
17

Undirected Connectivity in Log-Space

OMER REINGOLD

Weizmann Institute of Science Rehovot, Israel

Abstract. We present a deterministic, log-space algorithm that solves st-connectivity in undirected
graphs. The previous bound on the space complexity of undirected st-connectivity was log4/3(·) ob-
tained by Armoni, Ta-Shma, Wigderson and Zhou (JACM 2000). As undirected st-connectivity is
complete for the class of problems solvable by symmetric, nondeterministic, log-space computa-
tions (the class SL), this algorithm implies that SL = L (where L is the class of problems solvable by
deterministic log-space computations). Independent of our work (and using different techniques), Tri-
fonov (STOC 2005) has presented an O(log n log log n)-space, deterministic algorithm for undirected
st-connectivity.

Our algorithm also implies a way to construct in log-space a fixed sequence of directions that
guides a deterministic walk through all of the vertices of any connected graph. Specifically, we give
log-space constructible universal-traversal sequences for graphs with restricted labeling and log-space
constructible universal-exploration sequences for general graphs.

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity Mea-
sures and Classes; F.2.3 [Analysis of Algorithms and Problem Complexity]: Tradeoffs between
Complexity Measures; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Derandomization, pseudorandom generator, bounded space
algorithms

ACM Reference Format:
Reingold, O. 2008. Undirected connectivity in log-space. J. ACM 55, 4, Article 17 (September 2008),
24 pages. DOI = 10.1145/1391289.1391291 http://doi.acm.org/10.1145/1391289.1391291

1. Introduction

We resolve the space complexity of undirected st-connectivity (denoted USTCON),
up to a constant factor, by presenting a log-space (polynomial-time) algorithm for

A preliminary version of this article appeared in Proceedings of the 37th ACM Symposium on Theory
of Computing (STOC), ACM, New York, 2005, 376–385.
This research was supported by US-Israel Binational Science Foundation Grants 2002246 and
2006060.
Author’s address: Department of Computer Science, Weizmann Institute of Science, Rehovot 76100,
Israel, e-mail: omer.reingold@weizmann.ac.il.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0004-5411/2008/09-ART17 $5.00 DOI 10.1145/1391289.1391291 http://doi.acm.org/
10.1145/1391289.1391291

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:2 O. REINGOLD

solving it. Given as input an undirected graph G and two vertices s and t, the
USTCON problem is to decide whether or not the two vertices are connected by
a path in G (our algorithm will also solve the corresponding search problem, of
finding a path from s to t if such a path exists). This fundamental combinatorial
problem has received a lot of attention in the last few decades and was studied
in a large variety of computational models. It is a basic building block for more
complex graph algorithms and is complete for the class SL of problems solvable
by symmetric, nondeterministic, log-space computations [Lewis and Papadimitriou
1982] (see Alvarez and Greenlaw [1996] for a recent study of SL and quite a few
of its complete problems).

The time complexity of USTCON is well understood, as basic search algorithms,
particularly breadth-first search (BFS) and depth-first search (DFS), are capable
of solving USTCON in linear time. In fact, these algorithms apply to the more
complex problem of st-connectivity in directed graphs (denoted STCON), which
is complete for NL (nondeterministic log-space computations). Unfortunately, the
space required to run these algorithms is linear as well. A much more space-efficient
algorithm is Savitch’s [1970], which solves STCON in space log2(·) (and super-
polynomial time).

Major progress in understanding the space complexity of USTCON was made by
Aleliunas et al. [1979], who gave a randomized log-space algorithm for the problem.
Specifically, they showed that a random walk (a path that selects a uniform edge
at each step) starting from an arbitrary vertex of any connected undirected graph
will visit all the vertices of the graph in polynomial number of steps. Therefore, the
algorithm can perform a random walk starting from s and verify that it reaches t
within the specified polynomial number of steps. Essentially, all that the algorithm
needs to remember is the name of the current vertex and a counter for the number of
steps already taken. With this result, we get the following view of space complexity
classes: L ⊆ SL ⊆ RL ⊆ NL ⊆ L2 (where RL is the class of problems that can
be decided by randomized log-space algorithms with one-sided error and Lc is the
class of problems that can be decided deterministically in space logc(·)).

The existence of a randomized log-space algorithm for USTCON puts this prob-
lem in the context of derandomization. Can this randomized algorithm be deran-
domized without substantial increase in space? Furthermore, the study of the space
complexity of USTCON has gained additional motivation as an important test
case for understanding the tradeoff between two central resources of computations,
namely between memory (space) and randomness. Particularly, a natural goal on the
way to proving RL = L is to prove that USTCON ∈ L, as USTCON is undoubtedly
one of the most interesting problems in RL.

Following Aleliunas et al. [1979], most of the progress on the space complexity
of USTCON indeed relied on the tools of derandomization. In particular, this line
of work greatly benefited from the development of pseudorandom generators that
fool space-bounded algorithms [Ajtai et al. 1987; Babai et al. 1989; Nisan 1992a;
Impagliazzo et al. 1994] and it progressed concurrently with the study of the L vs.
RL problem. Another very influential notion, introduced by Stephen Cook in the late
70’s, is that of a universal-traversal sequence [Aleliunas et al. 1979]. Loosely, this is
a fixed sequence of directions that guides a deterministic walk through all of the ver-
tices of any connected graph of the appropriate size (see further discussion below).

While Nisan’s space-bounded generator [Nisan 1992a] did not directly imply
a more space-efficient USTCON algorithm, it did imply quasi-polynomially-long,

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

Undirected Connectivity in Log-Space 17:3

universal-traversal sequences, constructible in space log2(·). These were extremely
instrumental in the work of Nisan et al. [1989] who showed that USTCON ∈ L3/2 –
The first improvement over Savitch’s algorithm in terms of space (limited of course
to the case of undirected graphs). Using different methods, but still heavily relying
on Nisan [1992a], Saks and Zhou [1999] showed that every RL problem is also in
L3/2 (their result in fact generalizes to randomized algorithms with two-sided error).
Relying on the techniques of both Nisan et al. [1989] and Saks and Zhou [1999],
Armoni et al. [2000] showed that USTCON ∈ L4/3. Their USTCON algorithm
was the most space-efficient one previous to this work. We note that the most
space-efficient polynomial-time algorithm for USTCON previously known was
Nisan’s [1992b], which still required space log2(·). Independent of our work (and
using different techniques), Trifonov [2005] has presented an O(log n log log n)-
space, deterministic algorithm for USTCON.

1.1. OUR APPROACH. In retrospect, the essence of our algorithm is very natural:
If you want to solve a connectivity problem on your input graph, first improve its
connectivity. In other words, transform your input graph (or rather, each one of its
connected components), into an expander.1 We will also insist on the final graph
being constant degree. Once the connected component of s is a constant-degree
expander, then it is trivial to decide if s and t are connected: Since expander graphs
have logarithmic diameter, it is enough to enumerate all logarithmically long paths
starting with s and to see if one of these paths visits t . Since the degree is constant,
the number of such paths is polynomial and they can easily be enumerated in log
space.

How can we turn an arbitrary graph into an expander? First, we note that every
connected, nonbipartite, graph can be thought of as an expander with very small
(but non-negligible) expansion. Consider, for example, an arbitrary connected graph
with self-loops added to each one of its vertices. The number of neighbors of every
strict subset of the vertices is larger than its size by at least one. In this respect, the
graph can be thought of as expanding by a factor 1 + 1/N (where N is the total
number of vertices in the graph). Now, a very natural operation that improves the
expansion of the graph is powering. The kth power of G contains an edge between
two vertices v and w for every path of length k between v and w in G. Formally, it
can be shown that by taking some polynomial power of any connected nonbipartite
graph (equivalently, by repeatedly squaring the graph logarithmic number of times),
it will indeed turn into an expander.

The down side of powering is, of course, that it increases the degree of the graph.
Taking a polynomial or any nonconstant power is prohibited if we want to maintain
constant degree. Fortunately, there exist operations that can counter this problem.
Consider, for example, the replacement product of a D-regular graph G with a

1 Loosely, expanders are graphs with very strong connectivity properties. There are several possible
ways to define expanders, and, in the following informal description, we will (somewhat cheatingly)
elude to a definition based on vertex expansion—namely that every set of vertices have “many”
neighbors. For the knowledgable reader, we point out that the particular measure of expansion that
seems the most convenient to work with is the second eigenvalue (in absolute value) of the adjacency
matrix of the graph (we will only need to work with regular graphs). It may however be that other,
more combinatorial, measures, such as edge expansion, will also do (see Reingold et al. [2006] for a
more detailed discussion).

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:4 O. REINGOLD

d-regular graph H on D vertices (with d � D). This can be loosely defined as
follows: Each vertex v of G is replaced with a “copy” Hv of H . Each of the D
vertices of Hv is connected to its neighbors in Hv but also to one vertex in Hw ,
where (v, w) is one of the D edges going out of v in G. The degree in the product
graph is d + 1 (which is smaller than D). Therefore, this operation can transform a
graph G into a new graph (the product of G and H) of smaller degree. It turns out
that, if H is a “good enough” expander, the expansion of the resulting graph is “not
worse by much” than the expansion of G. Formal statements to this effect were
proven by Reingold et al. [2002] for both the replacement product and the zig-zag
product, introduced there. Independently, Martin and Randall [2000], building on
previous work of Madras and Randall [1996], proved a decomposition theorem for
Markov chains that also implies that the replacement product preserves expansion.

Given the discussion above, we are ready to informally describe our USTCON
algorithm. First, turn the input graph into a constant-degree, regular graph with
each connected component being non-bipartite (this step is very easy). Then, the
main transformation turns each connected component of the graph, in logarithmic
number of phases, into an expander. Each phase starts by raising the current graph to
some constant power and then reducing the degree back via a replacement or a zig-
zag product with a constant-size expander. We argue that each phase enhances the
expansion at least as well as squaring the graph would, and without the disadvantage
of increasing the degree. (An undesirable side effect of each phase is increasing the
size of the graph. Nevertheless, as the increase will only be by a constant factor,
this is tolerable.) Finally, all that is left is to solve USTCON on the resulting graph
(which is easy as the diameter of each connected component is only logarithmic).

To conclude that USTCON ∈ L, we need to argue that all of the above can be done
in logarithmic space, which easily reduces to showing that the main transformation
can be carried out in logarithmic space. For that, consider the graph Gi obtained
after i phases of the transformation. We note that a step on Gi (i.e., evaluating the j th
neighbor of some vertex v in Gi) is composed of a constant number of operations that
are either a step on the graph Gi−1 from the previous phase or an operation that only
requires a constant amount of memory. As the memory for each of these operations
can be freed after it is performed, the memory for carrying out a step on Gi is only
larger by an additive constant than the memory for carrying out a step on Gi−1.
This implies that the entire transformation is indeed log space.

1.1.1. The RVW Combinatorial Construction of Expanders. As discussed, we
borrow our main technical tool (a bound on the expansion of the zig-zag or re-
placement product), from Reingold et al. [2002]. More interestingly, our main
transformation repeats exactly the same sequence of operations as in their com-
binatorial construction of expander graphs. Namely, both transformations iterate
graph powering and a zig-zag product with a constant size expander. Somewhat
surprisingly, the goals of the transformations are quite different: In Reingold et al.
[2002], they start with a constant size expander and, in this sequence of operations,
make it into an arbitrarily large expander. Here we transform any connected graph
(which is already large but is not an expander) into an expander. On a technical
level, this means that the zig-zag product needs to be applied when the larger graph
has extremely weak expansion properties. Still we require that the product essen-
tially preserves this (weak but valuable) expansion. In contrast, in Reingold et al.
[2002] the zig-zag product is applied to two expanders. Very fortunately, the zig-zag

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

Undirected Connectivity in Log-Space 17:5

product (as well as the replacement product) work quite well in this unusual setting
of parameters.

Viewing the aforementioned transformations a bit more abstractly, we observe
that in both cases the desired parameter (the size of the graph in Reingold et al.
[2002], and its expansion here) are improved in a slow and iterative manner while
maintaining a careful balance between competing parameters (specifically, between
expansion and degree in both these transformations). A similar structure is shared
by Dinur’s beautiful recent proof of the PCP Theorem. See Goldreich [2005] for
an insightful perspective of this approach, as exemplified by Dinur [2007], Jerrum
et al. [2004], Reingold et al. [2002], and our own work.

1.1.2. Universal Traversal Sequences. While universal-traversal sequences
were introduced as a way for proving USTCON ∈ L, these are interesting combina-
torial objects in their own right. A universal-traversal sequence for D-regular graphs
on N -vertices, is a sequence of edge labels in {1, . . . , D} such that for every such
graph, for every labeling of its edges, and for every start vertex, the deterministic
walk defined by these labels (where in the i th step we take the edge labeled by the
i th element of the sequence), visits all of the vertices of the graph. Aleliunas et al.
[1979] showed that a polynomial-length universal-traversal sequence exists, and in
fact almost every sequence of the appropriate length will do. We are interested in
obtaining a polynomially-long, universal-traversal sequence that is constructible in
logartihmic space (even less explicit sequences may still be very interesting). This
is again a derandomization problem. Namely, can we derandomize the probabilistic
construction of universal-traversal sequences?

Explicit constructions of polynomially-long universal-traversal sequences are
only known for extremely limited classes of graphs. Even for expander graphs, such
sequences are only known when the edges are “consistently labeled” [Hoory and
Wigderson 1993] (this means that the labels of all edges that lead to any particular
vertex are distinct). It is therefore not very surprising that our algorithm on its own
does not imply full fledged universal-traversal sequences. Still, our algorithm can
be shown to imply a very local, and quite oblivious, deterministic procedure for
exploring a graph. We can think of our algorithm as maintaining a single pebble, that
is placed on the edges of the graph. The pebble is moved either from one side of the
edge to another, or between different edges that are adjacent to the same vertex (say
to the next or to the previous edge). As with universal-traversal sequences, the fixed
sequence of instructions is good for every graph, for every labeling of its edges, and
for any starting point on the graph. The only difference from universal-traversal
sequences is that the pebble here is placed on the edges rather than on the vertices of
the graph. In particular, we get polynomially-long, universal-exploration sequences
for all undirected graphs. In universal-exploration sequences, introduced by Koucky
[2001], the elements of the sequence are not interpreted as absolute edge-labels but
rather as offsets from the previous edge that was traversed. In terms of traversal
sequences, our algorithm implies a polynomially long, universal-traversal sequence
that is constructible in logartihmic space under some restrictions on the labeling.
These restrictions were relaxed in a subsequent work [Reingold et al. 2006] to be
identical to those of Hoory and Wigderson [1993] (for universal-traversal sequences
on expander graphs). For more details, see Section 5.

1.2. MORE ON PREVIOUS WORK. Graph connectivity problems and space-
bounded derandomization are the focus of a vast and diverse body of research.

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:6 O. REINGOLD

The scope of this paper only allows for an extremely partial discussion of this
area. Some very beautiful and influential research (as many of the papers already
mentioned above) is only briefly touched upon, other areas will not be discussed at
all (examples include, time-space tradeoffs for deterministic and randomized con-
nectivity algorithms, restricted constructions of universal traversal sequences, and
analysis of connectivity in many other computational models). Insightful, though
somewhat outdated, surveys on these topics were given by Wigderson [1992] and
by Saks [1996]. Useful discussion and pointers were also given by Koucky [2003].
We continue here by mentioning a few of the most related previous results (most
of which are subsumed by the results of this article). A more technical comparison
with some previous work appears in Section 6.

Following Aleliunas et al. [1979], Borodin et al. [1989] gave a zero-error, ran-
domized, log-space algorithm for USTCON. An upper bound of different nature
on SL was given by Karchmer and Wigderson [1993], who showed SL ⊆ ⊕L.

Nisan and Ta-Shma [1995] showed that SL is closed under complement, thus col-
lapsing the “symmetric log-space hierarchies” of both Reif [1984] and [Ben-Asher
et al. 1995], and putting some very interesting problems into SL. To give just one
example, the planarity of bounded-degree undirected graphs was placed in SL as a
corollary (we refer again to Alvarez and Greenlaw [1996] for a list of SL-complete
problems).

A research direction initiated by Ajtai et al. [1987], and continued with Nisan
and Zuckerman [1996] is to fully derandomize (i.e., to put in L) log n-space com-
putations that use fewer than n random bits (poly log n bits in the case of Nisan
and Zuckerman [1996]). Raz and Reingold [1999] showed how to derandomize

2
√

log n bits for subclasses of RL. One of their main applications can be viewed as

derandomizing 2
√

log n bits for SL. It is interesting to note (and personally gratifying
to the author) that the techniques of Raz and Reingold [1999] played a major role
in the definition of the zig-zag product and with this work found their way back to
the study of space-bounded derandomization.

Goldreich and Wigderson [2002] gave an algorithm that on all but a tiny fraction
of the graphs, evaluates USTCON correctly (and on the rest of the graphs outputs
an error message).

Based on rather relaxed computational hardness assumptions, Klivans and van
Melkebeek [2002] proved both that RL = L and that efficiently constructible,
polynomial length, universal traversal sequences exist.

2. Preliminaries

This section discusses various aspects of graphs: their representation, eigenvalue
expansion, graph powering, and two graph products (the replacement product and
the zig-zag product). The definitions and notation used here are borrowed directly
from Reingold et al. [2002].

2.1. GRAPHS REPRESENTATIONS. There are several standard representations of
graphs. Fortunately, there exist log-space transformations between natural repre-
sentations. Thus, the space complexity of USTCON is to a large extent independent
of the representation of the input graph.

When discussing the eigenvalue expansion of a graph, we will consider its adja-
cency matrix. That is, the matrix whose (nonnegative, integral) entry (u, v) equals

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

Undirected Connectivity in Log-Space 17:7

to the number of edges that go from vertex u to vertex v . Note that this representa-
tion allows graphs with self loops and parallel edges (and indeed such graphs may
be generated by our algorithm). A graph is undirected iff its adjacency matrix is
symmetric (implying that for every edge from u to v there is an edge from v to u).
It is D-regular if the sum of entries in each row (and column) is D (so exactly D
edges are incident to every vertex).

Let G be a D-regular undirected graph on N vertices. When considering a walk
on G, we would like to assume that the edges, leaving each vertex of G are labeled
from 1 to D in some arbitrary, but fixed, way. We can then talk about the i th edge
incident to a vertex v , and similarly about the i th neighbor of v . A central insight
of Reingold et al. [2002] is that when taking a step on a graph from vertex v to
vertex w , it may be useful to keep track of the edge traversed to get to w (rather than
just remembering that we are now at w). This gave rise to a new representation of
graphs through the following permutation on pairs of vertex name and edge label:

Definition 2.1. For a D-regular undirected graph G, the rotation map RotG :
[N] × [D] → [N] × [D] is defined as follows: RotG(v, i) = (w, j) if the i th edge
incident to v leads to w , and this edge is the j th edge incident to w . (Recall that,
for every integer k, we denote by [k] the set {1, 2, . . . , k}.)

Rotation maps will indeed be the representation of choice for this work. Specif-
ically, the first step of our algorithm will be to transform the input graph into a
regular one specified by its rotation map (in particular, this step will give labels to
the edges of the graph).

2.2. EIGENVALUE EXPANSION AND st-CONNECTIVITY FOR EXPANDERS. Expan-
ders are sparse graphs that are nevertheless highly connected. The strong connec-
tivity properties of expanders make them very desirable in our context. Specifically,
since the diameter of expander graphs is only logarithmically long, there is a
trivial log-space algorithm for finding paths between vertices in constant-degree
expanders. The particular formalization of expanders used in this article is the
(algebraic) characterization based on the spectral gap of their adjacency matrix.
Namely, the gap between the first and second eigenvalues of the (normalized) ad-
jacency matrix.

The normalized adjacency matrix M of a D-regular undirected graph G, is the
adjacency matrix of G divided by D. In terms of the rotation map, we have:

Mu,v = 1

D
· |{(i, j) ∈ [D]2 : RotG(u, i) = (v, j)}|.

M is simply the transition probability matrix of a random walk on G. By the D-
regularity of G, the all-1’s vector 1N = (1, 1, . . . , 1) ∈ R

N is an eigenvector of M
of eigenvalue 1. It turns out that all the other eigenvalues of M have absolute value
at most 1. We denote by λ(G), the second largest eigenvalue (in absolute value)
of G’s normalized adjacency matrix. We refer to a D-regular undirected graph G
on N vertices such that λ(G) ≤ λ as an (N , D, λ)-graph. It is well known that
the second largest eigenvalue of G is a good measure of G’s expansion properties.
In particular, it was shown by Tanner [1984] and Alon and Milman [1985] that
second-eigenvalue expansion implies (and is in fact equivalent [Alon 1986]) to the
standard notion of vertex expansion. In particular, for every λ < 1 there exists
ε > 0 such that for every (N , D, λ)-graph G and for any set S of at most half the

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:8 O. REINGOLD

vertices in G, at least (1 + ε) · |S| vertices of G are connected by an edge to some
vertex in S (and in particular the neighborhood of S contains at least ε|S| vertices
outside of S). This immediately implies that G has a logarithmic diameter:

PROPOSITION 2.2. Let λ < 1 be some constant. Then for every (N , D, λ)-graph
G and any two vertices s and t in G, there exists a path of length O(log N) that
connects s to t .

PROOF. By the vertex expansion of G, for some � = O(log N) both s and t
have more than N/2 vertices of distance at most � from them in G. Therefore, there
exists a vertex v that is of distance at most � from both s and t .

We can therefore conclude that st-connectivity in constant-degree expanders can
be solved in log-space:

PROPOSITION 2.3. Let λ < 1 be some constant. Then there exists a space
O(log D · log N) algorithm Aexp such that when a D-regular undirected graph G
on N vertices is given to Aexp as input, the following hold:

(1) If s and t are in the same connected component and this component is an
(N ′, D, λ)-graph, then Aexp outputs “connected”.

(2) If Aexp outputs “connected”, then s and t are indeed in the same connected
component.

PROOF. The algorithm Aexp simply enumerates all D� paths of length � =
O(log N) from s. (Where the leading constant in the big-O notation depends on
λ as in Proposition 2.2.) The algorithm Aexp outputs “connected” if and only if at
least one of these paths encounters t .

Following any particular path from s of length � requires space O(log N), (when
given as input the sequence of � edge labels in [D] = {1, 2, . . . , D} traversed by
this path). Enumerating all these D� paths requires space O(log D · log N). By
Proposition 2.2, in case (1), s and t are of distance at most � of each other and Aexp

will indeed find a path from s to t and will output “connected.” On the other hand,
Aexp never outputs “connected” unless it finds a path from s to t , implying (2).

Using the Probabilistic Method, Pinsker [1973] showed that most 3-regular
graphs are expanders (in the sense of vertex expansion), and this result was ex-
tended to eigenvalue bounds in Alon [1986], Broder and Shamir [1987], Friedman
et al. [1989], and Friedman [1991]. Various explicit families of constant-degree
expanders, some with optimal tradeoff between degree and expansion, were given
in literature (cf. Margulis [1973], Gabber and Galil [1981], Jimbo and Maruoka
[1987], Alon and Milman [1985], Alon et al. [1987], Lubotzky et al. [1988], Mar-
gulis [1988], Morgenstern [1994], and Reingold et al. [2002]). Our algorithm will
employ a single constant size expander with rather weak parameters. This expander
can be obtained by exhaustive search or by any of the explicit constructions men-
tioned above. In fact, one can use simpler explicit constructions than the ones given
above, as we can afford a rather large degree (with respect to the number of ver-
tices), rather than a constant degree. An example of a simpler construction that
would suffice is the one given by Alon and Roichman [1994], (see also related
discussions in Reingold et al. [2002] regarding their “base graph”).

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

Undirected Connectivity in Log-Space 17:9

PROPOSITION 2.4. There exists some constant De and a ((De)
16, De, 1/2)-

graph.

Finally, a key fact for our algorithm is that every connected, nonbipartite graph
has a spectral gap that is at least inverse polynomial in the size of the graph (recall
that a graph is nonbipartite if there is no partition of the vertices such that all the
edges go between the two sides of the partition).

LEMMA 2.5 (CF. ALON AND SUDAKOV [2000]). For every D-regular, con-
nected, nonbipartite graph G on [N] it holds that λ(G) ≤ 1 − 1/DN 2.

2.3. POWERING. Our main transformation will take a graph and transform each
one of its connected components (that in itself will be a connected, non-bipartite
graph), into a constant degree expander. If we ignore the requirement that the graph
remains constant degree, a simple way of amplifying the (inverse polynomial)
spectral gap of a graph is by powering.

Definition 2.6. Let G be a D-regular multigraph on [N] given by rotation
map RotG . The t th power of G is the Dt -regular graph Gt whose rotation map is
given by RotGt (v0, (a1, a2, . . . , at)) = (vt , (bt , bt−1, . . . , b1)), where these values
are computed via the rule (vi , bi) = RotG(vi−1, ai), i = 1, 2, . . . , t .

PROPOSITION 2.7. If G is an (N , D, λ)-graph, then Gt is an (N , Dt , λt)-graph.

PROOF. The normalized adjacency matrix of Gt is the t th power of the nor-
malized adjacency matrix of G, so all the eigenvalues also get raised to the t th
power.

2.4. TWO GRAPH PRODUCTS. While taking a power of a graph reduces its sec-
ond eigenvalue, it also increases its degree. As we are interested in producing
constant-degree graphs, we need a complementing operation that reduces the de-
gree of a graph without harming its expansion by too much. We now discuss two
graph products that are capable of doing exactly that.

The first is the very natural product, known as the replacement product. Assume
that G is a D-regular graph on [N] and H is a d-regular graph on [D] (where d is
significantly smaller than D). Very intuitively, the replacement product of the two
graphs is defined as follows: Each vertex v of G is replaced with a “copy” Hv of
H . Each of the D vertices of Hv is connected to its neighbors in Hv but also to
one vertex in Hw , where (v, w) is one of the D edges going out of v in G. The
degree in the product graph is d + 1 (which is smaller than D).2 A second, slightly
more involved, product introduced by Reingold et al. [2002], is the zig-zag graph
product. Here too we replace each vertex v of G with a “copy” Hv of H . However,
the edges of the zig-zag product of G and H correspond to a subset of the paths
of length three in the replacement product of these graphs3 (see formal definition
below). The degree of the product graph here is d2 (which should still be thought
of as significantly smaller that D).

2 Sometimes it is better to consider the balanced replacement product, where for every edge (v, w) in
G the corresponding edge between Hv and Hw is taken d times in parallel. The degree of the product
graph in this case is 2d instead of d + 1.
3 Those length three paths that are composed of a “short edge” (an edge inside one of the copies Hv),
a “long edge” (one that corresponds to an edge of G), and finally one additional “short edge.”

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:10 O. REINGOLD

FIG. 1. On the left—an edge of the zig-zag product is composed of three steps: a “short step” (in
Hv), a “big step” (between Hv and Hw which corresponds to an edge of G between v and w), and
a final “small step” (in Hw). The values i, i ′, j and j ′ are labels of edges of H (going out of the
H vertices a, a′, b′ and b respectively). On the right—the projection of these steps on the graph G
(which corresponds to the middle step specified by (w, b′) = RotG(v, a′)).

It is immediate from their definition, that both products can transform a graph
G to a new graph (the product of G and H) of smaller degree. As discussed in the
introduction, it was previously shown [Reingold et al. 2002; Martin and Randall
2000] that if H is a “good enough” expander, then the expansion of the resulting
graph is “not worse by much” than the expansion of G (see formal statement below
for the zig-zag product). Either one of these products can be used in our USTCON
algorithm (with some variation in the parameters). We find it more convenient to
work here with the zig-zag product even though it is a bit more involved. More
specifically, we find it less cumbersome to argue that our algorithm can be run in
log space when using the zig-zag product. Hence, we proceed by formally defining
this product. (see Figure 1.)

Definition 2.8 (Reingold et al. [2002]). If G is a D-regular graph on [N] with
rotation map RotG and H is a d-regular graph on [D] with rotation map RotH , then
their zig-zag product G ©z H is defined to be the d2-regular graph on [N] × [D]
whose rotation map RotG©z H is as follows (see Figure 1 for an illustration):

RotG©z H ((v, a), (i, j)):

(1) Let (a′, i ′) = RotH (a, i).

(2) Let (w, b′) = RotG(v, a′).
(3) Let (b, j ′) = RotH (b′, j).

(4) Output ((w, b), (j ′, i ′)).

In Reingold et al. [2002], λ(G©z H) was bounded as a function of λ(G) and λ(H).
The interesting case there was when both λ(G) and λ(H) were small constants (and
in fact, λ(G) is significantly smaller than λ(H)). In our context, λ(H) will indeed
be a small constant but G may have an extremely small spectral gap (recall that the
spectral gap of G is 1 − λ(G)). In this case, we want the spectral gap of G©z H to
be roughly the same as that of G (i.e., smaller by at most a constant factor). It turns
out that the stronger bound on λ(G ©z H), given in Reingold et al. [2002] implies
a useful bound also in this case. We note that a much simpler proof for the sort

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

Undirected Connectivity in Log-Space 17:11

of bound on the zig-zag product we need is given in Reingold et al. [2006] and
Rozenman and Vadhan [2005] (in a more general setting than the one considered
in Reingold et al. [2002]).

THEOREM 2.9 (REINGOLD ET AL. [2002]). If G is an (N , D, λ)-graph and H
is a (D, d, α)-graph, then G©z H is a (N · D, d2, f (λ, α))-graph, where

f (λ, α) = 1

2
(1 − α2)λ + 1

2

√
(1 − α2)2λ2 + 4α2.

As a simple corollary, we have that the spectral gap of G ©z H is smaller than
that of G by a factor that only depends on λ(H).

COROLLARY 2.10. If G is an (N , D, λ)-graph and H is a (D, d, α)-graph, then

1 − λ(G©z H) ≥ 1

2
(1 − α2) · (1 − λ).

PROOF. Since λ ≤ 1 we have that

1

2

√
(1 − α2)2λ2 + 4α2 ≤ 1

2

√
(1 − α2)2 + 4α2 = 1

2
(1 + α2) = 1 − 1

2
(1 − α2).

Therefore, f (λ, α) from Theorem 2.9 satisfies f (λ, α) ≤ 1− 1
2
(1−α2)(1−λ).

3. Transforming Graphs into Expanders

This section gives a log-space transformation that essentially turns each one of the
connected components of a graph into an expander. This is the main part of our
USTCON algorithm.

Definition 3.1 (Main Transformation). On input G and H , where G is a D16-
regular graph on [N] and H is a D-regular graph on [D16], both given by their
rotation maps, the transformation T outputs the rotation map of a graph G� defined
as follows:

—Set � = 2�log DN 2.

—Set G0 to equal G, and for i > 0 define Gi recursively by the rule:

Gi = (Gi−1©z H)8.

Denote by Ti (G, H) the graph Gi , and T (G, H) = G�

Note that by the basic properties of powering and the zig-zag product, it follows
inductively that each Gi is a D16-regular graph over [N]×([D16])i . In particular, the
zig-zag product of Gi and H is well defined. In addition, if D is a constant, then � =
O(log N) and G� has poly(N) vertices. Our first lemma shows that T is capable of
turning an input graph G into an expander G� (as long as H is in itself an expander).

LEMMA 3.2. Let G and H be the inputs of T as in Definition 3.1. If λ(H) ≤ 1/2
and G is connected and nonbipartite, then λ(T (G, H)) ≤ 1/2.

PROOF. Since G = G0 is connected and nonbipartite we have by Lemma 2.5
that λ(G0) ≤ 1 − 1/DN 2. By the choice of �, a simple calculation shows that

(1 − 1/DN 2)2�

< 1/2 (using, for example, that for x ≤ 0.5 it holds that (1 − x)2 ≤
1 − 1.5x). It is therefore enough to prove that for every i > 0, it holds that

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:12 O. REINGOLD

λ(Gi) ≤ max{λ(Gi−1)2, 1/2}. Denote λ = λ(Gi−1). Since λ(H) ≤ 1/2, we have
by Corollary 2.10 that λ(Gi−1 ©z H) ≤ 1 − 3/8(1 − λ) < 1 − 1/3(1 − λ). By the
definition of Gi and by Proposition 2.7, we have that λ(Gi) < [1−1/3(1−λ)]8. We
now consider two cases. First, if λ < 1/2, then λ(Gi) < (5/6)8 < 1/2. Otherwise,
elementary calculation shows that [1−1/3(1−λ)]4 ≤ λ and therefore λ(Gi) < λ2.
The lemma follows.

As we are working our way to solving st-connectivity, rather than solving con-
nectivity (the problem of deciding if the input graph is connected or not), our
transformation should be meaningful even for graphs that are not connected (as
even in this case the two input vertices s and t may still be in the same connected
component). For that, we will argue that T operates separately on each connected
component of G. The reason is that T is composed of two operations (the zig-zag
product and powering), that also operate separately on each connected component.
We will need some additional notation: For any graph G and subset of its vertices
S, denote by G|S the subgraph of G induced by S (i.e., the graph on S that contains
all of the edges in G between vertices in S). A set S is a connected component of
G if G|S is connected and the set S is disconnected from the rest of G (i.e., there
are no edges in G between vertices in S and vertices outside of S).

LEMMA 3.3. Let G and H be the inputs of T as in Definition 3.1. If S ⊆ [N]
is a connected component of G then

T (G|S, H) = T (G, H)|S×([D16])� .

PROOF. We will only rely on S being disconnected from the rest of G, and
will prove inductively that Ti (G|S, H) = Ti (G, H)|S×([D16])i . Note that for i > 0

this directly implies that S × ([D16])i is disconnected from the rest of Ti (G, H)
(since both Ti (G|S, H) and Ti (G, H) are D16-regular, and thus all of the D16 edges
incident to a vertex in S × ([D16])i reside inside Ti (G, H)|S×([D16])i). The base case

i = 0 is trivial, and here too S × ([D16])i = S is disconnected from the rest of
Ti (G, H) = G, by assumption.

Assume by induction that Ti (G|S, H) = Ti (G, H)|S×([D16])i . Set Gi = Ti (G, H)

and Si = S × ([D16])i (and recall that Si is disconnected from the rest of Gi). Then,
by the definition of the zig-zag product, Si × [D16] is disconnected from the rest of
Gi©z H and the edges incident to Si × [D16] in Gi©z H are exactly as in Gi |Si

©z H .
By the definition of powering we now have that Si × [D16] is disconnected from
the rest of (Gi ©z H)8 and the edges incident to Si × [D16] in (Gi ©z H)8 are exactly
as in (Gi |Si

©z H)8. This proves the induction hypothesis for i + 1 and completes
the proof.

Finally, we need to argue that T is a log-space transformation (when D is a
constant). The reason is that the evaluation of the rotation map RotGi+1

of each
graph Gi+1 in the definition of T requires just a constant additional amount of
memory over the evaluation of RotGi . Simply, the evaluation of RotGi+1

is composed
of a constant number of operations, where each operation is either an evaluation of
RotGi or it requires constant amount of memory (and the same memory can be used
for each one of these operations). So the additional memory needed for evaluating
RotGi+1

is essentially a constant size counter (keeping track of which operation we
are currently performing). Formalizing the above intuition is somewhat tricky, as

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

Undirected Connectivity in Log-Space 17:13

careless composition of small space transformations will incur additional low term
costs (which will result in an O(log N log log N)-space algorithm). Nevertheless,
this intuition can still be closely followed by a proof as shown by Goldreich [2008].
We choose a somewhat different approach of opening the recursive structure of our
algorithm and bounding its use of memory directly.

LEMMA 3.4. For every constant D the transformation T of Definition 3.1 can
be computed in space O(log N) on inputs G and H, where G is a D16-regular
graph on [N] and H is a D-regular graph on [D16].

PROOF. We describe an algorithm Aτ that on inputs G and H computes the
rotation map RotG�

of G� = T (G, H). Namely, given G and H (written on the read-
only input tape), it enumerates all values (v̄, ā) in the domain of RotG�

and outputs
[(v̄, ā), RotG�

(v̄, ā)]. Recall that a value (v̄, ā) in the domain of RotG�
consists of

v̄ ∈ [N] × ([D16])� which is the name of a G� vertex, and ā ∈ [D16], which is the
label of a G� edge. Since � = O(log N) and D is a constant, the length of each
value (v̄, ā) is O(log N) and therefore enumerating all of these values can be done
in space O(log N). It remains to show that for any particular value (v̄, ā), evaluating
RotG�

(v̄, ā) can also be done in the required space.
The algorithm Aτ will first allocate the following variables: v which will take

value in [N] (specifying a vertex of G), and � + 1 variables a0, a1 . . . a� each
taking value in [D16] (and each specifying a vertex name of H ; In addition, a0

may specify an edge label of G). It is sometimes convenient to view each one of
a1 . . . , a� as specifying a sequence of 16 edge labels of H . In this case, we denote
ai = ki,1 · · · ki,16. Now, Aτ will copy the value (v̄, ā) into the above mentioned
variables: v̄ into v, a0, . . . , a�−1 and ā into a�. Throughout the execution of Aτ , the
values of these variables will slowly evolve such that when Aτ finishes (for this
particular (v̄, ā)), the same variables will contain the desired output RotG�

(v̄, ā)
(which is of the same range as the input (v̄, ā)).

We describe the operation of Aτ in a recursive manner that closely follows the
definition of T . Particularly, at each level of the recursion, Aτ will evaluate RotGi

for some i on the appropriate prefix v, a0, . . . , ai of the variables defined above. For
the base case i = 0, RotG0

= RotG is written on the input tape, and can therefore
be evaluated in space O(log N) by simply searching the input tape for the desired
entry. For larger i , the evaluation of RotGi is as follows:

For j = 1 to 16

—Set ai−1, ki, j ← RotH (ai−1, ki, j).

—If j is odd, recursively set v, a0 · · · ai−1 ← RotGi−1
((v, a0 · · · ai−2), ai−1).

—If j = 16, reverse the order of the individual labels in ai : Set ki,1, . . . , ki,16 ←
ki,16, . . . , ki,1.

The correctness of Aτ immediately follows from the definition of T and from
the operations of which it consists (powering and the zig-zag product). Essentially,
going over the operations (in the first two bullets) for any two consecutive values
of j corresponds to one step on (Gi−1©z H). Repeating eight times implies a path
of length eight on (Gi−1©z H), or alternatively one step on (Gi−1©z H)8. The third
bullet reverses the order of labels to fit the definition of zig-zag and powering.

We therefore concentrate on the space complexity of Aτ . Note that each node of
the recursion tree performs a constant number of operations and makes a constant

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:14 O. REINGOLD

number of recursive calls. In addition the depth of the recursion is �+1 = O(log N).
Therefore, maintaining the recursion can be done in space O(log N). Furthermore,
each one of the basic operations (evaluating RotG , evaluating RotH , and reversing
the order of labels in the last step) can be performed in space O(log N). Finally, the
only memory that needs to be kept after a basic operation is performed, is the
memory holding the variables v, a0, . . . , a� (that are shared by all of these opera-
tions), and the memory for maintaining the recursion. For completeness, we give
in Appendix A an implementation of Aτ which includes low level details such as
an exact manner one may maintain the recursion. We therefore conclude that the
space complexity of Aτ is O(log N) which completes the proof.

4. A Log-Space Algorithm for USTCON

This section puts together the tools developed above into a deterministic log-space
algorithm that decides undirected st-connectivity. As will be discussed in Section 5,
the algorithm can also output a path from s to t if such a path exists.

THEOREM 4.1. USTCON ∈ L

As undirected USTCON is complete for SL [Lewis and Papadimitriou 1982],
Theorem 4.1 can be rephrased as follows.

THEOREM 4.2. SL = L

PROOF OF THEOREM 4.1. We give an algorithm Acon that gets as input a graph
G over the set of vertices [N], and two vertices s and t in [N]. For concreteness, we
assume that the graph is given via the adjacency matrix representation. Acon will
answer “connected” if and only if there exists a path in G between s and t (i.e., s
and t are in the same connected component). Furthermore, G will use space which
is logarithmic in its input size.

The algorithm Acon will need to evaluate the rotation map of a ((De)
16, De, 1/2)-

graph H , where De is some constant. By Proposition 2.4, there exists such a graph
and therefore Acon can obtain it by exhaustive search using constant amount of
memory (a more efficient alternative is of course to obtain H by any of the explicit
constructions of expanders mentioned in Section 2.2).

Let T be the transformation given by Definition 3.1. We would like to apply
T to G and H in order to obtain a graph where each connected component is
an expander. For such graphs, st-connectivity can be solved in logarithmic space
by Proposition 2.3. However, we will first need to preprocess G in order to get
a new graph G reg such that (G reg, H) is a correct input to T . In particular, we

need G reg to be a D16
e -regular graph given by its rotation map. There are various

ways of transforming G to G reg. The one given here was selected for its simplicity
even though it is not the most efficient one possible (in terms of the size of G reg).
Essentially, we replace every vertex of G with a cycle of length N and each of the
vertices (v, w), where there is an edge between v and w in G, is also connected
to (w, v) (the rest of the edges are self loops). The rotation map RotGreg : ([N] ×
[N]) × [D16

e] �→ ([N] × [N]) × [D16
e] of G reg is formally defined as follows:

—RotGreg((v, w), 1) = ((v, w ′), 2), where w ′ = w+1 if w<N and w ′ = 1 otherwise.

—RotGreg((v, w), 2) = ((v, w ′), 1), where w ′ = w−1 if w > 1 and w ′=N otherwise.

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

Undirected Connectivity in Log-Space 17:15

—In case there is an edge between v and w in G then RotGreg((v, w), 3) =
((w, v), 3). Otherwise, RotGreg((v, w), 3) = ((v, w), 3).

—For i > 3, RotGreg((v, w), i) = ((v, w), i).

The transformation from G (given by its adjacency matrix) to G reg (given by its

rotation map) is clearly computable in logarithmic space. Furthermore, G reg is D16
e -

regular by definition and all its connected components are nonbipartite (as every
vertex in G reg has self loops). Finally, for every connected component S ⊆ [N] of
G we have that S × [N] is a connected component in G reg. To see that, we first note
that for every vertex v ∈ [N] the set of vertices v × [N] is in the same connected
component of G reg (as this set is connected by a cycle). Furthermore, there is an
edge in G reg between some vertex in v × [N] and some vertex in w × [N] if and
only if v and w are connected by an edge in G (the only possible edge that can
connect these subsets is an edge between (v, w) and (w, v) which only exists in
G reg if there is an edge between v and w in G).

Now define Gexp = T (G reg, H), and � = O(log N) is the corresponding value
as in Definition 3.1. Let S be the connected component of G, such that s ∈ S. By
the arguments above, S × [N] is a connected component of G reg, and G reg|S×[N] is

nonbipartite. By Lemma 3.3, S × [N] × ([D16
e])� is disconnected from the rest of

Gexp (as both Gexp and Gexp|S×[N]×([D16
e])� = T (G reg|S×[N], H) are D16

e -regular). By
Lemma 3.2 and Lemma 3.3, we have that λ(Gexp|S×[N]×([D16

e])�) ≤ 1/2. In particular,
we have that S × [N] × ([D16

e])� is a connected component of Gexp.
Let Aexp be the the algorithm guaranteed by Proposition 2.3 (which decides

undirected st-connectivity correctly in graphs where the connected component of
the starting vertex is an expanders). The algorithm Acon will now invoke Aexp, on

the graph Gexp and the vertices s ′ = (s, 1�+1) and t ′ = (t, 1�+1). If Aexp outputs that
s ′ and t ′ are connected in Gexp, then Acon will output that s and t are connected in
G. Otherwise, Acon will output that s and t are not connected.

The algorithmAcon is log-space since it is composed of a constant number of log-
space procedures: (1) The transformation from G to G reg. (2) The transformation
from G reg to Gexp, which is computable by a log-space algorithmAτ by Lemma 3.4.
(3) The algorithm Aexp which is log-space by Proposition 2.3. Correctness of Acon

is argued as follows. First, s ′ and t ′ are connected in Gexp if and only if s and t are

connected in G (since S × [N]× ([D16
e])� is a connected component of Gexp, where

S is the connected component of G that contains s). The correctness of Acon now
follows since Proposition 2.3 implies that Aexp will output ‘connected’ if and only
if s ′ and t ′ are indeed connected in Gexp (as λ(Gexp|S×[N]×([D16

e])�) ≤ 1/2).

5. Universal Traversal and Exploration Sequences

In this section, we look closer into our USTCON algorithm and conclude that
it also solves the corresponding search problem (i.e., finding the path from s to
t if such a path exist). In addition, it implies efficiently constructible universal-
traversal sequences for graphs with restricted labeling, and universal exploration
sequences for general graphs. The sort of restriction we pose on the labeling of
graphs is a strengthening of the “consistent labeling” used in Hoory and Wigderson
[1993]. In a subsequent work [Reingold et al. 2006], our restriction is relaxed back
to “consistent labeling”, and is therefore identical to the restriction of Hoory and
Wigderson [1993] for universal-traversal sequences on expander graphs.

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:16 O. REINGOLD

We start by analyzing T , the main transformation of the algorithm, given by
Definition 3.1. We show that every edge in T (G, H) translates to a path in G
between the appropriate vertices, and that this path is log-space constructible
(as this path is indeed computed during the log-space evaluation of T). Look-
ing ahead to the universal-traversal sequences, we note that if we restrict the la-
beling of G, then the labels of edges, traversed along this path, are independent
of G.

Definition 5.1. Let π be a permutation over [D] and RotG the rotation map of
a D-regular graph G. Then RotG is π -consistent if for every v, i, w and j such that
RotG(v, i) = (w, j), it holds that j = π (i). In such a case, we may also say that
the labeling of G is π -consistent.

An example of a π -consistent labeling is symmetric labeling where π is simply
the identity. Namely, every edge is labelled in the same way from both its end points.
However, other kinds of π -consistent labeling come up naturally. An example for
that is the labeling of G reg in the proof of Theorem 4.1. We can now state the
appropriate technical lemma regarding the transformation T .

LEMMA 5.2. Let D be some constant. Let G be a D16-regular graph on [N]
and let H be a D-regular graph on [D16], both given by their rotation maps. Let
G� = T (G, H), where T and � are given by Definition 3.1.

There exists a log-space algorithm Ae2p such that given RotG, RotH and (v̄, ā)
in the domain of RotG�

, it outputs a sequence of labels in [D16] with the following
property: If the first element of v̄ is a vertex u ∈ [N] and the the first element of
RotG�

(v̄, ā) is a vertex w ∈ [N], then the walk on G from u using the labels that
the algorithm outputs leads to w.

Furthermore, for every fixed permutation π on [D16], if the labeling of G is
π -consistent, the log-space algorithm can produce the sequence of labels without
access to RotG.

PROOF. Consider the log-space algorithm Aτ in the proof of Theorem 3.4, as
it evaluates RotG�

(v̄, ā). Consider in particular the two variables v and a0 used by
Aτ . To begin with, v is initialized to the value u (the first element of v̄). At the end,
v is guaranteed to contain the value w . Throughout the run of Aτ , the variable v is
only updated by the rule v, a0 ← RotG(v, a0) (used at the bottom of the recursion).
We enhance Aτ a bit, to define an algorithm Ae2p as claimed by the lemma. By the
above discussion, all that Ae2p needs to do is to output the value of a0 just before
each time Aτ updates v .

Regarding the second part of the lemma. We note that the the only way RotG
influences the value of a0 is through the evaluations v, a0 ← RotG(v, a0). If G is
π -consistent, thenAe2p can completely ignore the variable v and the rotation map of
G. To simulate Aτ , it is sufficient that whenever Aτ evaluates v, a0 ← RotG(v, a0),
then Ae2p will evaluate a0 ← π (a0).

Using Lemma 5.2, it is not hard to obtain the algorithm that finds paths in
undirected graphs.

THEOREM 5.3. There exists a log-space algorithm Asrch that gets as input a
graph G over the set of vertices [N], and two vertices s and t in [N], and outputs
a path from s to t if such a path exists (otherwise, it outputs ‘not connected’).

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

Undirected Connectivity in Log-Space 17:17

PROOF. Consider the algorithm Acon from the proof of Theorem 4.1. We revise
it to an algorithm Asrch as required by the theorem. First, we note that it is enough
for Asrch to output a path from (s, 1) to (t, 1) in G reg if such a path exists, as it is easy
to transform (in log-space) such a path to a path from s to t in G (and the existence
of the two paths is equivalent).

Next we note that Acon enumerates all logarithmically long paths from s ′ =
(s, 1�+1) in Gexp. If it does not find a path that visits t ′ = (t, 1�+1), it concludes
that s and t are not connected in G. Therefore, in such a case, Asrch can output ‘not
connected’. Otherwise, Acon found a short path from s ′ to t ′. Apply Ae2p guaranteed
by Lemma 5.2 on each edge on the path from s ′ to t ′. Each time Ae2p outputs a
sequence of edge-labels in G reg. Let �a be the concatenation of these sequences. It
follows from Lemma 5.2 that the path in G reg starting from (s, 1) and following the
edges according to the labels in �a leads to (t, 1). The theorem now follows.

To give our result regarding universal-traversal sequences, we need some nota-
tion. Let �a = {a1, . . . , am} be a sequence of values in [D] (these are interpreted
as edge labels). �a is an (N , D)-universal traversal sequence, if for every connected
D-regular, labeled graph G on N vertices, and every start vertex s ∈ [N], the walk
that starts at s and follows the edges labeled a1, . . . , am , visits every vertex in the
graph. For a permutation π over [D], we say that �a is an (N , D) π -universal traver-
sal sequence, if the above property holds for every connected D-regular graph on
N vertices, that has a π -consistent labeling, (rather than for all such graphs).

THEOREM 5.4. There exists a log-space algorithm that takes as input 1N and
a permutation π over [D] and outputs an (N , D) π -universal traversal sequence.

PROOF. First, we argue that it is enough to construct an (N ·D, D16
e) π ′-universal

sequence for the following simple permutation: π ′(1) = 2, π ′(2) = 1 and for every
i > 2 π ′(i) = i . Furthermore, all we need is that the sequence will traverse nonbi-
partite graphs. Consider a (connected) D-regular graph G on N vertices that has a
π -consistent labeling. This graph can be transformed into a D16

e -regular (connected
and nonbipartite) graph G ′ on N · D vertices that has a π ′-consistent labeling. Each
vertex v ∈ N is transformed into a cycle over D vertices (v, 1), . . . , (v, D), the
edges of the cycle are labeled 1 and 2 (just as in the definition of G reg in the proof
of Theorem 4.1). The edge labeled 3 going out of (v, i) will lead to RotG(v, i) (and
will be labeled 3 from that end as well). All other edges are self loops.

Assume that a sequence of labels a1, . . . , am , visits every vertex of G ′ starting
from every vertex (v, 1). We can translate this (in log space) into a sequence of
labels b1, . . . , bm ′ that traverses G from every vertex v . To do that, we simulate the
walk on G ′ from an arbitrary vertex (v, 1). As v is unknown and our simulation
does not rely on G, it will only know at each point the value b such that the walk
at this point visits some vertex (w, b) of G ′ (where w is unknown). First, b is set
to 1. Then, during the simulation, labels ai > 3 can be ignored (as they are self
loops). Given labels 1 and 2, b can easily be updated (these are edges on the cycle).
Finally, when encountering ai = 3 the walk moves from a vertex (w, b) to a vertex
(w ′, π (b)) (as the labeling of G is π -consistent), and so it is easy to update the
value of b (given access to π). The projection of the walk on G is exactly the edges
labeled 3 that are taken by the walk on G ′. Therefore, to transform the sequence of
ai ’s to the sequence of bi ’s we can simply output (throughout the above simulation)
the current value of b, whenever we encounter a label ai = 3.

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:18 O. REINGOLD

Now we consider a D16
e -regular (connected and non-bipartite) graph G ′ on N · D

vertices that has a π ′-consistent labeling. Let H be a ((De)
16, De, 1/2)-graph. Fi-

nally let G� = T (G, H), where T and � are given by Definition 3.1. By Lemma 3.2,
λ(G�) ≤ 1/2 and therefore its diameter is logarithmic. Therefore, for every two ver-
tices v and u of G ′ one of the polynomially many sequences of labels (of the appro-
priate logarithmic length) will visit (u, 1�), starting at (v, 1�). Let B be the set of all
these sequences of labels. Lemma 5.2 gives a way to translate in log-space each one
of the sequences in B into a corresponding sequence of edge-labels of G ′. Let B ′ be
the set of translated sequences. By Lemma 5.2 and the above argument, for every two
vertices v and u of G ′ one of the sequences in B ′ will lead a walk in G ′ that starts in v
through the vertex u. We should also note that given a sequence �a = a1, . . . , am that
leads from a vertex v to a vertex u, we have that the sequence π ′−1(am), . . . , π ′−1(a1)
leads from u to v (this operation simply reverses the walk). We refer to this latter
sequence as the reverse of �a (note that given �a as input, the reverse of �a can easily be
computed in logarithmic space—to output the i th symbol look for am−i+1, and apply
π ′−1 ≡ π ′ to it). Finally, we can define a sequence that traverses all of the vertices
of G ′ regardless of the starting vertex. Simply, we concatenate for each sequences
in B ′ its reversed sequence and concatenate all of these sequences one after the
other. By the arguments above, for every vertex v , the sequence we obtain will visit
v after every pair of a sequence and its reversed sequence. Furthermore, for every
vertex u, one of these sequences will lead to u. As the log-space construction of
this sequence ignores the graph G ′ (and only relies on π ′), we obtained the desired
(N ·D, D16

e) π ′-universal sequence for nonbipartite graphs. The lemma follows.

In an (N , D)-universal exploration sequence, the sequence of labels is interpreted
as offsets rather than absolute labels. This means that if we entered a vertex v on
an edge labeled a (from v’s view point), and we are reading the label b, then we
will leave v on the edge labelled a + b (or a + b − D if a + b > D). In fact this
notion can apply to graphs that are not-regular (it then makes sense to allow negative
elements in the sequence). Universal-exploration sequences have more flexibility
than universal-traversal sequences. For example, it is not clear how to transform a
universal-traversal sequence for degree-3 graphs to one for higher-degree graphs.
This is easy for universal-exploration sequences (and seems desirable as USTCON
can easily be reduced to USTCON for regular-graphs of any degree larger than
2). Koucky [2003, Theorem 85] showed how to transform a universal-traversal se-
quence to a universal-exploration sequence. His transformation (which relies on a
transformation of graphs that is essentially the same as the one from G to G ′ in the
proof of Theorem 5.4), only needs the universal-sequence to work for graphs with
π -consistent labeling for some simple permutation π . We can therefore con-
clude from Theorem 5.4 a log-space construction for general universal-exploration
sequences.

COROLLARY 5.5. There exists a log-space algorithm that takes as input
(1N , 1D) and produces an (N , D)-universal exploration sequence.

6. Discussion and Further Research

We start by comparing the techniques of this article with some previous ones, with
the goal of shedding some light on the source of our improvements. We continue
by discussing some open problems and the results of a subsequent work.

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

Undirected Connectivity in Log-Space 17:19

6.1. COMPARISON WITH PREVIOUS TECHNIQUES. The USTCON algorithms of
Savitch [1970], Nisan et al. [1989], and Armoni et al. [2000] also operate by trans-
forming, in phases, the input graph into a more accommodating one. In each one of
these algorithms, each phase “charges” logarithmic amount to the space complexity
of the algorithm. The improvement in the space complexity is directly correlated
with reducing the number of phases needed for the transformation. With this ap-
proach, the only way to obtain a log-space algorithm is to reduce the number of
phases to a constant. We deviate from this direction, as we use a logarithmic number
of phases (just as in Savitch’s algorithm), to gradually improve the connectivity of
the input graph. The space efficiency of our algorithm stems from each transfor-
mation being significantly less costly in space.

The parameter being improved by Nisan et al. [1989] and Armoni et al. [2000]
is the size of the graph (each transformation shrinks the graph by collapsing it to a
“representative” subset of the vertices). In contrast, our transformation will in fact
expand the graph by a polynomial factor (as each phase, enlarges our graph by a
constant factor).4 The parameter Savitch’s transformation improves is the diameter
of the graph, which is much closer to the parameter we improve (the expansion).
In fact, each phase of Savitch’s algorithm can be described very similarly to our
algorithm. Each one of these phases consists of squaring the graph and then remov-
ing parallel edges (which may reduce the degree). Although all that is eventually
needed by our algorithm is indeed that the diameter of the resulting graph will be
small, our analysis relies on bounding the expansion of intermediate graphs – a
stronger notion of connectivity than the diameter. This allows our transformation
to preserve constant degree of the graph (rather than linear degree in Savitch’s
algorithm), which is crucial for our analysis of the space complexity.

6.2. FURTHER RESEARCH. There are many open problems and new research
directions brought up by this work, we discuss just a few of those. A very natural
question is whether the techniques of this paper can be used towards a proof of
RL = L. While progress in the context of RL does not seem immediate (as the
case of symmetric computations does seem significantly easier), we feel that it
is still quite plausible. A more ambitious research direction is to reevaluate the
common conjecture that Savitch’s algorithm is optimal for STCON. While this
conjecture may very well be correct, we feel that there is still not enough evidence
supporting it. Another open problem is to come up with full-fledged, efficiently-
constructible, universal-traversal sequences (see Section 5). Interestingly, it seems
that this problem shares some of the obstacles that one encounters when trying to
generalize the USTCON algorithm to solving RL (this is formalized to some extent
in the work of Reingold et al. [2006]; see discussion below).

Finally, we have made no attempt to optimize our algorithm in terms of running
time (or the constant in the space complexity). Major improvements in efficiency can
come about by better analysis of the zig-zag and replacement products. These may
also determine which one of these products yields a more efficient algorithm. Im-
portant progress in this direction was done by Rozenman and Vadhan [2005]. They
give an alternative, though related, deterministic log-space algorithm for USTCON.

4 It is interesting to note that in the alternative proof that SL = L given in Rozenman and Vadhan
[2005], the size of the graph remains the same and it is the degree that moderately enlarges.

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:20 O. REINGOLD

Their analysis relies on a new, very natural, graph operation which they call deran-
domized squaring. This operation improves the expansion of a graph comparably
to squaring but with a significantly smaller increase in the degree. They give a tight
bound on the expansion of the resulting graph using a beautiful and enlightening
new analysis.5 Correspondingly, their algorithm obtains much better performance
(though there is still much room for improvement).

6.2.1. Current Boundaries of Our Approach Towards Derandomizing RL. In a
subsequent work with Trevisan and Vadhan [Reingold et al. 2006], we have made
some progress on extending our techniques to dealing with the general RL case.
We obtained the following results:

(1) Generalizing our techniques to directed graphs (digraphs), we presented a deter-
ministic, log-space algorithm that given a regular digraph G (or, more generally,
a digraph with Eulerian connected components) and two vertices s and t , finds
a path from s to t if one exists.

(2) For digraphs that are regular and consistently labeled, we were able to produce
pseudorandom walks (and universal-traversal sequences) in logarithmic space.

(3) We have proved that if the pseudorandom walks of item (2) could be generalized
to all regular digraphs (including ones that are not consistently labelled) then
L = RL. This was done so by exhibiting a new complete promise problem for
RL, and showing that such a problem can be solved in deterministic logarithmic
space given a log-space pseudorandom walk generator for regular digraphs.
The complete promise problem is essentially STCON restricted to digraphs for
which the random walk is promised to have polynomial mixing time (such a
problem indeed seems more amenable to our techniques).

In another subsequent work with Chung et al. [2007], we have shown how to
solve STCON in deterministic log-space in digraphs if (i) we are given a stationary
distribution of the random walk on the graph in which both of the input vertices s
and t have nonnegligible probability mass and (ii) the random walk that starts at
the source vertex s has polynomial mixing time.

Summing up the results of Reingold et al. [2006] and Chung et al. [2007], we
can identify different obstacles in extending our techniques to solving RL when
we consider oblivious and explicit derandomization. Loosely, the setting of ex-
plicit derandomization is one where we are given the RL machine and directly try
to derandomize this particular machine. In this case, we learn from Chung et al.
[2007] that the obstacle is knowing (or being able to approximate) the probabilities
of intermediate configurations. An example of oblivious derandomiztion is deran-
domiztion by pseudorandom generators (as such generators work for the entire
class of problems rather than for specific problem). We learn from Reingold et al.
[2006] that to derandomize RL it is sufficient to concentrate on walks on regular
digraphs (for which the stationary distribution is known to be uniform). For such
derandomization, the challenge revolves around the labeling of edges (in the ex-
plicit derandomization case, labeling is never a problem as it is easy to turn a graph
into a consistently labeled one).

5 Their analysis also translates to a simple new analysis of the zig-zag and replacement products.
Unfortunately, the analysis for these products is probably still not tight.

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

Undirected Connectivity in Log-Space 17:21

Appendix A. Low Level Implementation

In the proof of Lemma 3.4, we describe an algorithm Aτ that on inputs G and H
computes the rotation map RotG�

of G� = T (G, H). More specifically, given (v̄, ā)
in the domain of RotG�

it outputs RotG�
(v̄, ā). For completeness, we give here an

implementation of Aτ which includes low level details such as an exact manner
one may maintain the recursion in the definition of Aτ . There are several ways of
completing such details and there is nothing particularly interesting or challenging
in that. That the following is a faithful log-space implementation of Aτ can be
verified by (somewhat tedious) inspection.

The algorithm Aτ will first allocate the following variables:

—v - takes value in [N] and specifying a vertex of G.

—�+1 variables a0, a1 . . . a� - each taking value in [D16]. Each specifying a vertex
name of H ; In addition, a0 may specify an edge label of G. It is sometimes
convenient to view each one of a1 . . . , a� as specifying a sequence of 16 edge
labels of H . In this case, we denote ai = ki,1 . . . ki,16.6

— I - takes value in [�] and specifying the current height in the recursion level.

—� variables j1 · · · j� - each taking value in [16] and together specifying the recur-
sion path.

—basic - logarithmically long space that is sufficient to carry out the basic opera-
tions as will be defined below.

The algorithm Aτ will initialize the above variables as follows:

—Copy the input (v̄, ā) into v, a0, a1, . . . , a�: v̄ into v, a0, . . . , a�−1 and ā into
a�.

— I is set to �.

— j1 · · · j� are each set to one.

—basic is initialized to an arbitrary default setting (e.g., all zeros).

The algorithm Aτ operates as follows:

(1) Set aI−1, kI, jI ← RotH (aI−1, kI, jI) (using the memory in basic).

(2) If jI is odd, and I = 1 set v, a0 ← RotG(v, a0) (using the memory in basic).
Set jI ← jI + 1 and go to Step (1).

(3) If jI is odd and I > 1, set jI−1 ← 1 and I ← I − 1. Go to Step (1).

(4) If jI = 16, reverse the order of the individual labels in aI : Set kI,1, . . . , kI,16 ←
kI,16, . . . , kI,1 (using the memory in basic).

(5) If jI = 16 and I = �, output the content v, a0, a1 . . . a� (as RotG�
(v̄, ā)) and

halt.

(6) If jI = 16 and I < �, set jI+1 ← jI+1 + 1 and I ← I + 1. Go to Step (1).

ACKNOWLEDGMENTS. This work came about during a delightful visit to UC Berke-
ley. I am most grateful to Irit Dinur and Luca Trevisan for many hours of stimulating

6 Note that since D is a constant, decomposing a value in [D16] to the 16 corresponding edge labels
can be done in constant time. It will be however more elegant to assume that throughout the run of
the algorithm values in [D16] are represented as sequences in [D]16 (this is naturally the case when
D is a power of two).

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:22 O. REINGOLD

discussions on closely related topics and for creating the most conducive research
environment possible for me. I would like to thank Moni Naor, Ran Raz, Salil Vad-
han and Avi Wigderson for many discussions that helped me form my intuitions on
the derandomization of space bounded computations. Among other contributions,
I want to thank Moni for steering me towards this topic early on during my PhD
studies, and to thank Ran, Salil and Avi for intuitions formed during our joint work
[Raz and Reingold 1999; Reingold et al. 2000]. Finally, I would like to thank the
anonymous reviewers for their careful reading and for many useful comments.

REFERENCES

AJTAI, M., KOMLÓS, J., AND SZEMERÉDI, E. 1987. Deterministic simulation in LOGSPACE. In Proceed-
ings of the 19th Annual ACM Symposium on Theory of Computing (STOC) (New York, NY). ACM, New
York, 132–140.

ALELIUNAS, R., KARP, R. M., LIPTON, R. J., LOVÁSZ, L., AND RACKOFF, C. 1979. Random walks,
universal traversal sequences, and the complexity of maze problems. In Proceedings of the 20th Annual
Symposium on Foundations of Computer Science (FOCS) (San Juan, Puerto Rico). IEEE Computer
Society Press, Los Alamitos, CA, 218–223.

ALON, N. 1986. Eigenvalues and expanders. Combinatorica 6, 2, 83–96.
ALON, N., GALIL, Z., AND MILMAN, V. D. 1987. Better expanders and superconcentrators. J. Algo-

rithms 8, 3, 337–347.
ALON, N., AND MILMAN, V. D. 1985. λ1, isoperimetric inequalities for graphs, and superconcentrators.

J. Combinat. Theory Ser. B 38, 1, 73–88.
ALON, N., AND ROICHMAN, Y. 1994. Random Cayley graphs and expanders. Rand. Struct.

Algorithms 5, 2, 271–284.
ALON, N., AND SUDAKOV, B. 2000. Bipartite subgraphs and the smallest eigenvalue. Combinat. Probab.

Comput. 9, 1.
ALVAREZ, C., AND GREENLAW, R. 1996. A compendium of problems complete for symmetric logarithmic

space. Electronic Colloquium on Computational Complexity (ECCC) 3, 039.
ARMONI, R., TA-SHMA, A., WIGDERSON, A., AND ZHOU, S. 2000. An o(log(n)4/3) space algorithm for

(s,t) connectivity in undirected graphs. J. ACM 47, 2, 294–311.
BABAI, L., NISAN, N., AND SZEGEDY, M. 1989. Multiparty protocols, pseudorandom generators for

logspace, and time-space trade-offs. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing (Seattle, WA). ACM, New York, 204–232.

BEN-ASHER, Y., LANGE, K.-J., PELEG, D., AND SCHUSTER, A. 1995. The complexity of reconfiguring
network model. Inf. Comput. 21, 1, 41–58.

BORODIN, A., COOK, S. A., DYMOND, P. W., RUZZO, W. L., AND TOMPA, M. 1989. Two applications of
inductive counting for complementation problems. SIAM J. Comput. (SICOMP) 18, 3, 559–578.

BRODER, A., AND SHAMIR, E. 1987. On the second eigenvalue of random regular graphs. In Poceedings
of the 28th Annual Symposium on Foundations of Computer Science (FOCS) (Los Angeles, CA). IEEE
Computer Society Press, Los Alamitos, CA, 286–294.

CHUNG, K.-M., REINGOLD, O., AND VADHAN, S. 2007. S-T connectivity on digraphs with known sta-
tionary distribution. In Proceedings of the 22nd Annual IEEE Conference on Computational Complexity
(CCC), In IEEE Computer Society Press, Los Alamitos, CA, 236–249. (Full version posted as ECCC
TR07-030).

DINUR, I. 2007. The PCP Theorem by gap amplification. J. ACM 54, 3, 12.
FRIEDMAN, J. 1991. On the second eigenvalue and random walks in random d-regular graphs. Combi-

natorica 11, 4, 331–362.
FRIEDMAN, J., KAHN, J., AND SZEMERÉDI, E. 1989. On the second eigenvalue in random regular graphs.

In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (Seattle, WA), ACM, New
York, 587–598.

GABBER, O., AND GALIL, Z. 1981. Explicit constructions of linear-sized superconcentrators. J. Comput.
Syst. Sci. 22, 3 (June), 407–420.

GOLDREICH, O. 2005. Bravely, moderately: A common theme in four recent results. Electronic Collo-
quium on Computational Complexity (ECCC) 098. (Also appeared as part of SIGACT news complexity
theory column 51.)

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

Undirected Connectivity in Log-Space 17:23

GOLDREICH, O. 2008. Computational Complexity: A Conceptual Perspective. Cambridge University
Press. (Online drafts at http://www.wisdom.weizmann.ac.il/oded/cc-drafts.html.)

GOLDREICH, O., AND WIGDERSON, A. 2002. Derandomization that is rarely wrong from short advice that
is typically good. In Proceedings of the 6th International Workshop on Randomization and Computation
(RANDOM). 209–223.

HOORY, S., AND WIGDERSON, A. 1993. Universal traversal sequences for expander graphs. Inf. Process.
Lett. 46, 2, 67–69.

IMPAGLIAZZO, R., NISAN, N., AND WIGDERSON, A. 1994. Pseudorandomness for network algorithms.
In Proceedings of the 26th Annual ACM Symposium on the Theory of Computing (STOC) (Montréal,
Québec, Canada). ACM, New York, 356–364.

JERRUM, M., SINCLAIR, A., AND VIGODA, E. 2004. A polynomial-time approximation algorithm for the
permanent of a matrix with nonnegative entries. J. ACM 51, 4, 671–697.

JIMBO, S., AND MARUOKA, A. 1987. Expanders obtained from affine transformations. Combinator-
ica 7, 4, 343–355.

KARCHMER, M., AND WIGDERSON, A. 1993. On span programs. In Proceedings of the 8th Structures in
Complexity conference. 102–111.

KLIVANS, A., AND VAN MELKEBEEK, D. 2002. Graph nonisomorphism has subexponential size proofs
unless the polynomial-time hierarchy collapses. SIAM J. Comput. (SICOMP) 31, 5, 1501–1526.

KOUCKY, M. 2001. Universal traversal sequences with backtracking. In Proceedings of the IEEE Con-
ference on Computational Complexity (CCC). IEEE Computer Society Press, Los Alamitos, CA, 21–27.

KOUCKY, M. 2003. On traversal sequences, exploration sequences and completeness of kolmogorov
random strings. Ph.D. dissertation, Rutgers University.

LEWIS, H. R., AND PAPADIMITRIOU, C. H. 1982. Symmetric space-bounded computation. Theoret.
Comput. Sci. 19, 161–187.

LUBOTZKY, A., PHILLIPS, R., AND SARNAK, P. 1988. Ramanujan graphs. Combinatorica 8, 3, 261–
277.

MADRAS, N., AND RANDALL, D. 1996. Factoring Markov chains to bound mixing rates. In Proceedings
of the 37th Annual Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society
Press, Los Alamitos, CA, 194–203.

MARGULIS, G. A. 1973. Explicit constructions of expanders. Problemy Peredachi Informatsii 9, 4, 71–80.
MARGULIS, G. A. 1988. Explicit group-theoretic constructions of combinatorial schemes and their ap-

plications in the construction of expanders and concentrators. Problemy Peredachi Informatsii 24, 1,
51–60.

MARTIN, R. A., AND RANDALL, D. 2000. Sampling adsorbing staircase walks using a new markov chain
decomposition method. In Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS). (Redondo Beach, CA) IEEE Computer Society Press, Los Alamitos, CA, 492–502.

MORGENSTERN, M. 1994. Existence and explicit constructions of q + 1 regular Ramanujan graphs for
every prime power q . J. Combinat. Theory Ser. B 62, 1, 44–62.

NISAN, N. 1992a. Pseudorandom generators for space-bounded computation. Combinatorica 12, 4, 449–
461.

NISAN, N. 1992b. RL ⊆ SC. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing
(STOC). ACM, New York, 619–623.

NISAN, N., SZEMERÉDI, E., AND WIGDERSON, A. 1989. Undirected connectivity in o(log1.5n) space. In
Proceedings of the 30th Foundations of Computer Science (Research Triangle Park, NC), IEEE Computer
Society Press, Los Alamitos, CA, 24–29.

NISAN, N., AND TA-SHMA, A. 1995. Symmetric logspace is closed under complement. Chicago J. Theor.
Comput. Sci.

NISAN, N., AND ZUCKERMAN, D. 1996. Randomness is linear in space. J. Comput. Syst. Sci. 52, 1 (Feb.),
43–52.

PINSKER, M. S. 1973. On the complexity of a concentrator. In Proceedings of the 7th Annual Teletraffic
Conference. Stockholm, 318/1–318/4.

RAZ, R., AND REINGOLD, O. 1999. On recycling the randomness of the states in space bounded compu-
tation. In Proceedings of the 31st Annual ACM Symposium on the Theory of Computing (STOC) (Atlanta,
GA). ACM, New York.

REIF, J. H. 1984. Symmetric complementation. J. ACM 31, 2, 401–421.
REINGOLD, O., TREVISAN, L., AND VADHAN, S. P. 2006. Pseudorandom walks on regular digraphs and the

RL vs. L Problem. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC).
ACM, New York, 457–466.

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

17:24 O. REINGOLD

REINGOLD, O., VADHAN, S., AND WIGDERSON, A. 2000. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. In Proceedings of the 41st Annual Symposium on
Foundations of Computer Science (FOCS) (Redondo Beach, CA). IEEE Computer Society Press, Los
Alamitos, CA, 3–13.

REINGOLD, O., VADHAN, S., AND WIGDERSON, A. 2002. Entropy waves, the zig-zag graph product,
and new constant-degree expanders. Ann. Math. 155, 1 (January). (Extended abstract in Proceedings of
FOCS ‘00).

ROZENMAN, E., AND VADHAN, S. 2005. Derandomized squaring of graphs. In Proceedings of the 8th
International Workshop on Randomization and Computation (RANDOM). Lecture Notes in Computer
Science, vol. 3624. Springer-Verlag, New York, 436–447.

SAKS, M. 1996. Randomization and derandomization in space-bounded computation. In Proceedings of
the IEEE 11th Annual Conference on Structure in Complexity Theory. IEEE Computer Society Press,
Los Alamitos, CA.

SAKS, M., AND ZHOU, S. 1999. bphspace(S) ⊆ dspace(S3/2). J. Comput. Syst. Sci. 58, 2, 376–403.
SAVITCH, J. 1970. Relationship between nondeterministic and deterministic tape complexities. J. Com-

put. Syst. Sci. 4, 2, 177–192.
TANNER, M. R. 1984. Explicit concentrators from generalized n-gons. SIAM J. Algeb. Disc. Meth. 5, 3,

287–293.
TRIFONOV, V. 2005. An o(log n log log n) space algorithm for undirected s,t-connectivity. In Proceedings

of the 37th ACM Symposium on Theory of Computing (STOC). ACM, New York.
WIGDERSON, A. 1992. The complexity of graph connectivity. In Proceedings of the 17th Mathematical

Foundations of Computer Science. 112–132.

RECEIVED JANUARY 2008; REVISED JUNE 2008; ACCEPTED JUNE 2008

Journal of the ACM, Vol. 55, No. 4, Article 17, Publication date: September 2008.

