
Walking through images

--

Kadi Bouatouch
IRISA

Université de Rennes I, France

Goal

Rendering Complex Scenes on
Mobile Terminals or on the web

Rendering on Mobile Terminals

• IBR methods: rendering of complex scenes on a mobile
terminal

• Mobile terminals: PDA, cell phone
• While using a client/server architecture.
• A PDA or a cell phone or a PC represents the client
• Server computes a very small set of key images
• Client utilizes these images to use a warping technique

to compute new images as seen by intermediate
cameras

• Intermediate cameras: positions and directions are
chosen interactively by the user by moving the stylus of
a PDA.

Rendering on Mobile Terminals

• Most difficult problem is how to place the
cameras capturing the key images

• Camera placement allows an efficient warping
avoiding artifacts, such as holes,

• Holes due to occlusions and exposures.
• Providing a general solution to the problem of

camera placement is a hard task.
• We addressed only the case of urban scenes.

Rendering on Mobile Terminals Rendering on Mobile Terminals

• Camera placement: a very difficult task
• No satisfying solution available
• One Solution

– From a single image
• reconstruction of a coarse 3D model

– From a set of images of a real or virtual scene
taken when walking through this scene

• Coarse 3D model for each image
• Put in correspondence the obtained 3D models: use

geometry warping
– Rendering

ATIP
A Tool for 3D Navigation inside a Single Image

with Automatic Camera Calibration

Kévin Boulanger, Kadi Bouatouch, Sumanta Pattanaik
IRISA, Université de Rennes I, France

University of Central Florida, USA

From a single image Purpose

Single image Simple 3D navigation

2

Software architecture

• ATIP Maker : processes the input image,
creates an .atip file

• ATIP Navigator : reads the .atip file,
allows multi-platform 3D navigation

ATIP makerATIP maker ATIP navigatorATIP navigator

Input image

Output

.atip
file

3

Tour Into the Picture
• Original method by Horry et al.

– Given an input image, the perspective effect is determined by
manually (mouse click) choosing a point in the image as a
vanishing point

– The scene is manually approximated by a box by dragging its
corner handles

– Textures are computed for each box’s face from the input
image

– The textured box is rendered from another viewpoint

vanishing
point

box with

handles

4

Tour Into the Picture

• Manual fitting of the box
– long and tedious

• Limitations
– supports only images with a single vanishing

point
– horizontal and vertical lines must be parallel

to the image borders
– careful capture of the input image is

necessary (say: using a tripod)

5

Automatic Tour Into the Picture

Contributions of ATIP:
– minimal user interaction
– more accurate calibration of the camera using

multiple vanishing points
– input image from any orientation of the

camera is acceptable
• the camera can be hand-held

6

Vanishing points
• Vanishing points help to calibrate the camera
• Always three vanishing points in an image
• Three combinations of finite and infinite vanishing points
• TIP manages only one finite vanishing point
• ATIP manages every situation, even with rotation

around the view direction (very common without tripod)

1 finite vanishing point,
2 infinite vanishing points

Vertical
IVP

Hori-
zontal
IVP

FVP

Horizon line
2 finite vanishing points,
1 infinite vanishing point

3 finite vanishing points

FVP FVP FVPFVP

FVPVertical
IVP

7

ATIP Maker pipeline

First part: image processing

Edge
detection

Edge
detection

Dominant lines
detection

Dominant lines
detection

Vanishing points
estimation

Vanishing points
estimation

Input
image

Three
vanishing

points

8

ATIP Maker pipeline

Second part: determining parameters
for TIP (camera, box,
textures)

Camera para-
meter extraction
Camera para-

meter extraction
Box size

adjustment
Box size

adjustment
Texture

computation
Texture

computation

Input
image

Textures
Three

vanishing
points

Geometry

9

Edge detection

• Conversion to grayscale of the input image
• Logical AND between gradient-based and

laplacian-based methods

EdgesGrayscale imageInput image 10

Dominant lines detection

• Dominant lines: longest alignments of points
• Vanishing lines = subset of the set of dominant lines
• How:

– 1-to-m Hough transform of the edge points
– high-pass filter of the Hough transform result
– detection of the maxima by thresholding
– transform the maxima back to lines in image space

Edges Hough
transform

High-pass
filter

Dominant lines
11

Dominant lines detection
1-to-m Hough transform

ρ
θ θ

ρ

x

y

Hough spaceImage space

Line (with polar
parametrization)

Point (intersection
of an infinite
number of lines)

Aligned points

Point

Curve

ρ = x.cos(θ) + y.sin(θ)

Set of curves with a
common point,
corresponding to a
set of aligned points
in image space

θ

θ

ρ

ρ

x

y

y

x 12

Dominant lines detection
Hough space high-pass filter

• Simple thresholding of the Hough transform
lot of noise due to strongly textured regions of the input image

• High-pass filter to remove the dense regions of high values (noise)

Region with
points to be kept

Dense region
of high values

to be
eliminated by

filtering

Hough
transform

Simple
thresholding

High-pass
filter

Final
result

Kept points

Noise
eliminated

13

Image plane

x

y

z

Line in image space
to project

Projection
of the 2D

line

Vanishing points estimation
• Vanishing point =

intersection of a subset of
dominant lines

• Projection of each dominant
line onto a hemisphere

• Accumulation of the
resulting curves on the
hemisphere

• Retrieve the three maxima
• Project them back to image

space to get the vanishing
point coordinates

θ

φ

14

x

y

z

C

(x,y,z)

Strips of
equal
area

Vanishing points estimation
Accumulation

15

i
))

0

Finite vanishing point
(close to the image center)

Horizontal infinite
vanishing point

Vertical infinite
vanishing point

(equator)

(pole)

i0 0

N/4 N/2 3N/4 N-1

Image plane

x

y

z

Intersection point
of the circles

Projection
of one line

Lines to
project

Final
intersection

point

θ

φ

Grid of accumulatorsThe intersection of curves on the
hemisphere corresponds to the intersection
of the corresponding lines in image space

Non-uniform
subdivision of
the hemisphere

Vanishing points estimation
Three maxima retrieval

The three maxima cannot be retrieved in a single step, instead :

for i = 0 to 2
{

filteredCells = low_pass_filter(hemisphere_cells);
maxCell = maximum_value_cell(filteredCells);
vanPoints[i] = project_to_image_plane(maxCell);
dominantLines[i] = dominant_lines_associated_with(vanPoints[i]);
hemisphere_cells = negative_accumulation(dominantLines[i],

hemisphere_cells)
}

• Hypothesis: the three resulting vanishing points correspond
to orthogonal directions

• With this algorithm, only dominant lines that contribute to the
detection of vanishing points are considered

16

Camera parameter extraction

• From the three vanishing points, finite or infinite,
extract camera parameters
– Focal length and rotation matrix

• The three vanishing point directions define the
world coordinate frame

• Process the three combinations of vanishing
points different ways

17 z
O

P

V1

I
1

image
plane

y

I
2

f

x

v
u

w

Camera parameter extraction
One finite VP, two infinite VPs

• finite vanishing point
• and directions of the infinite vanishing points in image space
• position of the camera
• , , coordinate frame of the camera (fixed)
• (focal length) is fixed by the user (48° by default)
• , , world coordinate frame (columns of the rotation matrix),

to be found
ur vr wr
xr yr zr

1I
r

2I
r

O

1V

T
yyxx

yx f
VIVI

IIu ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=′ 1111

11 ,,r

()Tyx III 0,, 111 =
r ()Tyx III 0,, 222 =

r()Tyx fVVOV −= ,, 111

T
yyxx

yx f
VIVI

IIv ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=′ 1212

22 ,,r

()Tyx fVVw ,, 11 −−=′
r

u
uu r

r
r

′
′

=

v
vv r

r
r

′
′

=

w
ww r

r
r

′
′

=

f

18

Camera parameter extraction
Two finite VPs, one infinite VP

• Two known VPs (and), represent orthogonal directions
• can be computed
• obtained by cross product

x

y

z

O

u
w

v

P

f

image
planeV

2
V

1

()Tyx fVVOV −= ,, 111

()Tyx fVVOV −= ,, 222

yxyx VVVVf 2211 +=⇒

1

1

OV
OVu −=

r

2

2

OV
OVw −=

r

uwv rrr
×=

1V 2V
f
vr

00. 21 >= fOVOV

19

• Three finite vanishing points, , and
overconstrained problem

• The two finite VPs method used for ,
and

• The dot product between the third VP direction
and the cross product of the two first directions
gives an error value

• Choose the set of vectors giving minimal error

3vr1vr 2vr

()21 v,v rr

()32 v,v rr ()13 v,v rr

Camera parameter extraction
Three finite vanishing points

20

Box size adjustment

• The only step of the algorithm that requires user
interaction

• Simpler than TIP since the camera is calibrated,
only the corners (red handles) have to be moved

21

Texture computation
• Data retrieved from the input image
• Each box’s face is subdivided into a uniform

grid, each cell corresponds to a texel
• Each texel center point of a texture is projected

onto the input image plane
• Bilinear interpolation gives the final color
• Points falling outside the input image bounds

are set to black

O

textured
quadrilateral

image
plane(x,y,z)

(xi,yi)

22

Results

23

Results

24

Results with difficult scenes

Forest scene:
Robust dominant lines

detection from noisy
edges using high-pass
filter on Hough transform

Non-flat surfaces:
Robust «maxima on the

hemisphere» computation
algorithm

Hand-drawn sketch:
Correct detection of dominant

lines from noisy edges and
imprecise intersections of
vanishing lines

25

• Solution
– Choose one camera frame CF
– Determine the transformations between CF and

another camera frame ACF
– Transform the 3D model, found for one ACF, to CF
– Merge the two models, result = combined model CM
– CM expressed in CF frame + CM expressed in ACF

frame
– For an intermediate camera, interpolate between each

pair of corresponding vertices: geometry and textures

From multiple images

20

• Solution
– Server: sends the client the combined 3D models

associated with two or more successive images
captured by the camera for different positions and
orientations

– One 3D model = N faces + N textures
– Client: renders the received 3D models as well as in-

between interpolated 3D models

ATIP with multiple images

20

Questions

•http://www.irisa.fr/siames/Kevin.Boulanger

• Kévin Boulanger, Kadi Bouatouch, Sumanta Pattanaik.

ATIP: A Tool for 3D Navigation inside a Single Image with Automatic
Camera Calibration. EGUK 2006, june 2006

•Gwenola Thomas, Gérald Point, Kadi Bouatouch
A Client-Server Approach to Image-Based Rendering on Mobile Terminals

Technical Report RR-5447, INRIA - 2005

Rendering on Mobile Terminals A
Client-Server Approach to IBR

• The IBR process is initialized when the server sends the
client an initial reference image together with its
corresponding camera parameters (1.Send_Init(IRef0)).

• IRef = a reference image and its corresponding camera
parameters.

• On the client side, the user can navigate through the 3D
environment by changing the orientation and the position
of the camera (2.Navigate(theta,d)).

• In the present application, navigation is performed in a
urban environment.

• The position of the camera is constrained to lie on a
horizontal plane. two successive images to make the
IBR approach possible.

• These limitations are also coherent with the way people
walk in a city.

Rendering on Mobile Terminals A
Client-Server Approach to IBR

• Whenever the user moves the navigation camera, the
client computes a new image by warping some of the
available reference images
(2.1.Update_NavigationCamera(), 2.2.Produce()).

• Available reference images: not always appropriate for
warping,

• Available reference images too far from the current
navigation camera may cause the appearance of holes
on the warped image.

• We use blurring filtters to fill the appeared holes.
• To maintain an appropriate set of reference images on

the client side, the client transmits the parameters of the
new current navigation camera to the server whenever
the user moves the camera
(2.3.Send_NavigationCamera(Mc)).

Rendering on Mobile Terminals A
Client-Server Approach to IBR

• The set of reference images, available on the
client side, is appropriate if each reference
image of this set significantly contributes to the
construction of the warped image.

• The contribution of a reference image is
measured as the percentage of pixels of the
reference image that re-project onto the warped
image

Rendering on Mobile Terminals A
Client-Server Approach to IBR

• The server owns the 3D urban scene and a set of edges that
define the geometry of the street network.

• Depending on the current navigation camera Mc on the
client side and on the reference images previously sent
IRefi, the server is able to determine whether the reference
images, available on the client side, have to be updated or
not (2.4.update=Update_ReferenceImages({IRefi})).

• A reference image has to be replaced on the client side
when it does not signicantly contribute to the warped image.

• If necessary updates, the server sends the client new ref
images (2.5.[update]Send_ReferenceImages({IRefi})).

• The way the cameras are positioned in the environment and
the way the server selects them to compute reference
images are provided by the camera placement algorithm.

Rendering on Mobile Terminals A
Client-Server Approach to IBR

• The IBR process is initialized when the server sends the
client an initial reference image together with its
corresponding camera parameters (1.Send_Init(IRef0)).

• IRef = a reference image and its corresponding camera
parameters.

• On the client side, the user can navigate through the 3D
environment by changing the orientation and the position
of the camera (2.Navigate(theta,d)).

• In the present application, navigation is performed in a
urban environment.

• The position of the camera is constrained to lie on a
horizontal plane. two successive images to make the
IBR approach possible.

• These limitations are also coherent with the way people
walk in a city.

Rendering on Mobile Terminals A
Client-Server Approach to IBR

• Whenever the user moves the navigation camera, the
client computes a new image by warping some of the
available reference images
(2.1.Update_NavigationCamera(), 2.2.Produce()).

• Available reference images: not always appropriate for
warping,

• Available reference images too far from the current
navigation camera may cause the appearance of holes
on the warped image.

• We use blurring filtters to fill the appeared holes.
• To maintain an appropriate set of reference images on

the client side, the client transmits the parameters of the
new current navigation camera to the server whenever
the user moves the camera
(2.3.Send_NavigationCamera(Mc)).

Rendering on Mobile Terminals A
Client-Server Approach to IBR

• The set of reference images, available on the
client side, is appropriate if each reference
image of this set significantly contributes to the
construction of the warped image.

• The contribution of a reference image is
measured as the percentage of pixels of the
reference image that re-project onto the warped
image

Rendering on Mobile Terminals A
Client-Server Approach to IBR

• The server owns the 3D urban scene and a set of edges that
define the geometry of the street network.

• Depending on the current navigation camera Mc on the
client side and on the reference images previously sent
IRefi, the server is able to determine whether the reference
images, available on the client side, have to be updated or
not (2.4.update=Update_ReferenceImages({IRefi})).

• A reference image has to be replaced on the client side
when it does not signicantly contribute to the warped image.

• If necessary updates, the server sends the client new ref
images (2.5.[update]Send_ReferenceImages({IRefi})).

• The way the cameras are positioned in the environment and
the way the server selects them to compute reference
images are provided by the camera placement algorithm.

