
Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Gentle Introduction to Computational Complexity

Francois Schwarzentruber

ENS Rennes, France

April 4, 2019

1 / 87



Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Motivation: naive methodology

Define a problem

e.g. coverage by a connected multi-drone system

Directly design an algo

Issues

you may design an overly complicated algorithm...
...whereas the problem is intrinsically simpler

you may try to design a simple algorithm...
...whereas the problem is intrinsically harder;
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Motivation: computational complexity comes in

Define a problem Study its intrinsic complexity

Theorem (Charrier et al., 2017)

The coverage by a connected multi-drone
system is Pspace-complete.

Design an algoWe learned:

No polynomial-time algorithm exists,
unless P = Pspace;

Algorithmic techniques corresponding
to Pspace are suitable.
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Motivation: algorithmic techniques

Complexity
class

Algorithmic techniques

P Greedy algorithm, dynamic programming, algo-
rithms on graphs

NP Backtracking, Backjumping, Branch-and-bound,
SAT, SAT modulo theories, Linear programming

Pspace Model checkers, planners, Monte-Carlo tree
search, QBF solvers
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Example: traveler salesman problem (TSP)

Definition (Problem)

Defined in terms of input/output.

Example

TSP

input: a weighted graph
G = (V ,E ,w);
G described by an adjacency list and weights are written in binary

output: a minimal tour;
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Algorithm

Definition (Deterministic algorithm)

Standard algorithm, but no random choices.

Example

function tsp(G )
bestWeight := +∞
bestTour = −
for all tours t do

if weight(t) < bestWeight then
bestWeight := weight(t)
bestTour := t

return bestTour
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Definition of an algorithm
Time and space (memory) as resources
Definition of complexity classes

Cobham’s thesis

Cobham’s thesis

Polynomial in the size n of the input = efficient.

Reasons:

Many real algorithms are O(n3) at most;

algo efficient ⇒ for i := 1..n do algo efficient;

Do not depend so much on a computation model.

Very liberal concerning the complexity analysis

O(log n) logarithmic
O(poly(n)) polynomial

2O(poly(n)) exponential

22O(poly(n))
double-exponential
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Membership in Exptime

Proposition

TSP is in Exptime.

Proof.

tsp solves TSP.

tsp runs in 2poly(|G |).

function tsp(G )
bestWeight := +∞
bestTour = −
for all tours t do

if weight(t) < bestWeight then
bestWeight := weight(t)
bestTour := t

return bestTour
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Definition of complexity classes

Definition

Exptime is the class of problems for which there is an algorithm
that solves it in exponential-time.

Logspace
P Pspace
Exptime Expspace
2Exptime 2Expspace
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Decision problems
One-player algo
Definition of NP

New fine-grained complexity classes

TSP is in Exptime...

Methodology

Define new fine-grained complexity classes by means of games.
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Decision problems

Definition (decision problem)

Problem whose output is yes/no.

Example ( )

TSP

input: a weighted graph
G = (V ,E ,w);
G described by an adjacency list and weights are written in binary

output: a minimal tour.
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TSP reformulated as a decision problem

Example

TSP

input:
- a weighted graph G = (V ,E ,w);
- a threshold c ∈ N;

output:
- yes, if there is a tour in G of weight ≤ c ;
- no otherwise.
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Examples

Example

GRAPH COLORING

Input: an undirected graph G = (V ,E );

Output: yes if there is a coloring of vertices using , than
assigns different colors to adjacent vertices; no otherwise.
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Definition of NP

Examples

Example

SAT

Input: a Boolean formula ϕ;

Output: yes if there are values for Boolean variables that
make ϕ true; no otherwise.

(p ∨ q) ∧ (r → ¬p) ∧ r ∧ (r → ¬s) ∧ (s → ¬q)
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Decision problems
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Definition of NP

Examples

Example

HALT

input: a program π;

output:
- yes, if the execution of π halts;
- no otherwise.
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Definition of NP

One-player algo

Definition (One-player algo)

A one-player algo is an algorithm that may use special instructions

choose b ∈ {0, 1}

and that ends with instruction win or instruction loose.

one-player algox

win/loose
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Decision problems
One-player algo
Definition of NP

One-player algo for graph coloring
one-player-algo graphColoring (G )

for all vertices v of G do
choose a color among for v

if no adjacent vertices have the same color then

win
else

loose

one-player algoG
win/loose
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Decision problems
One-player algo
Definition of NP

One-player game for graph coloring

one-player-algo graphColoring (G )
for all vertices v of G do

choose a color among for v
if no adjacent vertices have the same color then

win
else

loose

Proposition

G is a positive instance of GRAPH COLORING
iff

the player has a winning strategy in graphColoring (G)

→ we say that graphColoring decides GRAPH COLORING.
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Decision problems
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Definition of NP

One-player game

one-player-algo tsp(G , c)
t := empty tour
for i = 1..nb vertices in G do

choose a non-already chosen successor for t
extend t with that successor

if t is a tour and weight(t) ≤ c then win else loose

Proposition

(G , c) is a positive instance of TSP
iff

the player has a winning strategy at the game tsp(G, c)

→ we say that tsp decides TSP.
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Decision problems
One-player algo
Definition of NP

Execution-time of a one-player algo

Definition (poly-time one-player algo)

A one-player algo algo(x) is in polynomial-time in |x | if the length
of all runs is poly(|x |).

one-player-algo graphColoring (G )
for all vertices v of G do

choose a color among for v
if no adjacent vertices have the same color then

win
else

loose
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One-player algo
Definition of NP

Definition of NP

Definition

NP = class of decision problems such that there is a one-player
game that decides it in polynomial-time.

game for a NP-problemx

win/loose

Example (of decision problems that are in NP)

TSP Graph coloring SAT Shortest path (is in P)
Real linear programming (is in P) Clique in graphs
Integer linear programming
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Decision problems
One-player algo
Definition of NP

Terminology

one player game = non-deterministic algorithm

N = non-deterministic;

choice of a move = a non-deterministic choice/guess

the list of moves = a certificate

Logspace
P Pspace
Exptime Expspace
2Exptime 2Expspace

NLogspace
NP NPspace
NExptime NExpspace
NExptime NExpspace
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Easier than

Definition

Problem Pb1 is easier than problem Pb2 if there is a poly-time
deterministic algorithm tr such that:

x is positive instance of Pb1 iff tr(x) is a positive instance of Pb2

reduction tr

Pb1

tr(x) Pb2x

Terminology

Pb1 reduces to Pb2 in poly-time

tr is called a poly-time reduction from Pb1 to Pb2
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Easier than
Intrinsic hardness
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Example: Graph coloring is easier than SAT

reduction tr

GRAPH COLORING

tr(G ) SATG

tr(G ) := a Boolean formula expressing that G is colorable.

http://people.irisa.fr/Francois.Schwarzentruber/

reductioncatalog/
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Easier than
Intrinsic hardness
NP-complete problems

SAT is NP-hard

Terminology

A problem is NP-hard if any NP-problem is easier than it.

Theorem

Cook’s theorem SAT is NP-hard.

reduction tr

Any NP-problem

tr(x) SATx
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Easier than
Intrinsic hardness
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Any NP-problem is easier than SAT

one-player poly-time
algo for that NP-
problem

x

win/loose

tr(x) := Boolean formula saying ‘the game run on x is winning’
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Any NP-problem is easier than SAT

one-player poly-time
algo for that NP-
problem

x

win/loose

tr(x) := Boolean formula saying ‘the game run on x is winning’
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Easier than
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NP-hard problems

Theorem

Pb1 is NP-hard

Pb1 easier than Pb2

}
implies Pb2 is NP-hard.

any NP-problem SAT 3SAT

COLORING

HAMILTONIAN CYCLE TSP

easier than easier than

easier than

easier than

easier than
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NP-complete problems

Definition

A problem is NP-complete if:

it is in NP;

it is NP-hard.

SAT 3SAT

COLORING

HAMILTONIAN CYCLE TSP

easier than

easier than

easier than

easier than
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Understand where the ‘complexity’ is

Complexity of TSP restrictions

NP-complete even for 2D grid graphs

[Itai, Papadimitriou, Szwarcfiter, 1982]

in P for solid grid graphs

[Arkin, Bender, Demaine, Fekete, Mitchell, Sethia, 2001]

Parameterized complexity

identify a parameter (e.g. diameter of graphs, etc.) on inputs that
sums up the complexity.
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Motivation

Bounded planning versus the environment

querying (∃∀)∗-properties (e.g. SQL, etc.)

∃x , ∀y , (R(x , y)→ ∃z , p(f (x , y , z))

→ winning strategy for player one in a two-player poly-time game

[Arora, Barak, chap. 4.2.2 (� The essence of Pspace: optimum strategies for

game-playing �)]

47 / 87



Complexity classes defined with deterministic algorithms
Abstracting the combinatorics

Proving hardness
Pspace

Big theorems in computational complexity

Two-player poly-time games
One-player poly-space games
PSPACE-complete problems

Generalized Hex

Example (Even, Tarjan, 1976)

HEX

Input: A graph G , a source s, a target t;

Output: yes if player 1 has a winning strategy to the game:

by turn, player i select a non-selected vertex in G \ {s, t};
player 1 wins if there is a s − t-path made up of 1-vertices.
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Two-player algo

Definition (Two-player algo)

A two-player algo is an algorithm that may use special instructions

player one chooses b ∈ {0, 1}
player two chooses b ∈ {0, 1}

and that ends with player one wins or player one looses.

Two-player algo
x

1 wins/1 looses
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Two-player poly-time algos

two-player-algo hex(G , s, t)
while some non-selected vertex in G do

player one chooses a non-selected vertex in G \ {s, t}
player two chooses a non-selected vertex in G \ {s, t}
if there is a s − t-path made up of 1-vertices then

player one wins
player one looses

Definition

A strategy for a player tells her/him which move to take at
each time.

A winning strategy for player one makes player one win,
whatever the moves of the other player.
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A two-player algo decides a decision problem

Proposition

(G , s, t) is a positive instance of HEX
iff

the first player has a winning strategy in hex(G , s, t)

→ We say that hex decides HEX!
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Alternating poly-time: AP

Definition

AP is the class of decision problems such that there is a two-player
algo that decides it in poly-time.

‘

Theorem

HEX in AP.

Proof.

hex decides HEX in poly-time.
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Quantified binary formulas

Example

QBF-SAT

Input: a closed quantified binary formula ϕ;

Output: yes if ϕ is true; no otherwise.

∃p,∀q, ∀r ,∃s(p → (q ∧ r → s))

Theorem

QBF-SAT in AP.
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In Pspace!

Theorem

AP ⊆ Pspace.

Deterministic backtracking algorithm (min-max style)!

?
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Definition

Definition

NPspace is the class of decision problems such that there is a
one-player algo that decides it in polynomial-space.

Example

SOKOBAN:

Input: a Sokoban position;

Output: yes if the player can win from that
position; no otherwise.
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One-player algo deciding SOKOBAN in poly-space

one-player-algo sokoban(position)
while position is not winning do

choose position := one of the next possible positions
from position

win
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Savitch’s theorem

Theorem

AP = Pspace = NPspace.
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Savitch’s theorem

Theorem

AP = Pspace = NPspace.
⊆ ⊆

Proof of NPspace ⊆ AP

One player
poly-space algo

Two player
poly-time algo

reformulation
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Two-player poly-time algo equivalent to Sokoban

Player one chooses a mid-position of Sokoban

Player two chooses which part to check

≤ 2poly(n) steps?

n = size of the Sokoban position given in input
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PSPACE-complete problems: some two-player poly-time games

QBF-SAT

Input: a closed quantified binary formula ϕ;

Output: yes if ϕ is true; no otherwise.

∃p,∀q, ∀r ,∃s(p → (q ∧ r → s))

First-order query on a finite model

input: a finite model M, a first-order formula ϕ;

output: yes if M satisfies ϕ, no otherwise.

∃x , ∀y , (R(x , y)→ ∃z , p(f (x , y , z))

also HEX!
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PSPACE-complete problems: some one-player poly-space games

Universality of a regular expression

input: a regular expression e;

output: yes if the language denoted by e is Σ∗, no otherwise.

Classical planning

input: an initial state ι, a final state γ, description of actions;

output: yes if γ is reachable from ι by executing some actions,
no otherwise.

Also Sokoban!
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Correspondence between alternating and usual classes

[Chandra, Stockmeyer, 1980, Alternations]

Theorem

AP = Pspace
Aexptime = Expspace

...
...

ALogspace = P
APspace = Exptime

...
...
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Definitions

Definition

Logspace is the class of decision problems decided by an
algorithm in logarithmic space.

The input is read-only

∼ a constant number of pointers

Definition

NLogspace is the class of decision problems decided by a
one-player algo in logarithmic space.
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Important results

Theorem

Reachability in a directed graph is NLogspace-complete.

s

t

Theorem (Immerman-Szelepcsényi, 1988)

NLogspace = coNLogspace

Theorem (Reingold, 2005)

Reachability in an undirected graph is in Logspace.

s

t
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We believe P 6= NP, even we believe P/poly 6= NP

Definition

P/poly = class of decision problems s.th. there are deterministic
algorithms A1,A2, . . . such that

An decides inputs of size n in poly(n).

Theorem (Karp and Lipton, 1980)

If NP ⊆ P/poly , the polynomial hierarchy collapses at level 2:

Two-player
poly-time algo

with a fixed number of alternations

Two-player
poly-time algo

with 2 alternations

transformation
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This tutorial did not present...

Formal definitions of complexity classes with Turing machines

The obscure terminology (non-determinism, alternation,
certificates, reduction, etc.)

Other types of reduction: log-space, FO, etc.

Probabilistic complexity classes

Quantum complexity classes

Counting and Toda’s theorem

Descriptive complexity

Circuit complexity

Other computation models: RAM, etc.

Interactive proofs

Parametrized complexity

...
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Thank you for your attention!
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