Conclusion

François Schwarzentruber

École Normale Supérieure Rennes

May 13, 2019

Outline

2 Topics not covered

3 Perspectives

Conclusion

	Notions
Epistemic logic	Syntax, Semantics, Succinctness, Model
	checking, Satisfability
Knowledge and seeing	Abstraction
Knowledge and time	Interaction
Dynamic epistemic logic	Automatic structures VS Turing- complete, no knowledge about the
	strategies of others
Knowledge-based programs	Common knowledge of the strategies of others

Outline

3 Perspectives

Other topics not covered

- Belief revision, plausibility models
 [Baltag et al. Chap. 7 of Handbook of epistemic logic]
- Probabilistic dynamic epistemic logic
- Distributed systems and interpreted systems. Modeling protocols.
- Proof theory. Soundness and completeness of axiomatization.
- Finite model property. Bisimilation. Bisimilation contraction.

Outline

1 Conclusion

2 Topics not covered

Perspectives

- Provide efficient algorithms for epistemic planning
- Synthesis Knowledge-based programs (mix of Reinforcement Learning and tracking the emergence of epistemic reasoning?)
- Face the logical omniscience problem

Limited belief

Issue when interacting with humans: logical omniscience

Because knowledge computation not modeled in the semantics

Limited belief

Limited belief

Solution

Model the knowledge computation via *proof systems*! [Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

Deduced facts (implicit beliefs)

Knowledge base (explicit beliefs) $K_a R_b q$ $K_a K_b q$ $K_a K_b (p \land q)$

Limited belief

Solution

Model the knowledge computation via *proof systems*! [Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

Knowledge base (explicit beliefs)

novice

Limited belief

Solution

Model the knowledge computation via *proof systems*! [Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

Limited belief

Solution

Model the knowledge computation via *proof systems*! [Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

Knowledge base (explicit beliefs)

$$\hat{K}_{ap}$$
, K_{aq}

 $\cdots K_a K_b q$

intermediate

Limited belief

Solution

Model the knowledge computation via *proof systems*! [Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

Deduced facts (implicit beliefs)

expert

Limited belief

Solution

Model the knowledge computation via *proof systems*! [Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

Deduced facts (implicit beliefs)

omniscient

Limited belief

Theorem

With one agent, theorem proving is:

- NP-complete,
- but PSPACE-complete when the belief level is part of the input

[Chen, Saffidine, Schwering, 2018]

Question

- Extension to the multi-agent case?
- Extension to DEL actions?
- Provide approximate solutions?

Hintikka's World

Implement many different models

- belief revision, plausibility models
- probabilistic models
- interpreted systems
- explicit VS implicit beliefs
- verification/synthesize of knowledge-based programs

A tool for advertising AI techniques Planning SAT Sampling (cf. Kuldeep's talk)

Trugarez bras. Merci. Thank you.

Feel free to use it! http://hintikkasworld.irisa.fr/