Epistemic Reasoning in Multi-agent Systems

Tristan Charrier

François Schwarzentruber

École Normale Supérieure Rennes

May 14th, 2019

Automation of complex tasks

Autonomous cars

Intelligent farming

Nuclear decommissioning

cars, robots, humans

Several agents that interact with the environment and with each other.

Imperfect information

- Agents have local view of the environment
- Agents communicate
- Agents act

Decisions are taken with respect to knowledge.

Interaction relies on knowledge

if I know it is safe then

I go

- if I know you are at the market place then I join you

Need to build understandable multi-agent systems

- Robots interacting with humans
- Legal issues in case of failure

Need to build understandable multi-agent systems

- Robots interacting with humans
- Legal issues in case of failure

Need to build understandable multi-agent systems

- Robots interacting with humans
- Legal issues in case of failure

Need to build understandable multi-agent systems

- Robots interacting with humans
- Legal issues in case of failure

Solution: reasoning about knowledge

Given:

- what agents sense;
- the actions and communications that occurred

What does each agent know?

Content of this tutorial

Introduction to epistemic logic

 [van Ditmarsch, Joseph Y. Halpern, van der Hoek, Kooi, Chap. 1. of Handbook of epistemic logic, 2015]

Knowing and seeing
 [Balbiani, et al. Agents that see each other IGPL 2012]

Knowledge and time [Dixon, Nalon, Ramanujam, Chap. 5. of Handbook of epistemic logic, 2015]

- Dynamic epistemic logic
 [Moss, Chap. 6. of Handbook of epistemic logic, 2015]
- Knowledge-based programs
 [Joseph Y. Halpern, Moshe Vardi, Ronald Fagin et Yoram Moses. Reasoning about knowledge 1995]
 [Saffidine, Zanuttini, et al., AAAI 2018]

References

[Jaakko Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two Notions (1962)]

[J-J Ch. Meyer, van der Hoek, Epistemic logic in Al and computer science, 1995]

[Joseph Y. Halpern, Moshe Vardi, Ronald Fagin et Yoram Moses. Reasoning about knowledge 1995]

van Ditmarsch, van der Hoek, Kooi, Dynamic epistemic logic, 2007

[van Ditmarsch, Joseph Y. Halpern, van der Hoek, Kooi, Handbook of epistemic logic, 2015]

Acknowledgment

- Tristan Charrier, former PhD student in Rennes, for many results that will be presented
- Sébastien Gamblin and Alexandre Niveau, for the implementation of succinct/symbolic models in Hintikka's World
- Sophie Pinchinat, head of the LogicA group in Rennes
- Many other colleagues: Valentin Goranko, Andreas Herzig, Emiliano Lorini, Arthur Queffelec, Abdallah Saffidine, Bruno Zanuttini, etc.

Model checking

Outline

1 The Hintikka's World project

2 Epistemic logic

- 3 Model checking
- 4 Theorem proving

The Hintikka's World project Epistemic logic Model checking

Motivation 1: face the difficulties in explaining possible worlds Motivation 2: disseminating in many communities

Outline

1 The Hintikka's World project

- Motivation 1: face the difficulties in explaining possible worlds
- Motivation 2: disseminating in many communities
- Open software

Motivation 1: face the difficulties in explaining possible worlds Motivation 2: disseminating in many communities Open software

Outline

The Hintikka's World project

- Motivation 1: face the difficulties in explaining possible worlds
- Motivation 2: disseminating in many communities
- Open software

2 Epistemic logic

3 Model checking

4 Theorem proving

5 Language properties

Motivation 1: face the difficulties in explaining possible worlds Motivation 2: disseminating in many communities Open software

Once upon a time... In 2011-2012...

I explained epistemic logic to other researchers in logic/AI/verification...

p = false

... but nobody understood me...

Motivation 1: face the difficulties in explaining possible worlds Motivation 2: disseminating in many communities Open software

Possible worlds

... but, since 2017, everybody understood me with comics...

http://hintikkasworld.irisa.fr/

Motivation 1: face the difficulties in explaining possible worlds Motivation 2: disseminating in many communities Open software

Semantics of knowing something

Agent *a* knows that *b* is dirty.

The Hintikka's World project

Epistemic logic Model checking Theorem proving Language properties Motivation 1: face the difficulties in explaining possible worlds Motivation 2: disseminating in many communities Open software

Epistemic states = pointed Kripke structures

Comics = unraveling of a pointed Kripke structure.

Motivation 1: face the difficulties in explaining possible worlds Motivation 2: disseminating in many communities Open software

Outline

- The Hintikka's World project
 - Motivation 1: face the difficulties in explaining possible worlds
 - Motivation 2: disseminating in many communities
 - Open software
- 2 Epistemic logic
- 3 Model checking
- 4 Theorem proving
- 5 Language properties

22 / 60

The Hintikka's World project Epistemic logic Model checking

Motivation 1: face the difficulties in explaining possible worlds Motivation 2: disseminating in many communities Open software

Outline

1 The Hintikka's World project

- Motivation 1: face the difficulties in explaining possible worlds
- Motivation 2: disseminating in many communities
- Open software

The Hintikka's World project

Epistemic logic Model checking Theorem proving Language properties Motivation 1: face the difficulties in explaining possible worlds Motivation 2: disseminating in many communities **Open software**

Open-source project

http://hintikkasworld.irisa.fr/

https://gitlab.inria.fr/ fschwarz/hintikkasworld OO[demo IJCAI-ECAI 2018]

- Web app
- Modular source code in Typescript
- Easy to add new examples
- Several contributors

Please contribute

- Coding
- Propose ideas and improvements

Models Syntax

Outline

2 Epistemic logic

- Models
- Syntax
- 3 Model checking
- 4 Theorem proving
- 5 Language properties

Models Syntax

Outline

2 Epistemic logic

- Models
- Syntax
- 3 Model checking
- 4 Theorem proving
- 5 Language properties

Epistemic states

Let $AP = \{p, p_1, \ldots\}$ be a countable set of atomic propositions. Let $AGT = \{a, b, c, \ldots\}$ be a finite set of agents.

Definition

An epistemic model $\mathcal{M} = (W, (R_a)_{a \in AGT}, V)$ is a tuple where:

- $W = \{w, u, \ldots\}$ is a non-empty set of possible *worlds*;
- $R_a \subseteq W \times W$ is an *accessibility relation* for agent *a*;
- $V: W \rightarrow 2^{AP}$ is a valuation function.

A pair (\mathcal{M}, w) is called a epistemic state, where w represents the actual world.

Models Syntax

Example of an epistemic state

In Hintikka's World: Muddy children

• $W = \{w, u, v, s\};$ • $R_a = \{(w, w), (w, u), (u, w), (u, u), (v, v), (v, s), (s, v), (s, s)\};$ • $R_b = \{(w, w), (w, v), (v, w), (v, v), (u, u), (u, s), (s, u), (s, s)\};$ • $V(w) = \{m_a, m_b\};$ $V(u) = \{m_b\};$ $V(v) = \{m_a\};$ $V(s) = \emptyset.$

Models Syntax

Outline

2 Epistemic logic

- Models
- Syntax
- 3 Model checking
- 4 Theorem proving
- 5 Language properties

Syntax of \mathcal{L}_{EL}

Definition

The syntax of \mathcal{L}_{EL} is given by the following grammar:

$$\varphi, \psi, \ldots$$
 ::= $p \mid \neg \varphi \mid (\varphi \lor \psi) \mid K_a \varphi$

where *p* ranges over *AP* and *a* ranges over *AGT*.

The size of φ is the number of symbols needed to write $\varphi.$

Notation

$(\varphi \wedge \psi)$	for $\neg (\neg \varphi \lor \neg \psi)$,
$\hat{K}_{a}\varphi$	for $\neg K_a \neg \varphi$
$(\varphi \rightarrow \psi)$	for $(\neg \varphi \lor \psi)$

- $K_a \varphi$ is read 'agent *a* knows/believes that φ is true';
- $\hat{K}_a \varphi$ is read 'agent *a* considers φ as possible'.

Models Syntax

Semantics of \mathcal{L}_{EL}

Definition

The semantics of \mathcal{L}_{EL} is defined as follows:

$$\begin{split} \mathcal{M}, w &\models p & \text{if } p \in V(w); \\ \mathcal{M}, w &\models \neg \varphi & \text{if it is not the case that } \mathcal{M}, w &\models \varphi; \\ \mathcal{M}, w &\models (\varphi \lor \psi) & \text{if } \mathcal{M}, w &\models \varphi \text{ or } \mathcal{M}, w &\models \psi; \\ \mathcal{M}, w &\models K_a \varphi & \text{if for all } u \text{ s.t. } w R_a u, \mathcal{M}, u &\models \varphi \end{split}$$

Dual operators

$$\begin{split} \mathcal{M}, w &\models K_a \varphi \quad \text{if for all } u \text{ s.t. } w R_a u, \ \mathcal{M}, u \models \varphi \\ \mathcal{M}, w &\models \hat{K}_a \varphi \quad \text{if there exists } u \text{ s.t. } w R_a u \text{ and } \mathcal{M}, u \models \varphi. \end{split}$$

 $\mathcal{M}, w \models K_a m_b$

$$\mathcal{M}, w \models \hat{K}_a m_a$$

Models Syntax

Practical session

In Hintikka's World: check formulas on the example you like

```
      Syntax of formulas in Hintikka's world

      p

      (not phi)

      (phi or psi)

      (phi or phi or chi or ...)

      (phi and psi and chi or...)

      (K a phi)

      agent a knows/believes φ

      (Kpos a phi)

      agent a considers φ as possible
```

Example

((K a (p or q)) and (Kpos a r)) $\$

Models Syntax

Common knowledge

Common knowledge of φ among agents in group ${\it G}$

Definition

The syntax of $\mathcal{L}_{\text{ELCK}}$ is given by the following grammar:

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \lor \varphi) \mid K_a \varphi \mid C_G \varphi$$

where p ranges over AP, a ranges over AGT, and G ranges over 2^{AGT} .

Definition

The semantics of $\mathcal{L}_{\text{ELCK}}$ extended by the following clause:

• $\mathcal{M}, w \models C_G \varphi$ if for all $u \in W, w R_G u$ implies $\mathcal{M}, u \models \varphi$ where R_G is the reflexive transitive closure of $\bigcup_{a \in G} R_a$.

Model checking problem State explosion problem

Outline

The Hintikka's World project

2 Epistemic logic

3 Model checking

- Model checking problem
- State explosion problem

4 Theorem proving

5 Language properties

Model checking problem State explosion problem

Outline

2 Epistemic logic

- 3 Model checking
 - Model checking problem
 - State explosion problem
- 4 Theorem proving

5 Language properties

Model checking problem State explosion problem

Model checking problem

Model checking problem State explosion problem

Model checking problem

Definition

The model checking problem is defined as follows.

- Input:
 - An epistemic state \mathcal{M}, w ;
 - A formula φ ;
- Output: yes if $\mathcal{M}, w \models \varphi$; no otherwise.

Theorem

Model checking problem is P-complete.

Model checking problem State explosion problem

Model checking algorithm

```
input: a Kripke model \mathcal{M}, a formula \varphi
output: the set of worlds in \mathcal{M} in which \varphi holds
function mc(\mathcal{M}, \varphi)
    match \varphi do
          case p :
               return {w \mid p holds in \mathcal{M}, w}
          case \neg \psi :
               return mc(\mathcal{M}, \psi)
          case (\psi_1 \lor \psi_2) :
               return mc(\mathcal{M}, \psi_1) \cup mc(\mathcal{M}, \psi_2)
          case K_a\psi:
               return {w \mid R_a(w) \subseteq mc(\mathcal{M}, \psi)}
```

Model checking problem State explosion problem

Outline

2 Epistemic logic

3 Model checking

- Model checking problem
- State explosion problem

4 Theorem proving

5 Language properties

Model checking problem State explosion problem

State explosion problem

Example

Minesweeper easy 8 \times 8 with 10 bombs: $> 10^{12}$ possible worlds.

Model checking problem State explosion problem

State explosion problem

Example

Minesweeper 10×12 with 20 bombs: $> 10^{25}$ possible worlds.

Model checking problem State explosion problem

Solution to the state explosion problem

[van Benthem; et al. 2015], [van Benthem et al. 2018]

◦Charrier _ AAMAS 2017], ◦ [Charrier _ AiML 2018]

- Succinct representations of epistemic states; and actions;
- Easy to specify by means of accessibility programs;
- \bullet Succinct model checking $\operatorname{PSPACE}\text{-complete}.$

Satisfiability and validi Axiomatization Classes of models Complexity

Outline

- The Hintikka's World project
- 2 Epistemic logic
- 3 Model checking

Theorem proving

- Satisfiability and validity
- Axiomatization
- Classes of models
- Complexity

Satisfiability and validity Axiomatization Classes of models Complexity

Outline

- The Hintikka's World project
- 2 Epistemic logic
- 3 Model checking
- 4 Theorem proving
 - Satisfiability and validity
 - Axiomatization
 - Classes of models
 - Complexity

Satisfiability and validity Axiomatization Classes of models Complexity

Satisfiability and validity

Definition

- A formula φ is satisfiable if there is an epistemic state M, w such that M, w ⊨ φ.
- A formula φ is *valid/a theorem* if for all epistemic states \mathcal{M}, w , we have $\mathcal{M}, w \models \varphi$.

Example

- $K_a p$ is satisfiable, but not valid.
- $\bullet \ ({\it K_ap} \ \land \ {\it K_a(p \rightarrow q)}) \ \rightarrow \ {\it K_aq} \ {\rm is \ valid}.$

Dual properties

 φ is a theorem iff $\neg \varphi$ is not satisfiable.

Satisfiability and validit Axiomatization Classes of models Complexity

Outline

- The Hintikka's World project
- 2 Epistemic logic
- 3 Model checking
- 4 Theorem proving
 - Satisfiability and validity
 - Axiomatization
 - Classes of models
 - Complexity

Epistemic logic Model checking Theorem proving Language properties

Axiomatization

Axiomatization

Axiom K: Modus ponens rule: Necessitation rule: all classical tautologies $K_a(\varphi \to \psi) \to (K_a \varphi \to K_a \psi)$ From φ and $\varphi \rightarrow \psi$, infer ψ From φ infer $K_a \varphi$

Theorem

A formula is a theorem iff it is provable in the axiomatization above.

Blackburn et al. Modal logic, 2001

Example

 $K_a(\varphi \wedge \psi) \to K_a \varphi$ is theorem:

$$\ \, \bullet \ \, \mathsf{K}_{\mathsf{a}}(\varphi \wedge \psi) \to \mathsf{K}_{\mathsf{a}}\varphi$$

ssical tautology

by necessitation rule on 1

Axiom K

by modus ponens on 2, 3

Satisfiability and validity Axiomatization Classes of models Complexity

Motivation of axiomatization

- the computation of knowledge is modeled;
- enables to explain why an agent knows sth; (link with justification logic)
- axiomatization helps to understand the principle of the logics
- we do not have to design a specific epistemic state, as in model checking

Satisfiability and validi Axiomatization Classes of models Complexity

Outline

- The Hintikka's World project
- 2 Epistemic logic
- 3 Model checking
- 4 Theorem proving
 - Satisfiability and validity
 - Axiomatization
 - Classes of models
 - Complexity

Satisfiability and validity Axiomatization Classes of models Complexity

Classes of epistemic states

In Hintikka's World: Classes of models

Definition

A formula φ is a KD45-theorem if for all epistemic states \mathcal{M}, w in which relations are serial, transitive and Euclidean, we have $\mathcal{M}, w \models \varphi$.

Theorem

A formula φ is a KD45-theorem iff it is provable in the axiomatisation above plus axioms D, 4, 5. [Sahlqvist, 1975]

Satisfiability and validity Axiomatization Classes of models Complexity

Important classes: KD45 and S5 = KT45

Example (KD45, i.e. beliefs)

A formula φ is a KD45-theorem if for all epistemic states \mathcal{M}, w in which relations are serial, transitive and Euclidean, we have $\mathcal{M}, w \models \varphi$.

Example (S5 = KT45, i.e. knowledge)

A formula φ is a S5-theorem if for all epistemic states \mathcal{M}, w in which relations are equivalence relations, we have $\mathcal{M}, w \models \varphi$.

Satisfiability and validi Axiomatization Classes of models Complexity

Outline

- The Hintikka's World project
- 2 Epistemic logic
- 3 Model checking
- 4

Theorem proving

- Satisfiability and validity
- Axiomatization
- Classes of models
- Complexity

Satisfiability and validity Axiomatization Classes of models Complexity

Complexity of theorem proving

Theorem

Without common knowledge:

	one single agent	several agents
K	PSPACE-complete	PSPACE-complete
KD45, S5	NP-complete	Pspace-complete

With common knowledge (several agents): EXPTIME-complete.

[Halpern, Moses, A guide to completeness and complexity for modal logics of knowledge and belief. 1996]

Model checking more practical than theorem proving [Halpern, Vardi, 1991]

Expressivity Succinctness

Outline

- The Hintikka's World project
- 2 Epistemic logic
- 3 Model checking
- 4 Theorem proving

5 Language properties

- Expressivity
- Succinctness

Expressivity Succinctness

Outline

The Hintikka's World project

- 2 Epistemic logic
- 3 Model checking
- 4 Theorem proving
- Language propertiesExpressivity
 - Succinctness

Expressivity Succinctness

Strictly more expressive

Definition

Two formulas φ and ψ are *equivalent* if for all pointed models \mathcal{M}, w ,

$$(\mathcal{M}, w \models \varphi)$$
 iff $(\mathcal{M}, w \models \psi)$

Theorem

 \mathcal{L}_{ELCK} is strictly more expressive than \mathcal{L}_{EL} : no formula in \mathcal{L}_{EL} is equivalent to $C_{\{a,b\}}p$.

- By contradiction, suppose that φ in L_{EL} is equivalent to C_{{a,b}p;
- Let d be the modal depth of φ , e.g. d = 3;
- Let us consider the two models of In Hintikka's World: Language with Common knowledge is more expressive
- φ has the same value in both while $C_{\{a,b\}}p$ not.

Equally expressive

We may add in the language operators $E_G \varphi$ read as 'agents in G know φ ':

• $\mathcal{M}, w \models E_G \varphi$ if for all agents $a \in G, \mathcal{M}, w \models K_a \varphi$.

Theorem

The language \mathcal{L}_{EL} augmented with the E_G 's is equally expressive than \mathcal{L}_{EL} :

$$E_G \varphi \equiv \bigwedge_{a \in G} K_a \varphi$$

Expressivity Succinctness

Outline

The Hintikka's World project

- 2 Epistemic logic
- 3 Model checking
- 4 Theorem proving
- Language propertiesExpressivity
 - Succinctness

Expressivity Succinctness

Succinctness

Theorem

The language \mathcal{L}_{EL} augmented with the E_G 's is exponentially more succinct than \mathcal{L}_{EL} .

- $E_{\{a,b\}}E_{\{a,b\}}E_{\{a,b\}}\varphi \equiv K_aK_aK_a\varphi \wedge K_aK_aK_b\varphi \wedge K_aK_bK_a\varphi \wedge K_aK_bK_b\varphi \wedge K_bK_aK_a\varphi \wedge K_bK_bK_b\varphi \wedge K_bK_bK_b\varphi$
- $E_{\{a,b\}} \dots E_{\{a,b\}} \varphi \equiv \dots$

Proof is involved: see [French, van der Hoek, Illiev, Kooi, AIJ 2013]