
Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Gentle Introduction to Computational Complexity

Francois Schwarzentruber

ENS Rennes, France

April 4, 2019

1 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Motivation: naive methodology

Define a problem

e.g. coverage by a connected multi-drone system

Directly design an algo

Issues

you may design an overly complicated algorithm...
...whereas the problem is intrinsically simpler

you may try to design a simple algorithm...
...whereas the problem is intrinsically harder;

2 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Motivation: computational complexity comes in

Define a problem Study its intrinsic complexity

Theorem (Charrier et al., 2017)

The coverage by a connected multi-drone
system is Pspace-complete.

Design an algoWe learned:

No polynomial-time algorithm exists,
unless P = Pspace;

Algorithmic techniques corresponding
to Pspace are suitable.

3 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Motivation: algorithmic techniques

Complexity
class

Algorithmic techniques

P Greedy algorithm, dynamic programming, algo-
rithms on graphs

NP Backtracking, Backjumping, Branch-and-bound,
SAT, SAT modulo theories, Linear programming

Pspace Model checkers, planners, Monte-Carlo tree
search, QBF solvers

4 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

Outline

1 Complexity classes defined with deterministic algorithms
Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity
5 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

Outline

1 Complexity classes defined with deterministic algorithms
Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity
6 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

Example: traveler salesman problem (TSP)

Definition (Problem)

Defined in terms of input/output.

Example

TSP

input: a weighted graph
G = (V ,E ,w);
G described by an adjacency list and weights are written in binary

output: a minimal tour;

7 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

Outline

1 Complexity classes defined with deterministic algorithms
Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity
8 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

Algorithm

Definition (Deterministic algorithm)

Standard algorithm, but no random choices.

Example

function tsp(G)
bestWeight := +∞
bestTour = −
for all tours t do

if weight(t) < bestWeight then
bestWeight := weight(t)
bestTour := t

return bestTour

9 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

Outline

1 Complexity classes defined with deterministic algorithms
Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity
10 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

Cobham’s thesis

Cobham’s thesis

Polynomial in the size n of the input = efficient.

Reasons:

Many real algorithms are O(n3) at most;

algo efficient ⇒ for i := 1..n do algo efficient;

Do not depend so much on a computation model.

Very liberal concerning the complexity analysis

O(log n) logarithmic
O(poly(n)) polynomial

2O(poly(n)) exponential

22O(poly(n))
double-exponential

11 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

Membership in Exptime

Proposition

TSP is in Exptime.

Proof.

tsp solves TSP.

tsp runs in 2poly(|G |).

function tsp(G)
bestWeight := +∞
bestTour = −
for all tours t do

if weight(t) < bestWeight then
bestWeight := weight(t)
bestTour := t

return bestTour

12 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

Outline

1 Complexity classes defined with deterministic algorithms
Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity
13 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Problems
Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

Definition of complexity classes

Definition

Exptime is the class of problems for which there is an algorithm
that solves it in exponential-time.

Logspace
P Pspace
Exptime Expspace
2Exptime 2Expspace

14 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics
Decision problems
One-player algo
Definition of NP

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity

15 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

New fine-grained complexity classes

TSP is in Exptime...

Methodology

Define new fine-grained complexity classes by means of games.

16 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics
Decision problems
One-player algo
Definition of NP

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity

17 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Decision problems

Definition (decision problem)

Problem whose output is yes/no.

Example ()

TSP

input: a weighted graph
G = (V ,E ,w);
G described by an adjacency list and weights are written in binary

output: a minimal tour.

18 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

TSP reformulated as a decision problem

Example

TSP

input:
- a weighted graph G = (V ,E ,w);
- a threshold c ∈ N;

output:
- yes, if there is a tour in G of weight ≤ c ;
- no otherwise.

19 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Examples

Example

GRAPH COLORING

Input: an undirected graph G = (V ,E);

Output: yes if there is a coloring of vertices using , than
assigns different colors to adjacent vertices; no otherwise.

6 1

7

2

8
3

9
4 10

5

6 1

7

2

8
3

9
4 10

5

20 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Examples

Example

GRAPH COLORING

Input: an undirected graph G = (V ,E);

Output: yes if there is a coloring of vertices using , than
assigns different colors to adjacent vertices; no otherwise.

6 1

7

2

8
3

9
4 10

5

6 1

7

2

8
3

9
4 10

5

21 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Examples

Example

SAT

Input: a Boolean formula ϕ;

Output: yes if there are values for Boolean variables that
make ϕ true; no otherwise.

(p ∨ q) ∧ (r → ¬p) ∧ r ∧ (r → ¬s) ∧ (s → ¬q)

22 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Examples

Example

HALT

input: a program π;

output:
- yes, if the execution of π halts;
- no otherwise.

23 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics
Decision problems
One-player algo
Definition of NP

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity

24 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

One-player algo

Definition (One-player algo)

A one-player algo is an algorithm that may use special instructions

choose b ∈ {0, 1}

and that ends with instruction win or instruction loose.

one-player algox

win/loose

25 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

One-player algo for graph coloring
one-player-algo graphColoring (G)

for all vertices v of G do
choose a color among for v

if no adjacent vertices have the same color then

win
else

loose

one-player algoG
win/loose

26 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

One-player game for graph coloring

one-player-algo graphColoring (G)
for all vertices v of G do

choose a color among for v
if no adjacent vertices have the same color then

win
else

loose

Proposition

G is a positive instance of GRAPH COLORING
iff

the player has a winning strategy in graphColoring (G)

→ we say that graphColoring decides GRAPH COLORING.

27 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

One-player game

one-player-algo tsp(G , c)
t := empty tour
for i = 1..nb vertices in G do

choose a non-already chosen successor for t
extend t with that successor

if t is a tour and weight(t) ≤ c then win else loose

Proposition

(G , c) is a positive instance of TSP
iff

the player has a winning strategy at the game tsp(G , c)

→ we say that tsp decides TSP.

28 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics
Decision problems
One-player algo
Definition of NP

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity

29 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Execution-time of a one-player algo

Definition (poly-time one-player algo)

A one-player algo algo(x) is in polynomial-time in |x | if the length
of all runs is poly(|x |).

one-player-algo graphColoring (G)
for all vertices v of G do

choose a color among for v
if no adjacent vertices have the same color then

win
else

loose

30 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Definition of NP

Definition

NP = class of decision problems such that there is a one-player
game that decides it in polynomial-time.

game for a NP-problemx

win/loose

Example (of decision problems that are in NP)

TSP Graph coloring SAT Shortest path (is in P)
Real linear programming (is in P) Clique in graphs
Integer linear programming

31 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Decision problems
One-player algo
Definition of NP

Terminology

one player game = non-deterministic algorithm

N = non-deterministic;

choice of a move = a non-deterministic choice/guess

the list of moves = a certificate

Logspace
P Pspace
Exptime Expspace
2Exptime 2Expspace

NLogspace
NP NPspace
NExptime NExpspace
NExptime NExpspace

32 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness
Easier than
Intrinsic hardness
NP-complete problems

4 Pspace

5 Big theorems in computational complexity

33 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness
Easier than
Intrinsic hardness
NP-complete problems

4 Pspace

5 Big theorems in computational complexity

34 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

Easier than

Definition

Problem Pb1 is easier than problem Pb2 if there is a poly-time
deterministic algorithm tr such that:

x is positive instance of Pb1 iff tr(x) is a positive instance of Pb2

reduction tr

Pb1

tr(x) Pb2x

Terminology

Pb1 reduces to Pb2 in poly-time

tr is called a poly-time reduction from Pb1 to Pb2
35 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

Example: Graph coloring is easier than SAT

reduction tr

GRAPH COLORING

tr(G) SATG

tr(G) := a Boolean formula expressing that G is colorable.

http://people.irisa.fr/Francois.Schwarzentruber/

reductioncatalog/

36 / 87

http://people.irisa.fr/Francois.Schwarzentruber/reductioncatalog/
http://people.irisa.fr/Francois.Schwarzentruber/reductioncatalog/

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness
Easier than
Intrinsic hardness
NP-complete problems

4 Pspace

5 Big theorems in computational complexity

37 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

SAT is NP-hard

Terminology

A problem is NP-hard if any NP-problem is easier than it.

Theorem

Cook’s theorem SAT is NP-hard.

reduction tr

Any NP-problem

tr(x) SATx

38 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

Any NP-problem is easier than SAT

one-player poly-time
algo for that NP-
problem

x

win/loose

tr(x) := Boolean formula saying ‘the game run on x is winning’

39 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

Any NP-problem is easier than SAT

one-player poly-time
algo for that NP-
problem

x

win/loose

tr(x) := Boolean formula saying ‘the game run on x is winning’

40 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

NP-hard problems

Theorem

Pb1 is NP-hard

Pb1 easier than Pb2

}
implies Pb2 is NP-hard.

any NP-problem SAT 3SAT

COLORING

HAMILTONIAN CYCLE TSP

easier than easier than

easier than

easier than

easier than

41 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness
Easier than
Intrinsic hardness
NP-complete problems

4 Pspace

5 Big theorems in computational complexity

42 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

NP-complete problems

Definition

A problem is NP-complete if:

it is in NP;

it is NP-hard.

SAT 3SAT

COLORING

HAMILTONIAN CYCLE TSP

easier than

easier than

easier than

easier than

43 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Easier than
Intrinsic hardness
NP-complete problems

Understand where the ‘complexity’ is

Complexity of TSP restrictions

NP-complete even for 2D grid graphs

[Itai, Papadimitriou, Szwarcfiter, 1982]

in P for solid grid graphs

[Arkin, Bender, Demaine, Fekete, Mitchell, Sethia, 2001]

Parameterized complexity

identify a parameter (e.g. diameter of graphs, etc.) on inputs that
sums up the complexity.

44 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace
Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

5 Big theorems in computational complexity

45 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace
Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

5 Big theorems in computational complexity

46 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Motivation

Bounded planning versus the environment

querying (∃∀)∗-properties (e.g. SQL, etc.)

∃x , ∀y , (R(x , y)→ ∃z , p(f (x , y , z))

→ winning strategy for player one in a two-player poly-time game

[Arora, Barak, chap. 4.2.2 (� The essence of Pspace: optimum strategies for

game-playing �)]

47 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Generalized Hex

Example (Even, Tarjan, 1976)

HEX

Input: A graph G , a source s, a target t;

Output: yes if player 1 has a winning strategy to the game:

by turn, player i select a non-selected vertex in G \ {s, t};
player 1 wins if there is a s − t-path made up of 1-vertices.

48 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Two-player algo

Definition (Two-player algo)

A two-player algo is an algorithm that may use special instructions

player one chooses b ∈ {0, 1}
player two chooses b ∈ {0, 1}

and that ends with player one wins or player one looses.

Two-player algo
x

1 wins/1 looses

49 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Two-player poly-time algos

two-player-algo hex(G , s, t)
while some non-selected vertex in G do

player one chooses a non-selected vertex in G \ {s, t}
player two chooses a non-selected vertex in G \ {s, t}
if there is a s − t-path made up of 1-vertices then

player one wins
player one looses

Definition

A strategy for a player tells her/him which move to take at
each time.

A winning strategy for player one makes player one win,
whatever the moves of the other player.

50 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

A two-player algo decides a decision problem

Proposition

(G , s, t) is a positive instance of HEX
iff

the first player has a winning strategy in hex(G , s, t)

→ We say that hex decides HEX!

51 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Alternating poly-time: AP

Definition

AP is the class of decision problems such that there is a two-player
algo that decides it in poly-time.

‘

Theorem

HEX in AP.

Proof.

hex decides HEX in poly-time.

52 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Quantified binary formulas

Example

QBF-SAT

Input: a closed quantified binary formula ϕ;

Output: yes if ϕ is true; no otherwise.

∃p,∀q, ∀r ,∃s(p → (q ∧ r → s))

Theorem

QBF-SAT in AP.

53 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?

54 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?

?

55 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?

?

?

56 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?

?

?

x

57 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?

?

?

X

58 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?

?

X

59 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?

?

?

60 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?

?

?

x

61 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?

?

?

x

62 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?

?

x

63 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?

x

64 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace
Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

5 Big theorems in computational complexity

65 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Definition

Definition

NPspace is the class of decision problems such that there is a
one-player algo that decides it in polynomial-space.

Example

SOKOBAN:

Input: a Sokoban position;

Output: yes if the player can win from that
position; no otherwise.

66 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

One-player algo deciding SOKOBAN in poly-space

one-player-algo sokoban(position)
while position is not winning do

choose position := one of the next possible positions
from position

win

67 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Savitch’s theorem

Theorem

AP = Pspace = NPspace.

68 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Savitch’s theorem

Theorem

AP = Pspace = NPspace.
⊆ ⊆

Proof of NPspace ⊆ AP

One player
poly-space algo

Two player
poly-time algo

reformulation

69 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Two-player poly-time algo equivalent to Sokoban

Player one chooses a mid-position of Sokoban

Player two chooses which part to check

≤ 2poly(n) steps?

n = size of the Sokoban position given in input

70 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Two-player poly-time algo equivalent to Sokoban

Player one chooses a mid-position of Sokoban

Player two chooses which part to check

≤ 2poly(n)−1? ≤ 2poly(n)−1?

n = size of the Sokoban position given in input

71 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Two-player poly-time algo equivalent to Sokoban

Player one chooses a mid-position of Sokoban

Player two chooses which part to check

≤ 2poly(n)−1?≤ 2poly(n)−1?

n = size of the Sokoban position given in input

72 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Two-player poly-time algo equivalent to Sokoban

Player one chooses a mid-position of Sokoban

Player two chooses which part to check

≤ 2poly(n)−1?

≤ 2poly(n)−2? ≤ 2poly(n)−2?

n = size of the Sokoban position given in input

73 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Two-player poly-time algo equivalent to Sokoban

Player one chooses a mid-position of Sokoban

Player two chooses which part to check

≤ 2poly(n)−1?

≤ 2poly(n)−2? ≤ 2poly(n)−2?

n = size of the Sokoban position given in input

74 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace
Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

5 Big theorems in computational complexity

75 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

PSPACE-complete problems: some two-player poly-time games

QBF-SAT

Input: a closed quantified binary formula ϕ;

Output: yes if ϕ is true; no otherwise.

∃p,∀q, ∀r ,∃s(p → (q ∧ r → s))

First-order query on a finite model

input: a finite model M, a first-order formula ϕ;

output: yes if M satisfies ϕ, no otherwise.

∃x , ∀y , (R(x , y)→ ∃z , p(f (x , y , z))

also HEX!
76 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

PSPACE-complete problems: some one-player poly-space games

Universality of a regular expression

input: a regular expression e;

output: yes if the language denoted by e is Σ∗, no otherwise.

Classical planning

input: an initial state ι, a final state γ, description of actions;

output: yes if γ is reachable from ι by executing some actions,
no otherwise.

Also Sokoban!

77 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity
About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

78 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity
About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

79 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

Correspondence between alternating and usual classes

[Chandra, Stockmeyer, 1980, Alternations]

Theorem

AP = Pspace
Aexptime = Expspace

...
...

ALogspace = P
APspace = Exptime

...
...

80 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity
About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

81 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

Definitions

Definition

Logspace is the class of decision problems decided by an
algorithm in logarithmic space.

The input is read-only

∼ a constant number of pointers

Definition

NLogspace is the class of decision problems decided by a
one-player algo in logarithmic space.

82 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

Important results

Theorem

Reachability in a directed graph is NLogspace-complete.

s

t

Theorem (Immerman-Szelepcsényi, 1988)

NLogspace = coNLogspace

Theorem (Reingold, 2005)

Reachability in an undirected graph is in Logspace.

s

t

83 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

Outline

1 Complexity classes defined with deterministic algorithms

2 Abstracting the combinatorics

3 Proving hardness

4 Pspace

5 Big theorems in computational complexity
About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

84 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

We believe P 6= NP, even we believe P/poly 6= NP

Definition

P/poly = class of decision problems s.th. there are deterministic
algorithms A1,A2, . . . such that

An decides inputs of size n in poly(n).

Theorem (Karp and Lipton, 1980)

If NP ⊆ P/poly , the polynomial hierarchy collapses at level 2:

Two-player
poly-time algo

with a fixed number of alternations

Two-player
poly-time algo

with 2 alternations

transformation

85 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

This tutorial did not present...

Formal definitions of complexity classes with Turing machines

The obscure terminology (non-determinism, alternation,
certificates, reduction, etc.)

Other types of reduction: log-space, FO, etc.

Probabilistic complexity classes

Quantum complexity classes

Counting and Toda’s theorem

Descriptive complexity

Circuit complexity

Other computation models: RAM, etc.

Interactive proofs

Parametrized complexity

...
86 / 87

Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

About games
About Logspace and NLogspace
About non-uniform poly-time algorithm

Thank you for your attention!

87 / 87

	Complexity classes defined with deterministic algorithms
	Problems
	Definition of an algorithm
	Time and space (memory) as resources
	Definition of complexity classes

	Abstracting the combinatorics
	Decision problems
	One-player algo
	Definition of

	Proving hardness
	Easier than
	Intrinsic hardness
	-complete problems

	
	Two-player poly-time games
	One-player poly-space games
	PSPACE-complete problems

	Big theorems in computational complexity
	About games
	About and
	About non-uniform poly-time algorithm

