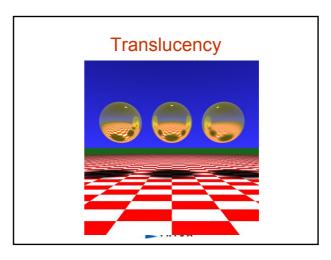


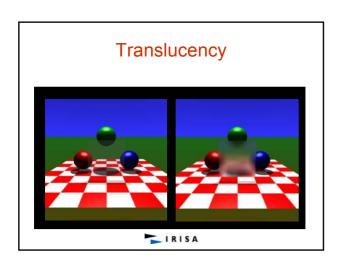


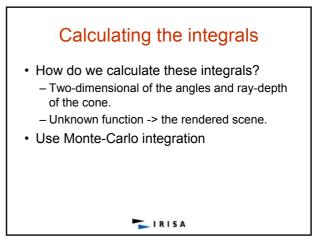








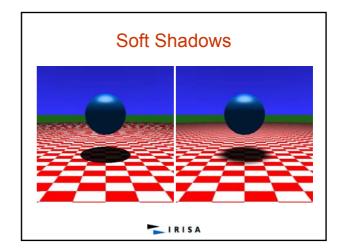


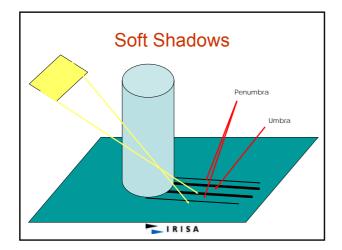


# **Shadows**

- Ray tracing casts shadow from a point light source.
- Many light sources are illuminated over a finite area.
- The shadows between these are substantially different.
- · Area light sources cast soft shadows
  - Penumbra
  - Umbra

IRISA





# **Soft Shadows**

- Umbra No part of the light source is visible.
- Penumbra Part of the light source is occluded and part is visible (to a varying degree).
- Which part? How much? What is the Light Intensity reaching the surface?

# Pros and Cons of Ray Tracing

- · Advantages of ray tracing
  - All the advantages of the Phong model
  - Also handles shadows, reflection, and refraction
- · Disadvantages of ray tracing
  - Computational expense
  - No diffuse inter-reflection between surfaces
  - Not physically accurate
- · Other techniques exist to handle these shortcomings, at even greater expense!

# An Aside on Antialiasing

- Our simple ray tracer produces images with noticeable "jaggies"
- · Jaggies and other unwanted artifacts can be eliminated by antialiasing:
  - Cast multiple rays through each image pixel
  - Color the pixel the average ray contribution
  - An easy solution, but it increases the number of rays, and hence computation time, by an order of magnitude or more



# Intersection

### Principle

- The scene is supposed to be expressed in the world coordinate system (WCS).  $\label{eq:wcs} % \begin{tabular}{ll} \end{tabular} % \begin$
- It may be: A set of independent objects
- Purpose: intersect a scene with a ray whose equation is given by :
- $P = P_0 + t \cdot D$
- where:

Po is the ray origin;

D = (dx, dy, dz) is the direction vector of the ray;

- Intersection result = { ti / ti is a value of t corresponding to an intersection point }.
- Only the closest point to the ray origin is used to compute shading and secondary shot rays.

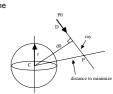
IRISA

## Intersection

### Sphere

- $d_0$ : Orthogonal distance between the ray and the center of the sphere of radius r and center C  $P = P_0 + t \cdot D$ : the ray equation  $P_0 = (X_0, Y_0, Z_0)$   $D = (d_0, d_0, d_2)$  If  $d_0^2 \le r^2$ , then the ray intersects the sphere

- Intersection points = solutions of
- $|| P_0 C ||^2 + 2t$ . ( $| P_0 C |$ ).  $|| D + t^2$ .  $|| D ||^2 = r^2$   $|| D ||^2 = r^2$
- distance d between C and a point P on the ray.
- This gives:  $d^2 = ||P_0 + t \cdot D C||^2 = ||P_0 C||^2 + 2t \cdot (P_0 C) \cdot D + t^2 \cdot ||D||^2$
- By setting to 0 the derivative of  $d^2$ , we obtain:  $t = ((P_0 C) . D / || D ||^2) = -(P_0 C) . D$ After substitution:  $d_0^2 = || P_0 C ||^2 D$
- (( P C ) . D )2



### Axis-aligned Parallelepiped

- Faces: perpendicular to the axes of the world coordinate system.
- First, the intersections between the ray and the faces x = x1 and x = x2 are computed.
- Two values of t are then obtained t1 = (x1 x0)/dx and t2 = (x2 x0)/dx. Interval: [lx, Mx] = [min(t1, t2), max(t1, t2)]
- Same processing applied to the faces perpendicular to the y and z axes. Two other intervals: [ ly, My ] and [ lz, Mz ]
- The result is then an intersection interval given by : [I, M] = [ max(lx, ly, lz), min(Mx, My, Mz)]

  If I <= M then the ray intersects the parallelepiped bounding volume, otherwise it does not intersect it
- Closest intersection point: t=I

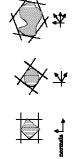


## Intersection

### Polyhedron



- Polyhedron = set of pairs of parallel faces
- · Ni: normal to a pair of faces
- A pair of parallel faces is called slab







IRISA

# Intersection

### Polyhedron

- · The intersection test is similar to that of a parallelepiped, except that the faces are not perpendicular to the axes of the coordinate system
- For each pair i, compute interval [Ii, Mi]
- · Let N be the normal to a face
- N . P + d = 0 the equation of the plane containing the face.

IRISA

# Intersection

### Polyhedron

The value of t corresponding to the intersection between the ray and this face is computed by substituting the ray equation into that of the plane :

t = - (d + N . P0) / N . D· For each slab i , N=Ni and  $t=\alpha_i*d+\beta i$ -1

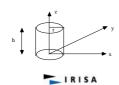
 $\alpha i = \frac{}{Ni \bullet D}$ 

Given a slab i, these values are the same for all the object bounding volumes

 $\beta i = \frac{-Ni \bullet P0}{Ni \bullet D}$ 

- The cylinder : intersection between an infinite height cylinder and the subspace delimited by two planes which equations are z = 0 and z = h
- The intersection between the ray an the infinite height cylinder is first performed. This yields a first interval [t1,t2]

  The intersection with the two planes gives a second interval [t3, t4].
- The final intersection interval [I, M] results from the combination of these two intervals (as for the parallelepiped).



# Intersection

### Cylinder: continued

- obtaining [ t1, t2 ]

  The equation of the infinite height cylinder:

  x² + y² = r²

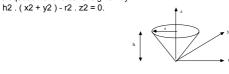
- Substituting the ray equation in this equation we obtain:  $t^2 \cdot (dx^2 + dy^2) + 2t \cdot (x_0 \cdot dx + y_0 \cdot dy) + (x_0^2 + y_0^2 r^2) = 0$ Solving this equation gives the interval [t1, t2].
- obtaining [ t3, t4 ]
  - Let A and B the two values of t resulting from the intersection with the two planes
  - $A = -z_0 / dz$  and  $B = (h z_0) / dz$
- We get :
  - t3 = min(A,B) and t4 = max(A,B)



# Intersection

### Cone

- Intersection: performed in the LCS of the cone
- Cone: intersection between an infinite height cone and the subspace delimited by two planes, the equations of which are z = 0 and z = h.
- Intersection between the ray and the infinite height cone is first
- The equation of this cone is given by :



IRISA

# Intersection

- · Substituting the ray equation in this equation yields an interval [t1, t2].
- Then the planes are in their turn intersected to give a second interval [t3, t4] such that:
  - t3 = min(A, B) and t4 = max(A, B)
- A = -z0 / dz and B = (h z0) / dz. where
- The final interval is the combination of these two intervals (as for the cylinder)

- Several ray-polygon intersection methods have been proposed in the literature.
- · Only two of them are presented .
- For all these methods, the intersection process consists of two steps
  - First step: Ray-Plane intersection test
    - the goal of the first step is to perform the intersection between the ray and the plane containing the polygon
  - Second step: Inside Outside test
    - the second step tests if the resulting point is inside or outside the polygon.



# Intersection - Triangle

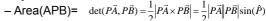
- · Barycentric coordinates
  - Non-degenerate triangle ABC  $\underline{P} = \lambda_1 \underline{A} + \lambda_2 \underline{B} + \lambda_3 \underline{C}$



 $-\lambda_3$  = area(APB) / area(ACB),



 $-\lambda_3$  = area(CPB) / area(ACB),



 $-\lambda_i$  greater or equal than zero



# Intersection

- · Polygon: Snyder's method
- · Ray-triangle intersection: extension to a polygon.
- Let Pi be the vertices of a triangle and Ni the associated normals which are used for normal interpolation across the triangle.
- Normal to the triangle:  $N = (P1 P0) \times (P2 P0)$
- A point P lying on the triangle plane satisfies :

 $P \cdot N + d = 0$ where d = -P0 . N.

To intersect a ray P = O + t . D with a triangle, first compute the t parameter of the intersection between the ray and the triangle plane

t = (d - N.O)/N.D.

IRISA

# Intersection

### Polygon: Snyder's method

- Projecting the triangle into any other plane, except one that is orthogonal to the triangles plane will not change the barycentric coordinates of the triangle.
- This allows to simplify computations, since we can choose any of the coordinate system's three axis-aligned planes to project our triangle, thus throwing away one of the three coordinates and reducing the barycentric equations to R<sup>2</sup>.
- For reasons of numerical stability we want to choose the dominant axis of the triangles normal for the projection.
- An index i0 is computed: equal\_either to 0 if | Nx | is maximum (i.e. the x axis is dominant) or to 1 if | Ny | is maximum or to 2 if | Nz | is maximum.



### Polygon: Snyder's method

- Let i1 and i2 ( i1, i2  $\in$  (0, 1, 2) ) be two unequal indices different from i0. Compute the i1 and i2 components of the intersection point I: | i1 = 0i1 + t . Di1 | and | ii2 = 0i2 + t . Di2 | The inside-outside test can be performed by computing scalars ß0, ß1 and ß2 according to : | ß = [ ( Pi+2 Pi+1 )  $\times$  ( I Pi+1 ) ]i0 / [ N ]i0 | The ß1 are the barycentric coordinates of the point where the ray intersects the triangle plane. | Is inside the triangle if and only if 0  $\leq$  ß  $\leq$  1 for i {0, 1, 2}. The interpolated normal at point I is given by :

- The interpolated normal at point I is given by: N' = &0 . N0 + &1 . N1 + &2 . N2.Snyder's method can be easily extended up to polygons.
- The main idea is to consider a polygon as a union of triangles.



# Intersection

### Marchal's method

- I is the ray-plane intersection point.
- The Pi are transformed to the two dimensional coordinates system  $(u,\,v)$  whose origin is vertex P0.
- The plane of this coordinates system is the
- The inside-outside test determines if an edge PiPi+1 intersects the v axis at a point M ( this may occur when the u components of Pi and Pi+1 have different signs ).
- If so, and if P0I < P0M then I is inside the polygon, else it is outside.
- On the other hand, if none of the edges intersect the v axis, then I lies outside the polygon.



IRISA

# Intersection

### Marchal's method

- The interpolated normal at point I is given by :
  - NI = ( P0I / P0M ) . NM + ( 1 P0I / P0M ).N0
- where the normal NM at point M is given by :

NM = ( PiM / PiPi+1 ) . Ni+1 + (1 - PiM / PiPi+1) . Ni

• and Ni, Ni+1 are the normals at point Pi and Pi+1. PiPi+1 is the intersected edge.

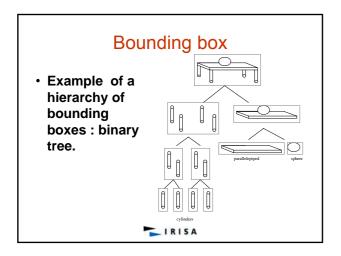


IRISA

# **Bounding box**

- · To reduce the amount of ray-object intersections, its is absolutely necessary to use a hierarchical data structure.
- This data structure is a tree of bounding volumes.
- Bounding volumes are simple geometric objects which fit around the objects.
- They are chosen to be simple to intersect with a ray, such as spheres or parallelepipeds that have faces perpendicular to the axes.





# **Bounding Volume**

### Different kinds of bounding Volume

### Parallelepiped

- For the sake of speed up, the faces of this bounding volume are perpendicular to the axes of the World Coordinates System.
- Its perspective projection onto the screen plane is often used to filter the primary rays (rays starting at the eye location).

### Sphere and Ellipsoid

 They may be used to filter the reflected and refracted rays and those directed to the light sources.

### Polyhedron

- Intersection of slabs: a slab is a pair of parallel faces



# **Bounding Volume Hierarchy**

- Organize objects into a tree
- Group objects in the tree
  - based on spatial relationships
- Each node in the tree contains a bounding box of all the objects below it



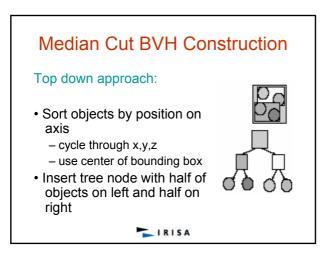
IRISA

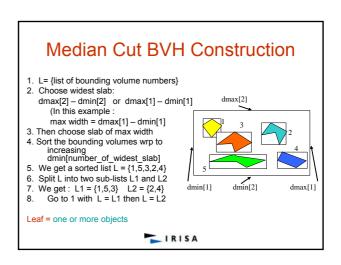
# Bounding Volume Hierarchy (BVH)

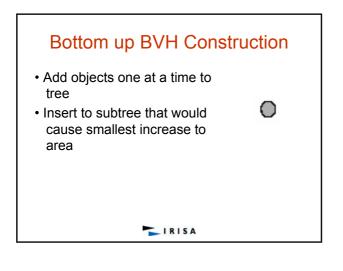
- Determining optimal BVH structure is NP-hard problem
- Heuristic approaches:
  - Cost models (minimize volume or surface area)
  - Spatial models
- · Categories of approaches:
  - Top down
  - Bottom up

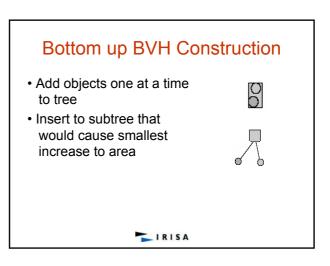












# Bottom up BVH Construction

- · Add objects one at a time to tree
- · Insert to subtree that would cause smallest increase to area





IRISA

# Bottom up BVH Construction

- · Add objects one at a time to tree
- · Insert to subtree that would cause smallest increase to



IRISA

# **Intersection Test Using the BVH**

- Once the hierarchy of bounding volumes has been built, the ray-scene intersection test is performed as follows.
  - The hierarchy is searched from the root to the leaves.
  - During this search, at a node N, the associated bounding volume is checked for an intersection with the current ray.

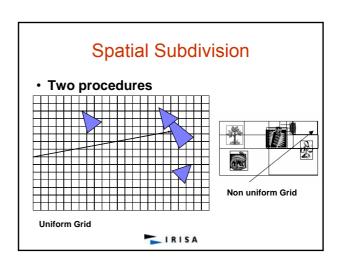
     If the bounding volume of N is intersected, those of its children node are in their turn checked for an intersection.
- This process is repeated recursively and ends up at the leaf nodes.
- Else, if the bounding volume of N is not intersected by the ray, the associated subtree is left out, that is, it is not searched.

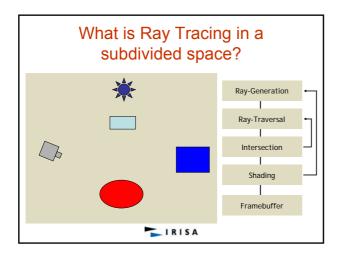
IRISA

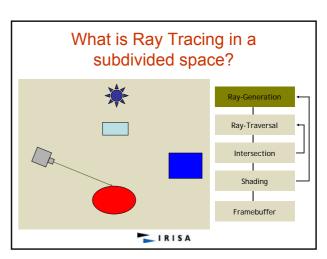
# **Spatial Subdivision**

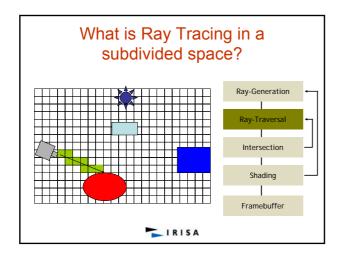
- The rectangular bounding volume of the scene is subdivided into 3D cells
- · Each cell contains a few objects of the scene
- When a ray enters a cell, we check the objects within this cell for an intersection with the ray
- If the intersection process ends up with success then no need to check the rest of the objects
- · If the ray fails to hit any object in the cell then it moves to the next 3D cell
- · Repeat the process

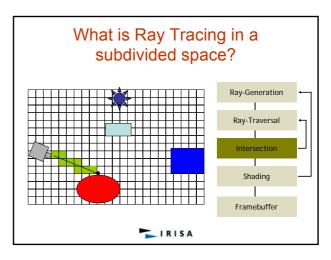
# Spatial Subdivision • Two procedures - A procedure which performs a spatial subdivision of the scene into 3D cells, each of them containing a small portion of the database - A second procedure which determines the next cell along a ray

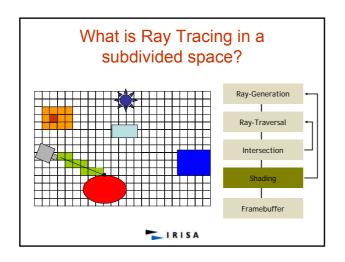


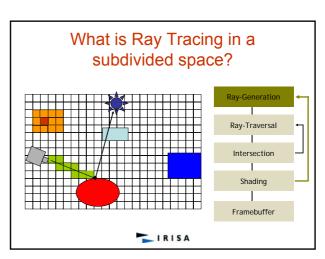


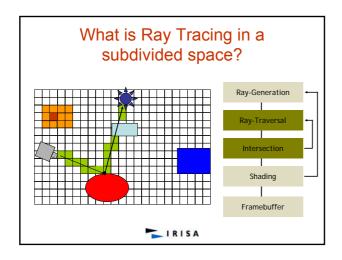


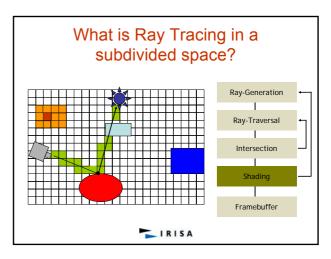


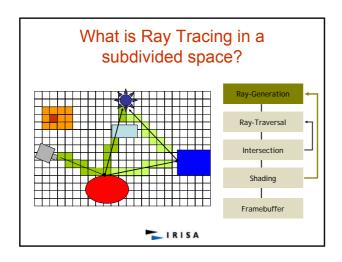


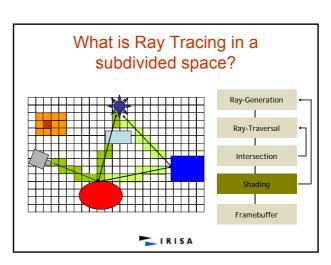


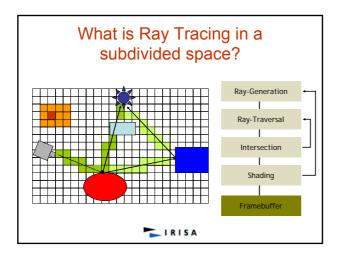


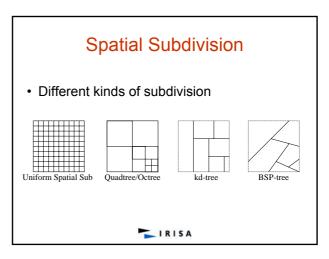


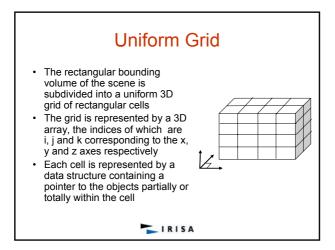




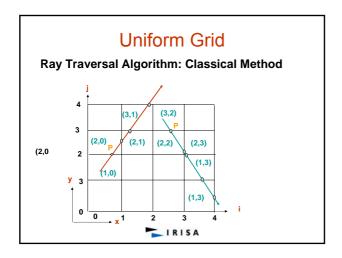


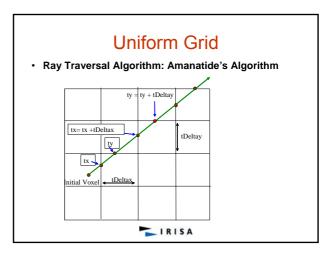


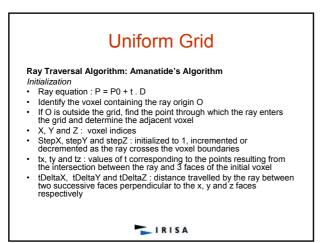


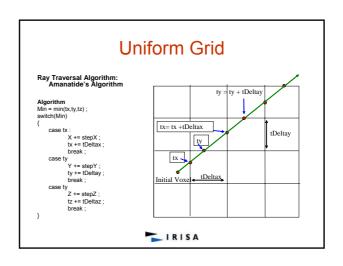


# Uniform Grid Ray Traversal Algorithm: Classical Method Let G[i][j][k] be the 3D array representing the 3D grid Let P the point where the ray leaves the current cell and D the ray direction P is the outgoing point Let w be the axis perpendicular to the face which contains P Let u (x, y or z) be the index (i, j or k) of the current cell corresponding to w If Dw > 0 then the index u of the next cell is u = u + 1, the other indices are unchanged Else it is : u = u − 1 Example: If w = z then u = k If Dz > 0 then the index of the next cell along the ray is k = k + 1, while the other indices do not change If the current cell is G[i][j][k] then the next cell along the ray is G[i][j][k + 1] if Dz > 0, or G[i][j][k - 1] if Dz < 0









# **Uniform Grid**

- · Advantages?
  - easy to construct
  - easy to traverse
- · Disadvantages?
  - may be only sparsely filled
  - geometry may still be clumped (say, densely grouped)





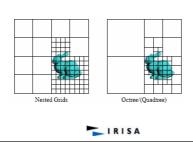
# Non Uniform Grid

- The rectangular bounding volume of the scene is recursively sliced :
   either simultaneously by 3 planes perpendicular to the x, y and z axes: Octree
- or by one plane at a time perpendicular to an axis: Kd-tree, Bsp
- or by one plane at a time non necessary perpendicular to an axis: Bsp tree
- Each slicing plane divides a space (a 3D cell) into two subspaces (3D cells)
- The subdivision process stops either when a cell contains partially or totally a minimum number of objects or the maximum subdivision level is reached for each axis
- The result is a linear array of rectangular cells or a binary tree or an octree
- Each cell is represented by a data structure containing a pointer to the objets partially or totally within it



# Non Uniform Grid

- · Subdivide until each cell contains no more than
- n elements, or maximum depth d is reached

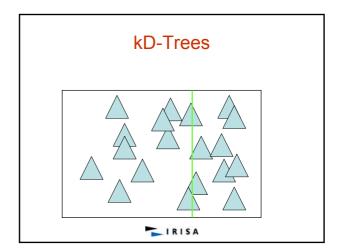


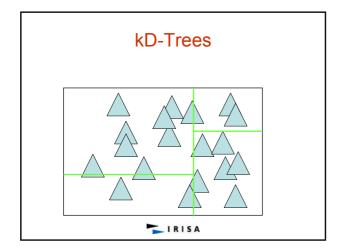
# Non Uniform Grid · Advantages? - grid complexity matches geometric density · Disadvantages? - more expensive to traverse (especially octree) IRISA

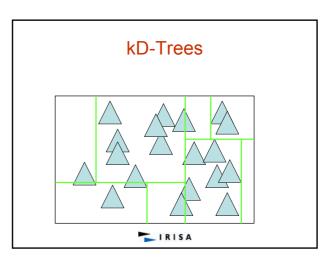
# Non Uniform Grid: Kd-Tree

- Subdivide only 1 dimension
- · Do not subdivide at the center
- · Which axis to pick?
- What point on the axis to pick?
- · One heuristic:
  - Sort objects on each axis
  - Pick point corresponding to "middle" object
  - Pick axis that has "best" distribution of objects
  - -L = n/2, R = n/2 (ideal)
  - Realistically,
    - minimize (L-R) and
    - L approx. n/2, R approx. n/2



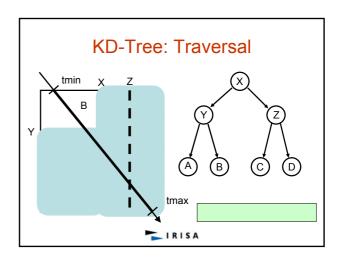






```
KD-Trees: Data Structure

Struct KdTreeNode {
    union {
        u_int axis; // Both, x or y or z split plane (0,1,2), 3 for leaf
        float value; // Interior, split position
        u_int nPrims; // Leaf
    }
    union {
        Primitive *onePrimitive; // Leaf
        Primitive nPrims; // Leaf
    }
    KdTreeNode *LeftChild; // interior
    KdTreeNode *RightChild; // interior
}
```



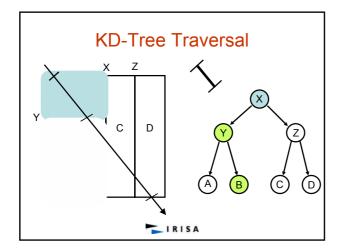
# KD-Tree: Traversal

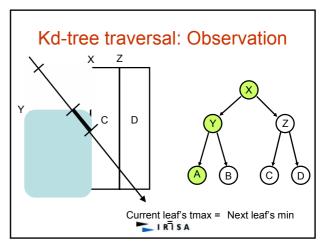
- •Input: a tree and a ray
- •Search for the first intersected primitive in the tree
- •Traversal: start from the root
- •Use of a stack
- •First range of t, [tmin,tmax]: associated with the scene bounding box
- •Internal node encountered: ray is classified wrp to the splitting plane
  - •If range lies entirely in one side of the plane, traversal moves to the appropriate child
  - •If the range straddles the plane, traversal will continue to the first child hit by the ray while the second child is pushed onto the stack along with its range [tmin,tmax]
- •Traversal proceeds down the tree, occasionally pushing items onto the stack, until a leaf node is reached.

```
IRISA
```

```
search-split( split, ray, tmin, tmax ) {
    a = split.axis
    thit = ( split.value - ray.origin[a] ) / ray.direction[a]
    (first, second) = order( ray.direction[a], split.left,split.right )
    if( thit >= tmax or thit < 0 )
    search-node( first, ray, tmin, tmax )
    else if( thit <= tmin )
        search-node( second, ray, tmin, tmax )
    else {
        stack.push( second, thit, tmax )
        search-node( first, ray, tmin, thit )
    }
}</pre>
```

```
search-leaf( leaf, ray, tmin, tmax ) {
    // search for a hit in this leaf
    iff (found-hit and hit.t < tmax )
        succeed( hit )
    else
        continue-search( leaf, ray, tmin, tmax ) {
    if( stack.is-empty )
        fail()
    else {
        (n, tmin, tmax) = stack.pop()
        search-node( n, ray, tmin, tmax )
    }
}</pre>
*Remark
If stack empty, then no
intersection along the
ray and the search
terminates
```

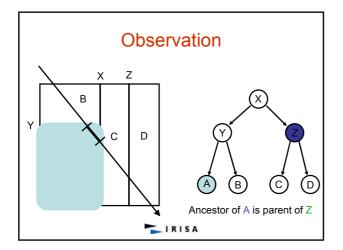


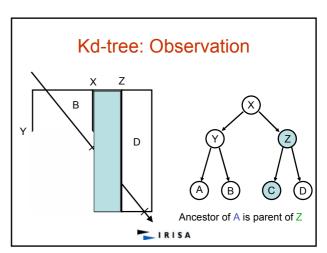


# Kd-tree traversal: Observation

- · Eliminate stack operations
- · How?
  - If the traversal reaches a leaf and fails to find a hit:
    - · Restart the search at the root
    - With tmin advanced to the end of the leaf
    - The first leaf intersected by the modified range is the next leaf that needs to be traversed

```
continue-search( leaf, ray, tmin, tmax )
{
  if( tmax == global-tmax )
    fail()
  else {
    tmin = tmax
    tmax = global-tmax
    search-node( tree.root, ray, tmin, tmax )
  }
}
LRISA
```





# Kd-tree: Backtrack

- In the traditional, a node pushed onto the stack is always the other (second) child of one of the current node's ancestors
- Thus, possible to reach the parent of the node atop the stack by following a chain of parent links (which we can store in the nodes of the tree) from the current node
- If we again employ the tactic of advancing *tmin* to the end of the last leaf visited, then we will be able to recognize the appropriate parent as the closest ancestor that has a nonempty intersection with the remaining (*tmin*; *tmax*) range.

  Increase are not a target.
- Increase per-node storage



# **KD-Backtrack**

```
continue-search (leaf, ray, tmin, tmax ) {
    if( tmax == global-tmax )
        fail()
    else {
        tmin = tmax
        tmax = global-tmax
        backtrack( leaf, parent, ray, tmin, tmax )
    }
}
backtrack( split, ray, tmin, tmax ) {
    (t0,t1) = intersect( split.bounds, ray, tmin, tmax )
    if( no-intersection )
        backtrack( split, parent, ray, tmin, tmax )
    else
        search( split, ray, t0, t1 )
}
```

# **BSP Tree**

- Generalization of kdtrees
- Splitting plane is not axis aligned
- Used in games: DOOM



IRISA

# **BSP** tree

- · A Binary Space Partitioning (BSP) tree data structure
  - Recursive, Hierarchical subdivision of *n*dimensional space into convex subspaces.
- BSP tree construction
  - Partition a subspace by a hyper-plane that touches the edge of the subspace.
  - The result is two new subspaces that can be further partitioned by recursive application of the method.
- A "hyperplane" in an n-dimensional space is an n-1 dimensional object which can be used to divide the space into two half-spaces.



## BSP tree

- · example:
  - In three dimensional space, the "hyperplane" is a plane.
  - In two dimensional space, it is a line.
- BSP trees are extremely versatile, because they are powerful sorting and classification structures.
  - Hidden surface removal
  - Ray tracing hierarchies
  - Solid modeling
  - Robot motion planning.
- Intensive time and space preprocessing vs. linear

display algorithm.



# IRISA

# Building a BSP tree

- Given a set of polygons in three dimensional space, we would like to build a BSP tree which contains all of the polygons.
- The algorithm to build a BSP tree:
  - Select a partition plane.
  - Partition the set of polygons with the plane.
  - Recurse with each of the two new sets.
- The choice of partition plane depends on how the tree will be used, and what sort of efficiency criteria you have for the construction.



# Building a BSP tree

- For some purposes, it is appropriate to choose the partition plane from the input set of polygons
  - Scan-conversion
- Other applications may benefit more from axis aligned orthogonal partitions
  - Ray tracing
  - Space subdivision.
- It is desirable to have a balanced tree, where each leaf contains roughly the same number of polygons.
- It is desirable to minimize polygon splitting.
  - Finding the optimal split is hard, we use a heuristic
    - Testing the plane against a small random number of (5-6) polygons for split.



# BSP tree: Partitioning

- Classify each member of the set with respect to the plane.
- If a polygon lies entirely on one side of the hyper-plane
  - It is added to the partition set for the proper side
- If a polygon spans the plane keep in the node
- If the polygon intersect the hyper-plane
  - Split it as needed and add the parts the proper sets.

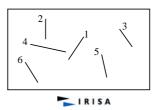
# BSP tree: When to stop?

- The decision to terminate the tree construction is a matter of the specific application.
  - Some applications will benefit from termination when the number of polygons in a leaf node is below a maximum value.
  - Other methods continue until every polygon is placed in an internal node.
- Another criteria that can be used is the maximum tree depth.

IRISA

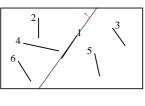
# BSP tree: example

- One of the most important properties of BSP trees is that it is view independent.
- For example, consider the following case:

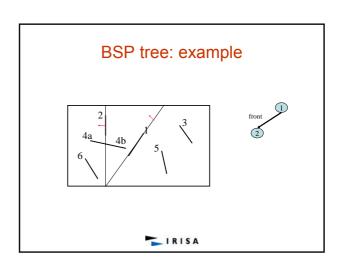


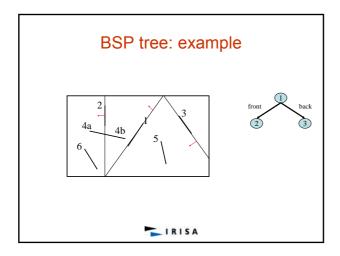
# BSP tree: example

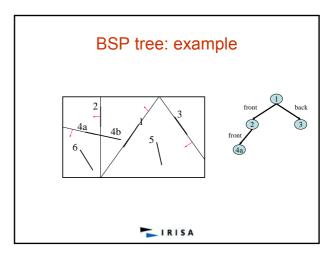
• Splitting the plane using the ordered lines from the input, we get the following:

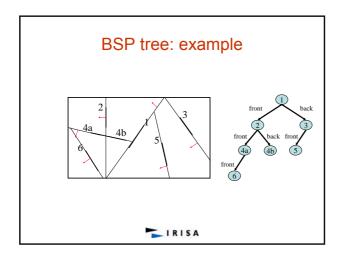


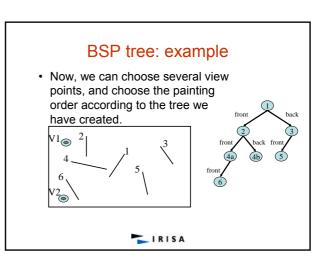












# BSP tree: Hidden Surface Removal

- Probably the most common application of BSP trees is hidden surface removal in three dimension.
- · BSP trees provide an elegant, efficient method for sorting polygons via a depth first tree walk. This fact can be exploited in a back to front "painter's algorithm".
- The idea behind the painter's algorithm is to draw polygons far away from the eye first, followed by drawing those that are close to the eye.
- · Hidden surfaces will be written over in the image as the surfaces that obscure them are drawn.
- · Can assist in 3D clipping.
- Can support Back Face Culling.
   TRISA



# **BSP** tree: Painting

- One reason that BSP trees are so elegant for the painter's algorithm is that the splitting of complex polygons is an automatic part of tree construction.
- · When building a BSP tree specifically for hidden surface removal, the partition planes are usually chosen from the input polygon set.
- · However, any arbitrary plane can be used if there are no intersecting or concave polygons.

IRISA

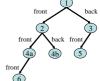
# BSP tree: Drawing the scene

- · To draw the contents of the tree:
  - Perform a back to front tree traversal.
  - Begin at the root node and classify the eye position with respect to the partition plane.
    - · Draw the subtree at the far child from the eye
    - · Draw the polygons in this node
    - · Draw the near subtree.
  - Repeat this procedure recursively for each subtree.
- · Front to back rendering is also possible.

IRISA

# BSP tree: Hidden Surface Removal

- The painting order from V1:
  - -3, 5, 1, 4b, 2, 6, 4a
- The painting order from V2: -3, 5, 1, 4b, 2, 4a, 6



# **BSP tree: Ray Tracing**

- · Accelerating Ray Tracing
- •Rectangular bounding volume of the scene: recursively subdivided
- ·Subdivision: Splitting planes are axis aligned
- •Each splitting plane splits a cell into two equally sized sub-cells
- •Choose x, y and z axis one at a time



# Octree

- Useful for reducing the number of ray-object intersections.
- The bounded 3D world to be ray traced is subdivided into cells of varying size. Each cell contains a list of objects (of approximately the same length) which intersect it.
- Given a ray to be traced, a list of cells intersected by the ray is determined. Intersection calculations are performed only with these
- Furthermore, if the cells may be accessed in the order of advance of the ray, the procedure may terminate once the first intersection is discovered.

IRISA

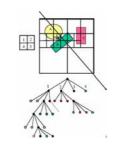
# Octree

- Each node of the tree has eight children, corresponding to halving the space along all of the three axii.
- A node is a leaf if the subspace it represents intersects at most a given number of objects.
- The two basic operations needed for ray tracing octrees are:
  - Locating the leaf cell containing a given 3D point (point location).
- (point location).

   Locating the next cell intersecting a given ray.

  The first is a standard octree traversal. The second is accomplished by repeating the first with a point along the ray just outside the current cell.

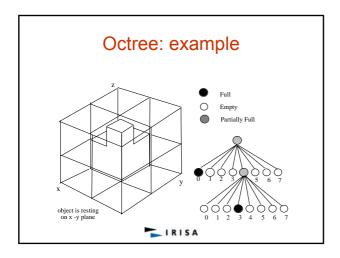




## Octree

- Octrees ignore the directionality of objects.
- Subdivision is always in predefined directions and
- Advantage: Simple construction. Point location is
- Disadvantage: Non-optimal subdivision (large trees).



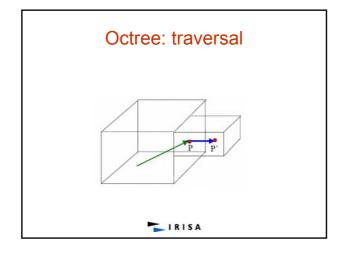


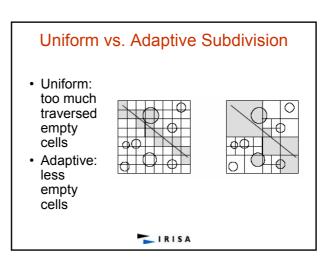
## Octree: traversal

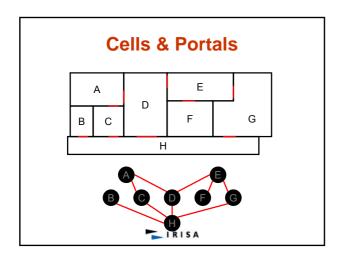
- Determine the first intersection point **F** between the ray and the scene's axis aligned bounding box (SAABB)
   Push **F** along the normal to the face containing it,
- Pushing consists in adding to the P's coordinates a value deltax (resp. deltay, deltaz) which is equal to half the length of the x side (resp. y, z) of the smallest cell.
- Search for the cell (containing F) in the tree
- If no intersection in the cell, compute outgoing point **P** Push **P** along the normal to the cell's face containing it The results is another point **P**'
- 6.
- Search for the cell (containing P') in the tree
- Go to 1 until intersection

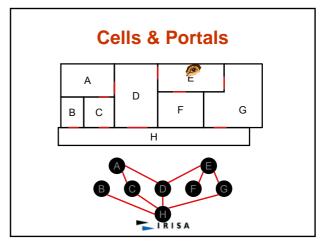
Remark: If **P** is on an edge or a vertex of a cell, push it simultaneously in the directions of the normals to the faces sharing it

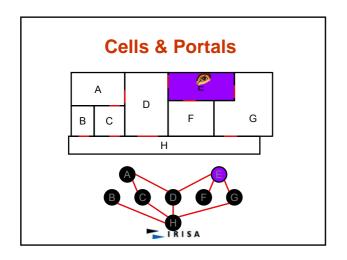


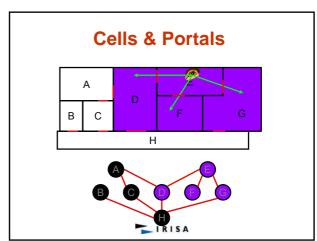


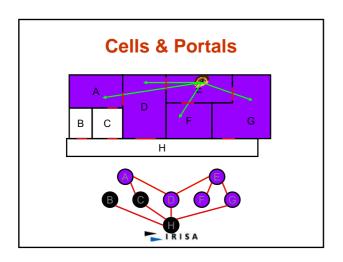












# Cells & Portals Teller and Sequin's Approach (1) Decompose space into convex cells: use walls as splitting polygons (2) For each cell, identify its boundary edges into two sets: opaque or portal (3) Precompute visibility among cells (4) During viewing (eg, walkthrough phase), use the precomputed Potentially Visible polygon Set (PVS) of each cell to speed-up rendering

