Dynamic epistemic logic

Tristan Charrier François Schwarzentruber

École Normale Supérieure Rennes

May 13, 2019

Formal definition of event models Model checking In the verification/model checking community In philosophy / Al Syntactic specifications

Outline

Discussion about modeling actions

- In the verification/model checking community
- In philosophy / Al
- Syntactic specifications

Formal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community In philosophy / AI Syntactic specifications

Outline

- Discussion about modeling actions
 - In the verification/model checking community
 - In philosophy / Al
 - Syntactic specifications
- Pormal definition of event models
- 3 Model checking
- 4 Theorem proving
- 5 Epistemic planning

Formal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community In philosophy / AI Syntactic specifications

In the verification/model checking community

Action = an edge \rightarrow

Formal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community In philosophy / AI Syntactic specifications

In the verification/model checking community

Action = an edge \longrightarrow Epistemic = edges ----

Formal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community $\ensuremath{\text{ln philosophy}}$ / $\ensuremath{\text{Al}}$ Syntactic specifications

Outline

Discussion about modeling actions

 In the verification/model checking community
 In philosophy / AI
 Syntactic specifications

Pormal definition of event models

3 Model checking

4 Theorem proving

In the verification/model checking community $\ensuremath{\text{ln philosophy}}$ / $\ensuremath{\text{Al}}$ Syntactic specifications

In philosophy / Al

The mechanism of actions is important.

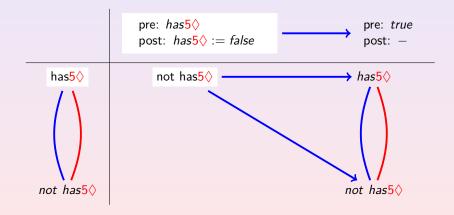
Public/private announcement	Announce	'She	knows	you	hold	50,	,
-----------------------------	----------	------	-------	-----	------	-----	---

Public action	play card $5\Diamond$
Private action	secretly remove card $5\Diamond$
Belief revision	learn p although believing $\neg p$

Formal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community In philosophy / Al Syntactic specifications

Solution: Dynamic epistemic logic

	State	Action
Classical planning	has5♦	pre: $has5\Diamond$ post: $has5\Diamond := false$


mal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community In philosophy / Al Syntactic specifications

Solution: Dynamic epistemic logic

	State	Action		
Classical planning	has <mark>5</mark> ◊	pre: $has5\diamond$ post: $has5\diamond := false$		
DEL [Baltag et al. TARK 1998] [van Ditmarsch et al. 2007] = Kripkean models of classical planning	has5◊ () not has5◊	pre: has5 post: has5 ;= false pre: true post: -		

Formal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community In philosophy / Al Syntactic specifications

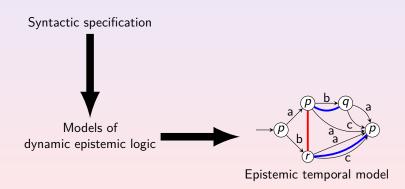
Computing the next state: product update

Formal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community In philosophy / AI Syntactic specifications

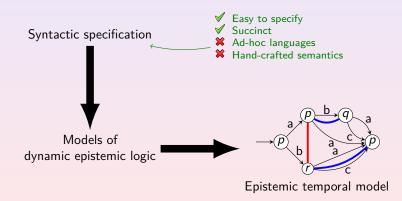
Outline

1 Discussion about modeling actions

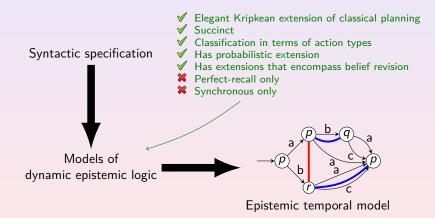
- In the verification/model checking community
- In philosophy / Al
- Syntactic specifications

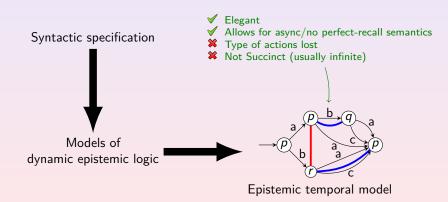

Pormal definition of event models

3 Model checking

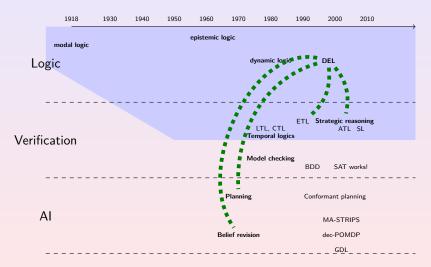

4 Theorem proving

	Discussion about modeling actions Formal definition of event models Model checking Theorem proving Epistemic planning	In the verifica In philosophy Syntactic spe	
Synt	actic specifications		
	Game description language [Love et al. 2008] [Thielscher, IJCAI 202	17]	agent <i>a</i> sees the game position
_	Flatland		agent <i>a</i> sees agent <i>b</i>
	Balbiani et al., IGPL 2014] Gasquet, Goranko, _, AAMAS 201 Gasquet, Goranko, _, JAAMAS 20	.4] 016]	
_	Visibility atoms		a sees the truth value of p
	○○[Charrier et al. KR 2016]		
_	Paying attention to public announce	ements	B_a payAtt $(b) ightarrow [p!]B_aB_bp$
	○○[Bolander et al. JoLLI 2016]		
_	Asynchronous announcements		$[p!][read_a]K_ap$
	○○[Knight et al. MS in CS 2019]		
_	Epistemic gossip		$[call_{ab}]K_a secret_b$
	👓 [van Ditmarsch et al., JAL 2017]		


Formal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community In philosophy / AI Syntactic specifications


Formal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community In philosophy / AI Syntactic specifications

Formal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community In philosophy / AI Syntactic specifications


Formal definition of event models Model checking Theorem proving Epistemic planning In the verification/model checking community In philosophy / AI Syntactic specifications

Timeline

	1918	1930	1940	1950	1960	1970	1980	1990	2000	2010	
	modal logic										
Lo	gic					u;	ynamic iogi	L	DEL		
						LTL, CTL		itrategic re	easoning SL		
Verification					Ma	odel checkir	'g BDE) SAT	works! 		
						Planning		Conf	ormant pla	nning	
A	1				B	elief revisio			MA-STR dec-POM		

Timeline

Examples of actions Definition Effect of actions Dynamic language Expressivity

Outline

Discussion about modeling actions

2 Formal definition of event models

- Examples of actions
- Definition
- Effect of actions
- Dynamic language
- Expressivity

3 Model checking

4 Theorem proving

Examples of actions Definition Effect of actions Dynamic language Expressivity

Outline

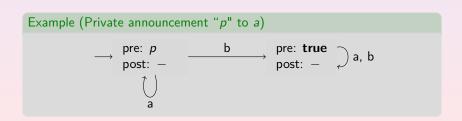
Discussion about modeling actions

2 Formal definition of event models

- Examples of actions
- Definition
- Effect of actions
- Dynamic language
- Expressivity

3 Model checking

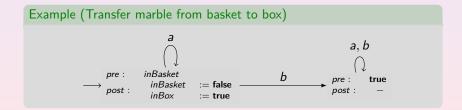
4 Theorem proving


Examples of actions Definition Effect of actions Dynamic language Expressivity

Examples of actions

[baltag1998logic]

Example (Public announcement of "p")


$$ightarrow rac{\mathsf{pre:} \ \mathsf{p}}{\mathsf{post:} \ -} \ \left. \begin{array}{c}
ightarrow \mathsf{a, b}
ight.$$

Examples of actions Definition Effect of actions Dynamic language Expressivity

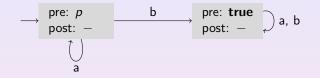
Examples of actions

Examples of actions Definition Effect of actions Dynamic language Expressivity

Outline

Discussion about modeling actions

2 Formal definition of event models


- Examples of actions
- Definition
- Effect of actions
- Dynamic language
- Expressivity

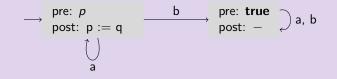
3 Model checking

4 Theorem proving

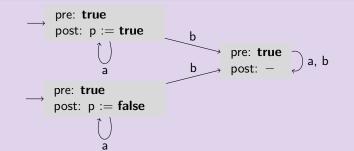
Discussion about modeling actions Formal definition of event models	Examples of actions Definition
Model checking	Effect of actions
Theorem proving	Dynamic language
Epistemic planning	Expressivity

Actions

Definition


An event model $\mathcal{E} = (\mathsf{E}, (R_a^{\mathcal{E}})_{a \in AGT}, pre, post)$ is a tuple where:

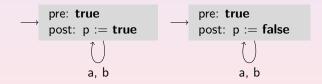
- $E = \{e, e', ...\}$ is a non-empty finite set of possible events,
- $R_a^{\mathcal{E}} \subseteq E \times E$ is an accessibility relation on E for agent *a*,
- $\textit{pre}: E \rightarrow \mathcal{L}_{EL}$ is a precondition function,
- *post* : $E \times AP \rightarrow \mathcal{L}_{EL}$ is a postcondition function.


A pair (\mathcal{E}, e) is called an action, where *e* represents the actual event of (\mathcal{E}, e) . A pair (\mathcal{E}, E_0) , for $E_0 \subseteq E$, is a non-deterministic action. The set E_0 is the set of triggerable events.

Deterministic and non-deterministic actions

Deterministic action = single-pointed event model (\mathcal{E}, e)

Non-deterministic action = multi-pointed event model

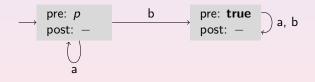


Examples of actions Definition Effect of actions Dynamic language Expressivity

Public actions

Definition

An action is said to be *public* if the accessibility relations in underlying event model are self-loops.



Examples of actions Definition Effect of actions Dynamic language Expressivity

Non-ontic actions

Definition

An action is said to be *non-ontic* if the postconditions are trivial: for all $e \in E$, for all propositions $p \in AP$, post(e, p) = p.

Examples of actions Definition Effect of actions Dynamic language Expressivity

Outline

Discussion about modeling actions

2 Formal definition of event models

- Examples of actions
- Definition

Effect of actions

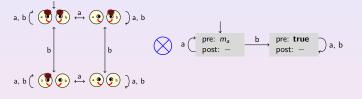
- Dynamic language
- Expressivity

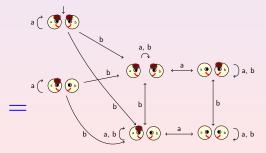
3 Model checking

4 Theorem proving

Discussion about modeling actions Examples of actions Formal definition of event models Definition Model checking Effect of actions Theorem proving Dynamic language Epistemic planning Expressivity

Effect of a public announcement of φ : only keep φ -worlds


$$\longrightarrow \begin{array}{c} \mathsf{pre:} \varphi \\ \mathsf{post:} - \end{array} \left(\begin{array}{c} \mathsf{post:} \\ \mathsf{post:} \end{array} \right) \mathsf{a, b}$$


In Hintikka's World: Try on several examples!

Examples of actions Definition Effect of actions Dynamic language Expressivity

Example of an update product

Examples of actions Definition Effect of actions Dynamic language Expressivity

Update product: formal definition

Let $\mathcal{M} = (W, \{R_a\}_{a \in AGT}, V)$ be an epistemic model and $\mathcal{E} = (\mathsf{E}, (R_a^{\mathcal{E}})_{a \in AGT}, pre, post)$ be an event model.

Definition

The update product of \mathcal{M} and \mathcal{E} is the epistemic model $\mathcal{M} \otimes \mathcal{E} = (W^{\otimes}, \{R_a^{\otimes}\}_{a \in AGT}, V^{\otimes})$ where:

$$W^{\otimes} = \{(w, e) \in W \times \mathsf{E} \mid \mathcal{M}, w \models pre(e)\},\$$

$${\it R}^\otimes_{\sf a}(w,e)=\{(w',e')\in W^\otimes\mid wR_{\sf a}w' ext{ and } eR^{\mathcal E}_{\sf a}e'\},$$

 $V^{\otimes}(w, e) = \{p \in AP \mid \mathcal{M}, w \models post(e)(p)\}$

Examples of actions Definition Effect of actions Dynamic language Expressivity

Pointed update products

Definition

The successor state of an epistemic state (\mathcal{M}, w) by action (\mathcal{E}, e) is

$$(\mathcal{M}, w) \otimes (\mathcal{E}, e) =^{\mathsf{def}} (\mathcal{M} \otimes \mathcal{E}, (w, e))$$

if $\mathcal{M}, w \models pre(e)$, otherwise it is undefined.

Notation

- We write e instead of (E, e);
- We write the word 'we' instead of the pair (w, e);
- We write $\mathcal{M} \otimes \mathcal{E}^n$ for $\mathcal{M} \otimes \mathcal{E} \otimes \ldots \mathcal{E}$, n times.
- We write $we_1 \dots e_n \models \varphi$ instead of $\mathcal{M} \otimes \mathcal{E}^n$, $we_1 \dots e_n \models \varphi$.

Examples of actions Definition Effect of actions **Dynamic language** Expressivity

Outline

Discussion about modeling actions

2 Formal definition of event models

- Examples of actions
- Definition
- Effect of actions
- Dynamic language
- Expressivity

3 Model checking

Theorem proving

Discussion about modeling actions Formal definition of event models Model checking Epistemic planning Express

Examples of actions Definition Effect of actions **Dynamic language** Expressivity

Dynamic language

Definition

The language $\mathcal{L}_{\text{DELCK}}$ extends $\mathcal{L}_{\text{ELCK}}$ with dynamic modalities and is defined by the following BNF:

$$\varphi \quad ::= \ \top \ \mid \ p \ \mid \ \neg \varphi \ \mid \ (\varphi \lor \varphi) \ \mid \ K_a \varphi \ \mid \ C_G \varphi \ \mid \ \langle \mathcal{E}, \mathsf{E}_0 \rangle \varphi$$

where $\mathcal{E}, \mathsf{E}_0$ ranges over the set of non-deterministic actions.

Definition

We extend the definition $\mathcal{M}, w \models \varphi$ to $\mathcal{L}_{\mathsf{DELCK}}$ with the following clause:

•
$$\mathcal{M}, w \models \langle \mathcal{E}, \mathsf{E}_0 \rangle \varphi$$
 if there exists $e \in \mathsf{E}_0$ s.th.
 $\mathcal{M}, w \models pre(e)$ and $\mathcal{M} \otimes \mathcal{E}, (w, e) \models \varphi$.

Discussion about modeling actions Examples of actions
Formal definition of event models
Model checking Effect of actions
Theorem proving Dynamic language
Epistemic planning Expressivity

Dual operator

We define $[\mathcal{E}, \mathsf{E}_0]$ to be $\neg \langle \mathcal{E}, \mathsf{E}_0 \rangle \neg$.

The semantics is:

Examples of actions Definition Effect of actions Dynamic language Expressivity

Outline

Discussion about modeling actions

2 Formal definition of event models

- Examples of actions
- Definition
- Effect of actions
- Dynamic language
- Expressivity

3 Model checking

Theorem proving

Discussion about modeling actions Formal definition of event models Model checking Effect of actions Theorem proving Dynamic language Epistemic planning Expressivity

Expressivity

Theorem

DEL and **EL** have the same expressivity.

Idea: we remove the dynamic operators $[\mathcal{E}, E]$. Let us explain it just with public announcements:

 $[\varphi]\psi$: if φ holds then after having announced φ publicly, ψ holds.

$[\varphi!]p$
$[\varphi!](\psi \land \chi)$
$[\varphi!] \neg \psi$
$[\varphi!]K_a\psi$
$[\varphi!][\psi!]\chi$

says the same thing than says the same thing than

$$\begin{array}{l} (\varphi \rightarrow p) \\ ([\varphi !]\psi \land [\varphi !]\chi) \\ (\varphi \rightarrow \neg [\varphi !]\psi) \\ (\varphi \rightarrow K_{a}[\varphi !]\psi) \\ [\varphi \land [\varphi !]\psi !]\chi \end{array}$$

General proof in [Baltag, Moss and Solecki, 2003a] **DEL** is more succinct: [Lutz, AAMAS 2006]

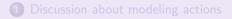
Model checking problem Complexity

Outline

Discussion about modeling actions

2 Formal definition of event models

3 Model checking


- Model checking problem
- Complexity

4 Theorem proving

5 Epistemic planning

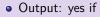
Model checking problem Complexity

Outline

- 2 Formal definition of event models
- 3 Model checking
 - Model checking problem
 - Complexity
- 4 Theorem proving

5 Epistemic planning

Model checking problem Complexity


Model checking problem

Definition (model checking problem)

• Input:

- An epistemic state
- A formula, e.g. (*action*₁; *action*₂)*K*_a*p*;

no otherwise.

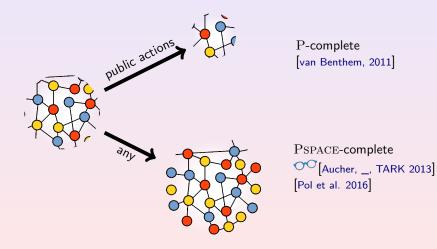
Model checking problem Complexity

Outline

Discussion about modeling actions

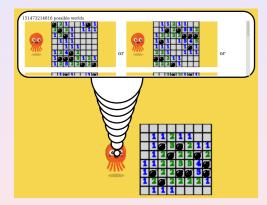
2 Formal definition of event models

3 Model checking


- Model checking problem
- Complexity

4 Theorem proving

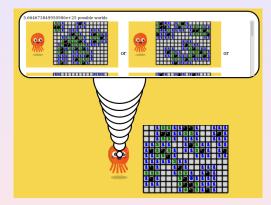
5 Epistemic planning


Model checking problem Complexity

Model checking complexity

Model checking problem Complexity

State explosion problem

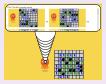


Example

Minesweeper easy 8 \times 8 with 10 bombs: $> 10^{12}$ possible worlds.

Model checking problem Complexity

State explosion problem



Example

Minesweeper 10×12 with 20 bombs: $> 10^{25}$ possible worlds.

Model checking problem Complexity

Solution to the state explosion problem

[DBLP:conf/lori/BenthemEGS15], [DBLP:journals/logcom/BenthemEGS18]

◦Charrier _ AAMAS 2017], ◦
[Charrier _ AiML 2018]

- Succinct representations of epistemic states and actions;
- Easy to specify by means of accessibility programs;
- \bullet Succinct model checking still in $\ensuremath{\operatorname{PSPACE}}$.

Model checking problem Complexity

Impact

Theoretical

Existence of a (uniform) strategy in **bounded** imperfect info games is in PSPACE.

Implementation: **PSPACE** techniques

Symbolic Model checking implemented in Hintikka's World:

- by Sébastien Gamblin and Alexandre Niveau (univ. Caen)
- using BDDs (C wrapper of CUDD compiled in wasm).

Outline

Discussion about modeling actions

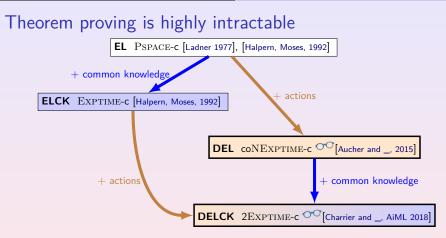

2 Formal definition of event models

3 Model checking

4 Theorem proving

5 Epistemic planning

Theorem proving



 $p \rightarrow \langle action_1; action_2 \rangle K_a p$ is a *theorem*, i.e. true in all epistemic states.

Definition

- Input: a formula φ ;
- Output: yes if φ is a theorem, no otherwise.

- Semi-product modal logics have high complexities;
 [Gabbay et al. Many-Dimensional Modal Logics: Theory and Applications, 2003]
- Model checking more practical than theorem proving

[Halper, Vardi, KR 1991].

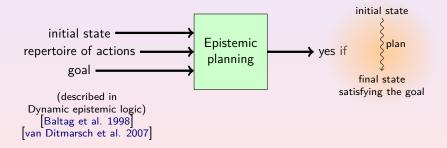
Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Outline

- Discussion about modeling actions
- Pormal definition of event models

3 Model checking

4 Theorem proving


5 Epistemic planning

- Undecidability of epistemic planning
- Decidability when pre/post are Boolean
- Generalize to multi-player setting

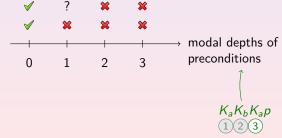
Discussion about modeling actions Formal definition of event models Model checking Theorem proving Epistemic planning Generalize to multi-player setting

Epistemic planning

[Andersen, Bolander, 2011]

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Decidability and undecidability of epistemic planning

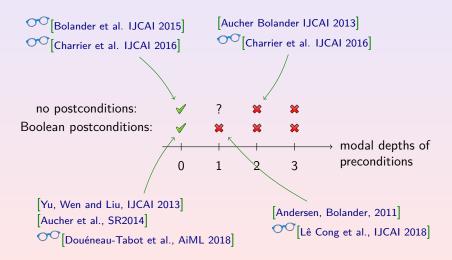

no postconditions: Boolean postconditions:

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Decidability and undecidability of epistemic planning

no postconditions: Boolean postconditions:

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting


Decidability and undecidability of epistemic planning

no postconditions: Boolean postconditions:

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Decidability and undecidability of epistemic planning

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Outline

- Discussion about modeling actions
- Pormal definition of event models

3 Model checking


4 Theorem proving

5 Epistemic planning

- Undecidability of epistemic planning
- Decidability when pre/post are Boolean
- Generalize to multi-player setting

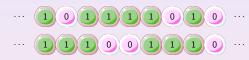
Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Epistemic planning is undecidable

Proof: reduction from halting problem of a small universal cellular automaton.

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Example: the 110 Rule cellular automaton





Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Example: the 110 Rule cellular automaton

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Example: the 110 Rule cellular automaton

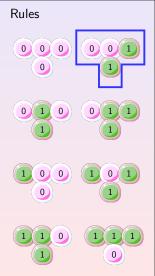
time

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Example: the 110 Rule cellular automaton

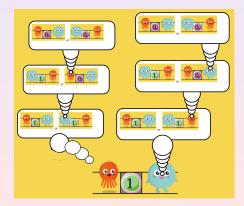


time



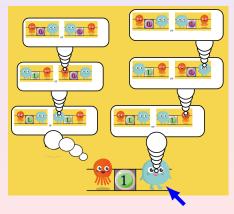
Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Example: the 110 Rule cellular automaton


↓ time

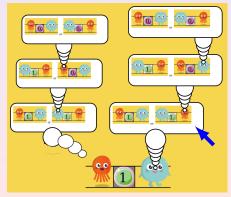
Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Encoding an automaton configuration in a state



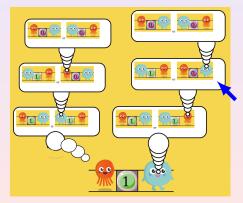
Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Encoding an automaton configuration in a state



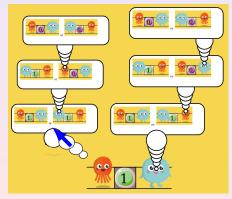
Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Encoding an automaton configuration in a state



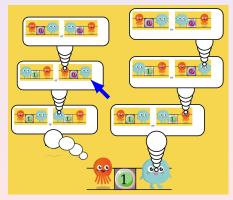
Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Encoding an automaton configuration in a state



Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Encoding an automaton configuration in a state



Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Encoding an automaton configuration in a state

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Outline

- Discussion about modeling actions
- 2 Formal definition of event models

3 Model checking


4 Theorem proving

5 Epistemic planning

- Undecidability of epistemic planning
- Decidability when pre/post are Boolean
- Generalize to multi-player setting

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

(Infinite) epistemic temporal structures

Epistemic planning: first-order query $\exists x, goal(x)$

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Decidability when pre/post are Boolean

Theorem ([DBLP:conf/ijcai/YuWL13], [DBLP:journals/corr/AucherMP14])

When pre/post are Boolean, epistemic planning is decidable.

Epistemic planning is a first-order-query

first-order-query on automatic structures is decidable.

Epistemic temporal structures are automatic

Theorem (\bigcirc [Douéneau-Tabot, Pinchinat and _, 2018]) Even decidable for goals in epistemic linear μ -calculus.

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Automatic structure = defined by automatas

enc:
$$\mathbb{N} \to \{1\}^*$$

 $n \mapsto 1^n$

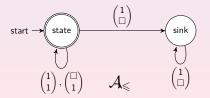
start →∞ 1

 $\mathcal{A}_{\mathbb{N}}$

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Example of an automatic structure

 $\langle \mathbb{N}, iseven?, \leqslant \rangle$


 $\mathcal{A}_{iseven?}$

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Example of an automatic structure

 $S = \langle \mathbb{N}, iseven?, \leq \rangle$

• 2
$$\leq$$
 5 iff "11 \leq 11111"
• 2 \leq 5 iff word $\begin{pmatrix} 1\\1 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix} \begin{pmatrix} \Box\\1 \end{pmatrix} \begin{pmatrix} \Box\\1 \end{pmatrix} \begin{pmatrix} \Box\\1 \end{pmatrix} \begin{pmatrix} \Box\\1 \end{pmatrix}$ is accepted by \mathcal{A}_{\leq}

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Outline

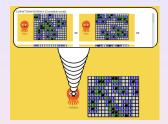
- Discussion about modeling actions
- Pormal definition of event models

3 Model checking

4 Theorem proving

5 Epistemic planning

- Undecidability of epistemic planning
- Decidability when pre/post are Boolean
- Generalize to multi-player setting


Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Strategies

Definition

A strategy for player a is a function σ that maps any history $we_1...e_n$ to a deterministic epistemic action in the repertoire of a.

Definition

A uniform strategy for player a is a strategy σ such that

if we_1...e_n \sim_a ue'_1...e'_n then

$$\sigma(we_1...e_n) = \sigma(ue'_1..e'_n)$$

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

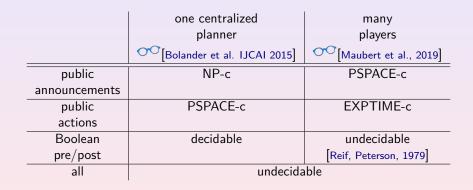
Undecidability even for Boolean pre/post

Theorem

[Reif, Peterson, 1979] [Coulombe and Lynch, Def. 1, p. 14:7, FUN 2018] [Maubert et al., IJCAI 2019] The existence of uniform strategies for two players against an environment for achieving a goal φ is undecidable.

Decidability cases

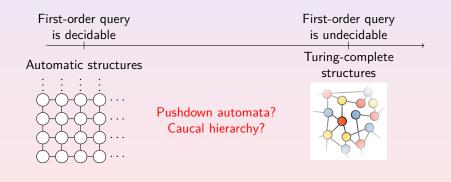
public actions [Belardinelli et al., 2017] [Maubert et al., IJCAI 2019]


hierarchical information [Maubert et al., 2018] [Maubert et al., IJCAI 2019]

(picture idea from Raphael Berthon)

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Complexity results on epistemic planning



Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Perspectives: DEL and formal language theory

Question

Is epistemic planning one agent (pre md 1, post) decidable?

Undecidability of epistemic planning Decidability when pre/post are Boolean Generalize to multi-player setting

Perspectives

• Connection with logics for reasoning about strategies such as Alternating temporal-time logic, Strategy Logic, etc.

·[⊙][Maubert et al., 2019]

Describing protocols/policies