Gentle Introduction to Computational Complexity

Francois Schwarzentruber

ENS Rennes, France

April 4, 2019

Motivation: naive methodology

Define a problem

e.g. coverage by a connected multi-drone system

Directly design an algo

🛕 Issues

• you may design an overly complicated algorithm...

...whereas the problem is intrinsically simpler

• you may try to design a simple algorithm...

...whereas the problem is intrinsically harder;

Motivation: computational complexity comes in

Motivation: algorithmic techniques

Complexity	Algorithmic techniques		
class			
Р	Greedy algorithm, dynamic programming, algo-		
	rithms on graphs		
NP	Backtracking, Backjumping, Branch-and-bound,		
	SAT, SAT modulo theories, Linear programming		
PSPACE	Model checkers, planners, Monte-Carlo tree		
	search, QBF solvers		

Problems Definition of an algorithm Time and space (memory) as resources Definition of complexity classes

Outline

Complexity classes defined with deterministic algorithms

- Problems
- Definition of an algorithm
- Time and space (memory) as resources
- Definition of complexity classes
- 2 Abstracting the combinatorics
- 3 Proving hardness

4 PSPACE

Problems Definition of an algorithm Time and space (memory) as resources Definition of complexity classes

Outline

Complexity classes defined with deterministic algorithms
 Problems

- Definition of an algorithm
- Time and space (memory) as resources
- Definition of complexity classes
- 2 Abstracting the combinatorics
- 3 Proving hardness

4 PSPACE

Problems Definition of an algorithm Time and space (memory) as resources Definition of complexity classes

Example: traveler salesman problem (TSP)

Definition (Problem)

Defined in terms of input/output.

Example

TSP

• input: a weighted graph G = (V, E, w);

 ${\it G}$ described by an adjacency list and weights are written in binary

• output: a minimal tour;

Problems Definition of an algorithm Time and space (memory) as resources Definition of complexity classes

Outline

Complexity classes defined with deterministic algorithms

Problems

• Definition of an algorithm

- Time and space (memory) as resources
- Definition of complexity classes
- 2 Abstracting the combinatorics
- 3 Proving hardness

4 PSPACE

Problems Definition of an algorithm Time and space (memory) as resources Definition of complexity classes

Algorithm

Definition (Deterministic algorithm)

Standard algorithm, but no random choices.

Example

```
function tsp(G)

bestWeight := +\infty

bestTour = -

for all tours t do

if weight(t) < bestWeight then

bestWeight := weight(t)

bestTour := t

return bestTour
```

Problems Definition of an algorithm Time and space (memory) as resources Definition of complexity classes

Outline

Complexity classes defined with deterministic algorithms

- Problems
- Definition of an algorithm
- Time and space (memory) as resources
- Definition of complexity classes
- 2 Abstracting the combinatorics
- 3 Proving hardness

4 PSPACE

Problems Definition of an algorithm Time and space (memory) as resources Definition of complexity classes

Cobham's thesis

Cobham's thesis

Polynomial in the size n of the input = efficient.

Reasons:

- Many real algorithms are $O(n^3)$ at most;
- algo efficient \Rightarrow for i := 1..n do algo efficient;
- Do not depend so much on a computation model.

Very liberal concerning the complexity analysis

 $O(\log n)$ logarit O(poly(n)) polyno $2^{O(poly(n))}$ expone $2^{2^{O(poly(n))}}$ double

logarithmic polynomial exponential

double-exponential

Problems Definition of an algorithm **Time and space (memory) as resources** Definition of complexity classes

Membership in **EXPTIME**

Proposition

TSP *is in* EXPTIME.

Proof.

- tsp solves TSP.
- tsp runs in $2^{poly}(|G|)$.

```
function tsp(G)

bestWeight := +\infty

bestTour = -

for all tours t do

if weight(t) < bestWeight then

bestWeight := weight(t)

bestTour := t

return bestTour
```

Problems Definition of an algorithm Time and space (memory) as resources Definition of complexity classes

Outline

Complexity classes defined with deterministic algorithms

- Problems
- Definition of an algorithm
- Time and space (memory) as resources
- Definition of complexity classes
- 2 Abstracting the combinatorics
- 3 Proving hardness

4 PSPACE

Problems Definition of an algorithm Time and space (memory) as resources Definition of complexity classes

Definition of complexity classes

Definition

EXPTIME is the class of problems for which *there is* an algorithm that solves it in exponential-time.

LOGSPACE P PSPACE EXPTIME EXPSPACE 2EXPTIME 2EXPSPACE

Decision problems One-player algo Definition of NP

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

- Decision problems
- One-player algo
- Definition of NP

3 Proving hardness

4 PSPACE

Decision problems One-player algo Definition of NP

New fine-grained complexity classes

TSP is in EXPTIME...

Methodology

Define new fine-grained complexity classes by means of games.

Decision problems One-player algo Definition of NP

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

- Decision problems
- One-player algo
- Definition of NP

3 Proving hardness

4 PSPACE

 $\begin{array}{l} \mbox{Decision problems}\\ \mbox{One-player algo}\\ \mbox{Definition of }NP \end{array}$

Decision problems

Definition (decision problem)

Problem whose output is yes/no.

Example (\triangle)

TSP

• input: a weighted graph G = (V, E, w);

 ${\it G}$ described by an adjacency list and weights are written in binary

• output: 🕰 a minimal tour.

 $\begin{array}{l} \mbox{Decision problems}\\ \mbox{One-player algo}\\ \mbox{Definition of }NP \end{array}$

TSP reformulated as a decision problem

Example

TSP

- input:
 - a weighted graph G = (V, E, w);
 - a threshold $c \in \mathbb{N}$;
- output:
 - yes, if there is a tour in G of weight $\leq c$;
 - no otherwise.

 $\begin{array}{l} \mbox{Decision problems}\\ \mbox{One-player algo}\\ \mbox{Definition of }NP \end{array}$

Examples

Example

GRAPH COLORING

- Input: an undirected graph G = (V, E);
- Output: yes if there is a coloring of vertices using •••, than assigns different colors to adjacent vertices; no otherwise.

 $\begin{array}{l} \mbox{Decision problems}\\ \mbox{One-player algo}\\ \mbox{Definition of }NP \end{array}$

Examples

Example

GRAPH COLORING

- Input: an undirected graph G = (V, E);
- Output: yes if there is a coloring of vertices using •••, than assigns different colors to adjacent vertices; no otherwise.

Decision problems One-player algo Definition of NP

Examples

Example

SAT

- Input: a Boolean formula φ ;
- Output: yes if there are values for Boolean variables that make φ true; no otherwise.

$$(p \lor q) \land (r
ightarrow \neg p) \land r \land (r
ightarrow \neg s) \land (s
ightarrow \neg q)$$

Decision problems One-player algo Definition of NP

Examples

Example

HALT

- input: a program π ;
- output:
 - yes, if the execution of π halts;
 - no otherwise.

Decision problems One-player algo Definition of NP

Outline

1 Complexity classes defined with deterministic algorithms

Abstracting the combinatorics
 Decision problems
 One-player algo

- Definition of NP
- 3 Proving hardness

4 PSPACE

Decision problems One-player algo Definition of NP

One-player algo

Definition (One-player algo)

A one-player algo is an algorithm that may use special instructions

choose $b \in \{0, 1\}$

and that ends with instruction win or instruction loose.

Decision problems One-player algo Definition of NP

One-player algo for graph coloring

Decision problems One-player algo

One-player game for graph coloring

Proposition

G is a positive instance of GRAPH COLORING iff the player has a winning strategy in graphColoring (G)

 \rightarrow we say that graphColoring decides GRAPH COLORING.

One-player game

one-player-algo tsp(G, c) t := empty tourfor i = 1..nb vertices in G do choose a non-already chosen successor for textend t with that successor

if t is a tour and weight $(t) \leq c$ then win else loose

Proposition

tl

 \rightarrow we say that tsp decides TSP.

Decision problems One-player algo Definition of NP

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

- Decision problems
- One-player algo
- Definition of NP

3 Proving hardness

4 PSPACE

Decision problems One-player algo Definition of NP

Execution-time of a one-player algo

Definition (poly-time one-player algo)

A one-player algo algo(x) is in polynomial-time in |x| if the length of all runs is poly(|x|).

Decision problems One-player algo Definition of NP

Definition of NP

Definition

 ${\rm NP}={\rm class}$ of decision problems such that there is a one-player game that decides it in polynomial-time.

Example (of decision problems that are in NP)TSPGraph coloringSATShortest path (is in P)Real linear programming (is in P)Clique in graphsInteger linear programmingClique in graphs

Decision problems One-player algo Definition of NP

Terminology

- one player game = non-deterministic algorithm
- N = non-deterministic;
- choice of a move = a non-deterministic choice/guess
- the list of moves = a certificate

	LOGSPACE		NLOGSPACE
Р	PSPACE	NP	NPSPACE
Exptime	EXPSPACE	NEXPTIME	NEXPSPACE
2Exptime	2Expspace	NEXPTIME	NEXPSPACE

Easier than Intrinsic hardness NP-complete problems

Outline

Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

O Proving hardness

- Easier than
- Intrinsic hardness
- NP-complete problems

4 PSPACE

Easier than Intrinsic hardness NP-complete problems

Outline

Complexity classes defined with deterministic algorithms

- 2 Abstracting the combinatorics
- O Proving hardness
 - Easier than
 - Intrinsic hardness
 - NP-complete problems

4 PSPACE

Easier than Intrinsic hardness NP-complete problems

Easier than

Definition

Problem Pb_1 is *easier than* problem Pb_2 if there is a poly-time deterministic algorithm tr such that:

x is positive instance of Pb_1 iff tr(x) is a positive instance of Pb_2

Terminology

- *Pb*₁ reduces to *Pb*₂ in poly-time
- tr is called a poly-time reduction from Pb₁ to Pb₂

Easier than Intrinsic hardness NP-complete problems

Example: Graph coloring is easier than SAT

tr(G) := a Boolean formula expressing that G is colorable.

http://people.irisa.fr/Francois.Schwarzentruber/
reductioncatalog/
Easier than Intrinsic hardness NP-complete problems

Outline

Complexity classes defined with deterministic algorithms

- 2 Abstracting the combinatorics
- O Proving hardness
 - Easier than
 - Intrinsic hardness
 - NP-complete problems

4 PSPACE

5 Big theorems in computational complexity

Easier than Intrinsic hardness NP-complete problems

SAT is $\operatorname{NP-hard}$

Terminology

A problem is NP-hard if any NP-problem is easier than it.

Theorem

Cook's theorem SAT is NP-hard.

Easier than Intrinsic hardness NP-complete problems

Any $\operatorname{NP}\text{-}\mathsf{problem}$ is easier than SAT

Easier than Intrinsic hardness NP-complete problems

Any $\operatorname{NP}\text{-}\mathsf{problem}$ is easier than SAT

tr(x) := Boolean formula saying 'the game run on x is winning'

Easier than Intrinsic hardness NP-complete problems

NP-hard problems

Theorem

- *Pb*₁ is NP-hard *Pb*₁ easier than *Pb*₂
 implies *Pb*₂ is NP-hard.

$$\begin{array}{c} \text{HAMILTONIAN CYCLE} \xrightarrow{\text{easier than}} \text{TSP} \\ \text{any NP-problem} \xrightarrow{\text{easier than}} \text{SAT} \xrightarrow{\text{easier than}} 3\text{SAT} \\ & \downarrow \text{easier than} \\ & \text{COLORING} \end{array}$$

Easier than Intrinsic hardness NP-complete problems

Outline

Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

O Proving hardness

- Easier than
- Intrinsic hardness
- NP-complete problems

4 PSPACE

5 Big theorems in computational complexity

Easier than Intrinsic hardness NP-complete problems

$\operatorname{NP}\text{-}\operatorname{complete}$ problems

Definition

A problem is NP-complete if:

- \bullet it is in $\mathrm{NP};$
- it is NP-hard.

Easier than Intrinsic hardness NP-complete problems

Understand where the 'complexity' is

Complexity of TSP restrictions		
NP-complete	even for 2D grid graphs	
	[Itai, Papadimitriou, Szwarcfiter, 1982]	
in P	for solid grid graphs	
	[Arkin, Bender, Demaine, Fekete, Mitchell, Sethia, 2001]	

Parameterized complexity

identify a parameter (e.g. diameter of graphs, etc.) on inputs that sums up the complexity.

Two-player poly-time games One-player poly-space games

Outline

- Two-player poly-time games
- One-player poly-space games
- PSPACE-complete problems

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Outline

Complexity classes defined with deterministic algorithms

- 2 Abstracting the combinatorics
- 3 Proving hardness

Two-player poly-time games

- One-player poly-space games
- PSPACE-complete problems

6 Big theorems in computational complexity

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Motivation

- Bounded planning versus the environment
- querying $(\exists \forall)^*$ -properties (e.g. SQL, etc.)

 $\exists x, \forall y, (R(x, y) \rightarrow \exists z, p(f(x, y, z)))$

\rightarrow winning strategy for player one in a two-player poly-time game

[Arora, Barak, chap. 4.2.2 (« The essence of $\rm PSPACE:$ optimum strategies for game-playing $\gg)]$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Generalized Hex

Example (Even, Tarjan, 1976)

HEX

- Input: A graph G, a source s, a target t;
- Output: yes if player 1 has a winning strategy to the game:
 - by turn, player *i* select a non-selected vertex in $G \setminus \{s, t\}$;
 - player 1 wins if there is a s t-path made up of 1-vertices.

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Two-player algo

Definition (Two-player algo)

A two-player algo is an algorithm that may use special instructions

player one chooses $b \in \{0, 1\}$ player two chooses $b \in \{0, 1\}$

and that ends with player one wins or player one looses.

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Two-player poly-time algos

two-player-algo hex(G, s, t)while some non-selected vertex in G doplayer one chooses a non-selected vertex in $G \setminus \{s, t\}$ player two chooses a non-selected vertex in $G \setminus \{s, t\}$ if there is a s - t-path made up of 1-vertices thenplayer one looses

Definition

- A strategy for a player tells her/him which move to take at each time.
- A winning strategy for player one makes player one win, whatever the moves of the other player.

Two-player poly-time games One-player poly-space games PSPACE-complete problems

A two-player algo decides a decision problem

Proposition

(G, s, t) is a positive instance of HEX iff the first player has a winning strategy in hex(G, s, t)

 \rightarrow We say that hex decides HEX!

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Alternating poly-time: AP

Definition

 ${\rm AP}$ is the class of decision problems such that there is a two-player algo that decides it in poly-time.

Theorem *HEX in* AP.

Proof.

,

hex decides HEX in poly-time.

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Quantified binary formulas

Example

QBF-SAT

- Input: a closed quantified binary formula φ ;
- Output: yes if φ is true; no otherwise.

$$\exists p, \forall q, \forall r, \exists s (p
ightarrow (q \land r
ightarrow s))$$

Theorem

QBF-SAT in AP.

Two-player poly-time games One-player poly-space games PSPACE-complete problems

In PSPACE!

Theorem

 $AP \subseteq PSPACE.$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

In PSPACE!

Theorem

 $AP \subseteq PSPACE.$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

In PSPACE!

Theorem

 $AP \subseteq PSPACE.$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

In PSPACE!

Theorem

 $AP \subseteq PSPACE.$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

In PSPACE!

Theorem

 $AP \subseteq PSPACE.$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

In PSPACE!

Theorem

 $AP \subseteq PSPACE.$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

In PSPACE!

Theorem

 $AP \subseteq PSPACE.$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

In PSPACE!

Theorem

 $AP \subseteq PSPACE.$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

In PSPACE!

Theorem

 $AP \subseteq PSPACE.$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

In PSPACE!

Theorem

 $AP \subseteq PSPACE.$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

In PSPACE!

Theorem

 $AP \subseteq PSPACE.$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Outline

Complexity classes defined with deterministic algorithms

- 2 Abstracting the combinatorics
- 3 Proving hardness

- Two-player poly-time games
- One-player poly-space games
 PSPACE-complete problems

5 Big theorems in computational complexity

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Definition

Definition

 $\rm NPSPACE$ is the class of decision problems such that there is a one-player algo that decides it in polynomial-space.

Example

SOKOBAN:

- Input: a Sokoban position;
- Output: yes if the player can win from that position; no otherwise.

Two-player poly-time games One-player poly-space games PSPACE-complete problems

One-player algo deciding SOKOBAN in poly-space

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Savitch's theorem

Theorem

AP = PSPACE = NPSPACE.

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Savitch's theorem

Theorem

$$AP = PSPACE = NPSPACE.$$

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Two-player poly-time algo equivalent to Sokoban

- Player one chooses a mid-position of Sokoban
- Player two chooses which part to check

n = size of the Sokoban position given in input

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Two-player poly-time algo equivalent to Sokoban

- Player one chooses a mid-position of Sokoban
- Player two chooses which part to check

n = size of the Sokoban position given in input

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Two-player poly-time algo equivalent to Sokoban

- Player one chooses a mid-position of Sokoban
- Player two chooses which part to check

n = size of the Sokoban position given in input
Two-player poly-time games One-player poly-space games PSPACE-complete problems

Two-player poly-time algo equivalent to Sokoban

- Player one chooses a mid-position of Sokoban
- Player two chooses which part to check

n = size of the Sokoban position given in input

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Two-player poly-time algo equivalent to Sokoban

- Player one chooses a mid-position of Sokoban
- Player two chooses which part to check

n = size of the Sokoban position given in input

Two-player poly-time games One-player poly-space games PSPACE-complete problems

Outline

- PSPACE
- Two-player poly-time games
- One-player poly-space games
- PSPACE-complete problems

Two-player poly-time games One-player poly-space games PSPACE-complete problems

PSPACE-complete problems: some two-player poly-time games

QBF-SAT

- Input: a closed quantified binary formula φ ;
- Output: yes if φ is true; no otherwise.

$$\exists p, \forall q, \forall r, \exists s (p \rightarrow (q \land r \rightarrow s))$$

First-order query on a finite model

- input: a finite model \mathcal{M} , a first-order formula φ ;
- output: yes if \mathcal{M} satisfies φ , no otherwise.

$$\exists x, \forall y, (R(x, y) \rightarrow \exists z, p(f(x, y, z)))$$

also HEX!

Two-player poly-time games One-player poly-space games PSPACE-complete problems

PSPACE-complete problems: some one-player poly-space games

Universality of a regular expression

- input: a regular expression e;
- output: yes if the language denoted by e is Σ^* , no otherwise.

Classical planning

- input: an initial state ι , a final state γ , description of actions;
- output: yes if γ is reachable from ι by executing some actions, no otherwise.

Also Sokoban!

About games About LOGSPACE and NLOGSPACE About non-uniform poly-time algorithm

Outline

Complexity classes defined with deterministic algorithms

- 2 Abstracting the combinatorics
- 3 Proving hardness

5 Big theorems in computational complexity

- About games
- About LOGSPACE and NLOGSPACE
- About non-uniform poly-time algorithm

About games About LOGSPACE and NLOGSPACE About non-uniform poly-time algorithm

Outline

- Complexity classes defined with deterministic algorithms
- 2 Abstracting the combinatorics
- 3 Proving hardness

5 Big theorems in computational complexity

About games

- About LOGSPACE and NLOGSPACE
- About non-uniform poly-time algorithm

About games About LOGSPACE and NLOGSPACE About non-uniform poly-time algorithm

Correspondence between alternating and usual classes

[Chandra, Stockmeyer, 1980, Alternations]

Theorem					
AP	=	PSPACE	ALOGSPACE	=	Р
AEXPTIME	=	EXPSPACE	APSPACE	=	Exptime
÷		÷	÷		÷

About games About LOGSPACE and NLOGSPACE About non-uniform poly-time algorithm

Outline

- Complexity classes defined with deterministic algorithms
- 2 Abstracting the combinatorics
- 3 Proving hardness

Big theorems in computational complexity About games

- About LOGSPACE and NLOGSPACE
- About non-uniform poly-time algorithm

About games About LOGSPACE and NLOGSPACE About non-uniform poly-time algorithm

Definitions

Definition

 ${\rm LOGSPACE}$ is the class of decision problems decided by an algorithm in logarithmic space.

- The input is read-only
- ullet ~ a constant number of pointers

Definition

 $\rm NLOGSPACE$ is the class of decision problems decided by a one-player algo in logarithmic space.

About games About LOGSPACE and NLOGSPACE About non-uniform poly-time algorithm

Important results

Theorem

Reachability in a directed graph is NLOGSPACE-complete.

Theorem (Immerman-Szelepcsényi, 1988)

NLOGSPACE = coNLOGSPACE

Theorem (Reingold, 2005)

Reachability in an undirected graph is in LOGSPACE.

About games About LOGSPACE and NLOGSPACE About non-uniform poly-time algorithm

Outline

- Complexity classes defined with deterministic algorithms
- 2 Abstracting the combinatorics
- 3 Proving hardness

5 Big theorems in computational complexity

- About games
- About LOGSPACE and NLOGSPACE
- About non-uniform poly-time algorithm

About games About LOGSPACE and NLOGSPACE About non-uniform poly-time algorithm

We believe $P \neq NP$, even we believe $P_{/poly} \neq NP$

Definition

 $P_{/poly} =$ class of decision problems s.th. there are deterministic algorithms A_1, A_2, \ldots such that

 A_n decides inputs of size *n* in poly(n).

Theorem (Karp and Lipton, 1980) If $NP \subseteq P_{/poly}$, the polynomial hierarchy collapses at level 2:

About games About LOGSPACE and NLOGSPACE About non-uniform poly-time algorithm

This tutorial did not present...

- Formal definitions of complexity classes with Turing machines
- The obscure terminology (non-determinism, alternation, certificates, reduction, etc.)
- Other types of reduction: log-space, FO, etc.
- Probabilistic complexity classes
- Quantum complexity classes
- Counting and Toda's theorem
- Descriptive complexity
- Circuit complexity
- Other computation models: RAM, etc.
- Interactive proofs
- Parametrized complexity

^{...}

About games About LOGSPACE and NLOGSPACE About non-uniform poly-time algorithm

Thank you for your attention!

