Knowledge and seeing

François Schwarzentruber (joint work with Philippe Balbiani, Olivier Gasquet and Valentin Goranko)

École Normale Supérieure Rennes

May 13, 2019

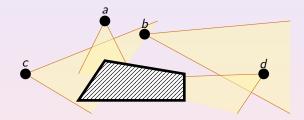
Outline

2 Modeling

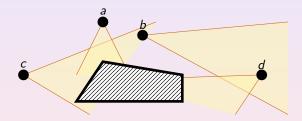
3 Variant with cameras

④ Discussion and conclusion

Scenario: agents equipped with vision devices, positioned in the plane / space.

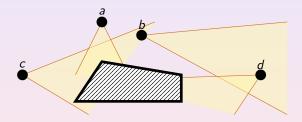


Scenario: agents equipped with vision devices, positioned in the plane / space.



(E.g., robots that cooperate)

Scenario: agents equipped with vision devices, positioned in the plane / space.



(E.g., robots that cooperate)

Aim:

To represent and compute visual-epistemic reasoning of the agents.

Modeling Variant with cameras

Axiomatization

Outline

2 Modeling

Axiomatization

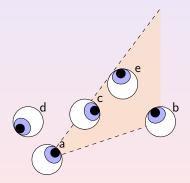
Model checking

Discussion and conclusion

Axiomatization Model checking

Modeling

Each agent has a sector (cone) of vision.



Assumptions (common knowledge):

- Agents are transparent points in the plane
- All objects of interest are agents
- Agents see infinite sectors
- $\bullet\,$ Angles of vision are the same α
- No obstacles (yet)

Possible worlds

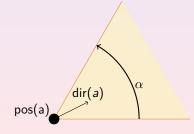
Let U be the set of unit vectors of \mathbb{R}^2 .

Definition

A geometrical possible world is a tuple w = (pos, dir) where:

- pos : Agt $\rightarrow \mathbb{R}^2$ dir : Agt $\rightarrow U$

dir(a) is the bisector of the sector of vision with angle α :



Possible worlds

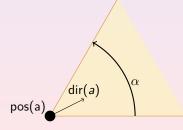
Let U be the set of unit vectors of \mathbb{R}^2 .

Definition

A geometrical possible world is a tuple w = (pos, dir) where:

- pos : Agt $\rightarrow \mathbb{R}^2$ dir : Agt $\rightarrow U$

dir(a) is the bisector of the sector of vision with angle α :



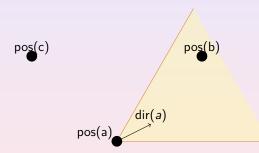
 $C_{p,u,\alpha}$: the closed sector with vertex at the point p, angle α and bisector in direction u. The region seen by a is $C_{pos(a),dir(a),\alpha}$.

Axiomatization Model checking

An agent sees another one

Definition

```
a sees b in w = (pos, dir) if pos(b) \in C_{pos(a), dir(a), \alpha}.
```



Example

a sees a, a sees b.

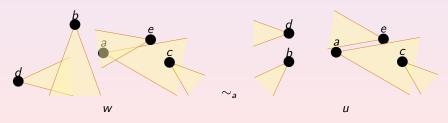
a does not see c.

Epistemic model $\mathcal{M}_{\mathsf{flatland}}$

Definition

 $\mathcal{M}_{\mathsf{flatland}} = (W, (\sim_a)_{a \in AGT}, V)$ with:

- W is the set of all geometrical possible worlds;
- w ∼_a u if agents a see the same agents in both w and u and these agents have the same position and direction in both w and u;
- $V(w) = \{a \text{ sees } b \mid \text{ agent } a \text{ sees } b \text{ in } w\}.$



In Hintikka's World: Flatland

Axiomatization Model checking

Outline

Modeling

 Axiomatization
 Model checking

3 Variant with cameras

4 Discussion and conclusion

Axiomatization Model checking

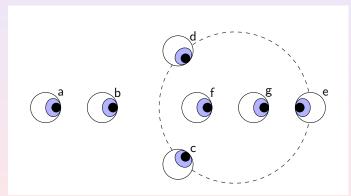
Disjunctive surprises!

- \models ($K_a a \operatorname{sees} b$) \lor ($K_a a \operatorname{sees} b$);
- $\models K_a(b \operatorname{sees} c \lor d \operatorname{sees} e) \leftrightarrow K_a(b \operatorname{sees} c) \lor K_a(d \operatorname{sees} e);$

Axiomatization Model checking

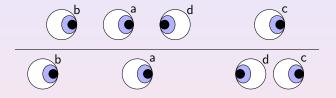
Some formulas are... Boolean

$K_a K_b C K_{c,d,e}(f \operatorname{sees} g)$



Axiomatization Model checking

In 1D, only qualitative positions matter



Expressivity

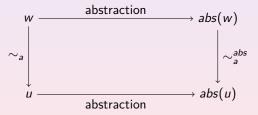
Qualitative positions are expressible in the language.

- sameDir $(a, b) := (a \operatorname{sees} b \leftrightarrow b \operatorname{sees} a)$
- *a* isBetween $b, c := (a \operatorname{sees} b \leftrightarrow a \operatorname{sees} c);$

Abstraction of the Kripke model in 1D

Definition

$$abs(w) = \{b \operatorname{sees} c \mid \mathcal{M}_{robots,1D}, w \models b \operatorname{sees} c\}$$



Axiomatization in 1D

- Propositional tautologies;
- $(\mathsf{sameDir}(a, b) \leftrightarrow \mathsf{sameDir}(b, c)) \rightarrow \mathsf{sameDir}(a, c);$
- \neg (*a* isBetween *b*, *c*) $\lor \neg$ (*b* isBetween *a*, *c*);
- $(K_a a \operatorname{sees} b) \vee (K_a a \operatorname{sees} b);$
- a sees $b \rightarrow ((K_a b \operatorname{sees} c) \lor (K_a b \operatorname{sees} c));$
- $\chi \to \hat{K}_a \psi$ where χ and ψ are completely descriptions with $\chi \sim_a^{abs} \psi$;

•
$$K_a \varphi \to \varphi$$
.

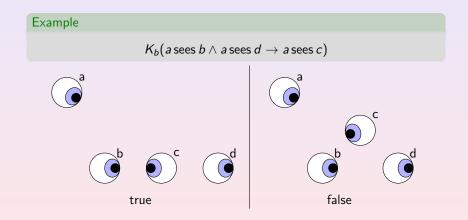
[Balbiani et al. Agents that look at one another. Logic Journal of IGPL. 2012]

Definition

A complete decription is a conjunction that:

- contains a sees b or a sees b for all agents a, b;
- is satisfiable.

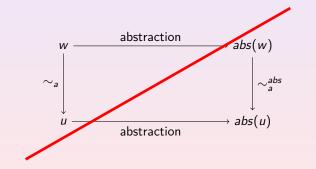
In 2D, the qualitative representation is a open issue



Abstraction of the Kripke model in 2D

Definition

 $abs(w) = \{b \operatorname{sees} c \mid \mathcal{M}_{robots, 2D}, w \models b \operatorname{sees} c\}$



Axiomatization Model checking

Outline

- 2 Modeling• Axiomatization
 - Model checking

3 Variant with cameras

4 Discussion and conclusion

Axiomatization Model checking

Model checking

Input:

• a description of a world w

(and not a WHOLE Kripke model!);

• a formula φ .

Output:

• yes if $w \models \varphi$.

Axiomatization Model checking

Complexity

	flatland
PSPACE-complete	PSPACE-hard, in EXPSPACE
	translation to $\mathbb R ext{-}FO ext{-}theory$

Reduction to \mathbb{R} -FO-theory

Standard translation from modal logic to first-order logic

 $egin{array}{ccc} {\cal K}_a p & {
m rewrites in} & orall u, (wRu)
ightarrow p(u) \ [Blackburn et al., modal logic, 2001] \end{array}$

Adapted translation from modal logic with seeing to the \mathbb{R} -FO-theory $K_a(b \operatorname{sees} c)$ rewrites in $\forall pos'_a \forall pos'_b \dots \forall dir'_a \forall dir'_b \dots$ $\{ \bigwedge_{b \in AGT} [(pos_b \in C_{pos(a), dir(a), \alpha}) \rightarrow (pos'_b = pos_b \land dir'_b = dir_b)] \land$ $[(pos_b \notin C_{pos(a), dir(a), \alpha}) \rightarrow (pos'_b \notin C_{pos(a), dir(a), \alpha}) \}$

 $\rightarrow (pos'_{c} \notin C_{pos(b),dir(b),\alpha})$

Variant with cameras

Abstraction works! A PDL variant for cameras

Outline

Output State St

- Semantics
- Abstraction works!
- A PDL variant for cameras
- Model checking

Variant with cameras

Semantics Abstraction works! A PDL variant for cameras

Outline

3 Variant with cameras

Semantics

- Abstraction works!
- A PDL variant for cameras
- Model checking

Semantics Abstraction works! A PDL variant for cameras Model checking

Agents are cameras

Cameras

• Can turn;

• Can not move.

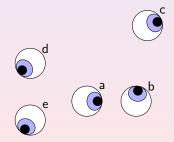
Common knowledge

- of the positions of agents;
- of the abilities of perception;

Semantics Abstraction works! A PDL variant for cameras Model checking

Semantics: restricted set of worlds

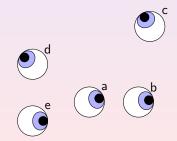
Set of worlds



Semantics Abstraction works! A PDL variant for cameras Model checking

Semantics: restricted set of worlds

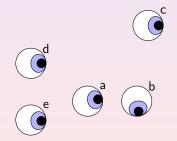
Set of worlds



Semantics Abstraction works! A PDL variant for cameras Model checking

Semantics: restricted set of worlds

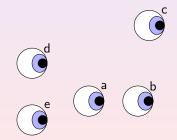
Set of worlds



Semantics Abstraction works! A PDL variant for cameras Model checking

Semantics: restricted set of worlds

Set of worlds

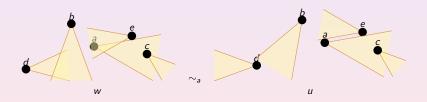


Semantics Abstraction works! A PDL variant for cameras Model checking

Semantics: $\mathcal{M}_{cameras}$

Definition

 $\mathcal{M}_{\text{cameras}}$ is $\mathcal{M}_{\text{flatland}}$ where we publicly announced the current positions of the agents.



In Hintikka's World: Flatland with common knowledge of the positions

Semantics Abstraction works! A PDL variant for cameras Model checking

Outline

2 Modeling

3 Variant with cameras

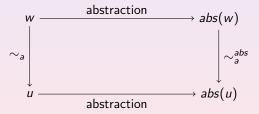
- Semantics
- Abstraction works!
- A PDL variant for cameras
- Model checking

Semantics Abstraction works! A PDL variant for cameras Model checking

Abstraction of the Kripke model $\mathcal{M}_{\text{cameras}}$

Definition

$$abs(w) = \{b \operatorname{sees} c \mid \mathcal{M}_{\operatorname{cameras}}, w \models b \operatorname{sees} c\}$$

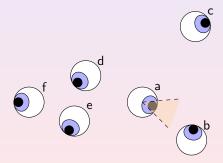


Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

Family of vision sets of agent a

 $S_a = \{ \{b\}, \emptyset, \{c\}, \{d\}, \{d, f\}, \{d, f, e\}, \{f, e\}, \{e\} \}.$

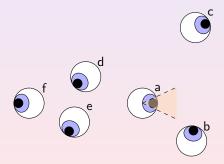


Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

Family of vision sets of agent a

 $S_a = \{\{b\}, \emptyset, \{c\}, \{d\}, \{d, f\}, \{d, f, e\}, \{f, e\}, \{e\}\}.$

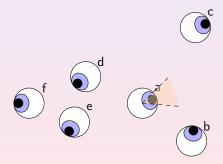


Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

Family of vision sets of agent a

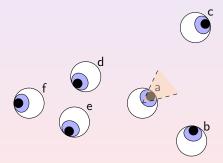
 $S_a = \{\{b\}, \emptyset, \{c\}, \{d\}, \{d, f\}, \{d, f, e\}, \{f, e\}, \{e\}\}.$



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

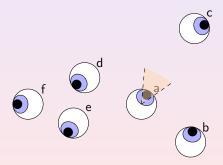
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

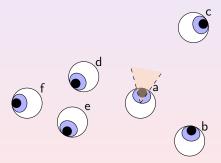
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

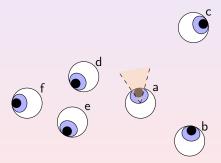
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

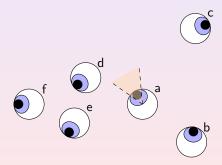
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

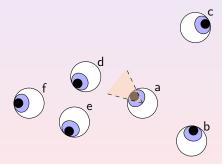
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

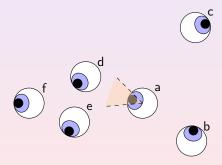
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

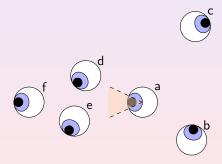
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

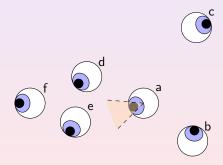
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

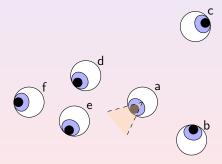
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

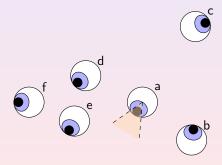
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

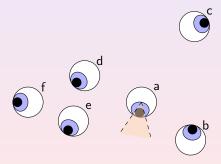
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

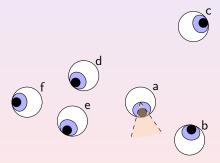
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

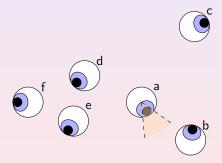
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

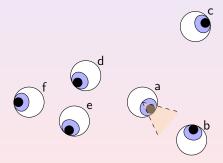
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

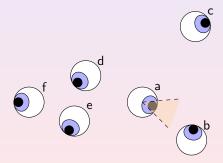
Family of vision sets of agent a



Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

Family of vision sets of agent a

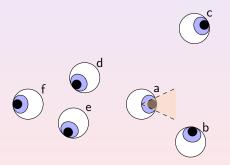


Semantics Abstraction works! A PDL variant for cameras Model checking

Spectrum of vision

Family of vision sets of agent a

 $S_a = \{\{b\}, \emptyset, \{c\}, \{d\}, \{d, f\}, \{d, f, e\}, \{f, e\}, \{e\}\}.$



NB: each S_a is computed in $O(k \log k)$ steps, where k = #(Agt).

Variant with cameras

Abstraction works! A PDL variant for cameras

Outline

3 Variant with cameras

- Semantics
- Abstraction works!
- A PDL variant for cameras
- Model checking

Semantics Abstraction works! A PDL variant for cameras Model checking

PDL Language

Grammar for formulas

$$\varphi, \psi, \ldots$$
 ::= *a* sees *b* | $\neg \varphi$ | $\varphi \lor \psi$ | $[\pi]\varphi$

• $[\pi]\varphi$: after all executions of program π , φ holds.

Semantics Abstraction works! A PDL variant for cameras Model checking

Programs

Grammar for programs

$$\pi\ldots ::= \stackrel{\frown}{a} \mid \varphi? \mid \pi; \pi' \mid \pi \cup \pi' \mid \pi^*$$

•
$$\widehat{a}$$
 : a turns;

• φ ?: the program succeeds when φ is true;

Semantics Abstraction works! A PDL variant for cameras Model checking

Translating epistemic operators in programs

 K_a is simulated by:

$$\left[\underbrace{\left(a \operatorname{sees} b_1? \cup \left(a \operatorname{sees} b_1?; \widehat{b_1}^*\right)\right); \ldots; \left(a \operatorname{sees} b_n? \cup \left(a \operatorname{sees} b_n?; \widehat{b_n}^*\right)\right)}_{\pi_a}\right]$$

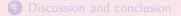
Variant with cameras

Abstraction works! A PDL variant for cameras Model checking

Outline

3 Variant with cameras

- Semantics
- Abstraction works!
- A PDL variant for cameras
- Model checking



Semantics Abstraction works! A PDL variant for cameras Model checking

Model checking

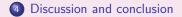
Theorem

Model checking of PDL for cameras is PSPACE-complete.

[Gasquet, Goranko, et al. Big Brother Logic: Logical modeling and reasoning about agents equipped with surveillance cameras in the plane, AAMAS 2014] [JAAMAS2015]

Outline

3 Variant with cameras



Summary: Visual-epistemic reasoning of agents

- Epistemic language involving atomic propositions 'a sees b'.
- Semantics in geometric and Kripke models.
- 1D case and 2D case with cameras (spectrum of vision):
 - Finite abstraction in the 1D case and in the 2D case with cameras (spectrum of vision).
 - Optimal PSPACE model checking.
- Open problem for the full 2D case: finite abstraction?

Future work

- Obstacles;
- Moving agents/cameras in the plane: mathematically more complex, finite abstractions may not work;
- Agents/cameras in the 3D space.