Conclusion

François Schwarzentruber

亿nen
École Normale Supérieure Rennes

May 13, 2019

Outline

(1) Conclusion
(2) Topics not covered
(3) Perspectives

Conclusion

	Notions
Epistemic logic	Syntax, Semantics, Succinctness, Model checking, Satisfability
Knowledge and seeing	Abstraction
Knowledge and time	Interaction
Dynamic epistemic logic	Automatic structures VS Turing- complete, no knowledge about the strategies of others
Knowledge-based programs	lommon knowledge of the strategies of others

Outline

(1) Conclusion
(2) Topics not covered
(3) Perspectives

Other topics not covered

- Belief revision, plausibility models
[Baltag et al. Chap. 7 of Handbook of epistemic logic]
- Probabilistic dynamic epistemic logic
- Distributed systems and interpreted systems. Modeling protocols.
- Proof theory. Soundness and completeness of axiomatization.
- Finite model property. Bisimilation. Bisimilation contraction.

Outline

(1) Conclusion
(2) Topics not covered
(3) Perspectives

Perspectives

- Provide efficient algorithms for epistemic planning
- Synthesis Knowledge-based programs (mix of Reinforcement Learning and tracking the emergence of epistemic reasoning?)
- Face the logical omniscience problem

Limited belief

Issue when interacting with humans: logical omniscience
Because knowledge computation not modeled in the semantics

Limited belief

Limited belief

Solution

Model the knowledge computation via proof systems! [Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

Deduced facts (implicit beliefs)

[Liu et al., 2004], [Schwering, 2017], [Chen, Saffidine, Schwering, 2018]

Limited belief

Solution

Model the knowledge computation via proof systems! [Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

Limited belief

Solution

Model the knowledge computation via proof systems! [Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

[Liu et al., 2004], [Schwering, 2017], [Chen, Saffidine, Schwering, 2018]

Limited belief

Solution

Model the knowledge computation via proof systems! [Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

[Liu et al., 2004], [Schwering, 2017], [Chen, Saffidine, Schwering, 2018]

Limited belief

Solution

Model the knowledge computation via proof systems! [Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

[Liu et al., 2004], [Schwering, 2017], [Chen, Saffidine, Schwering, 2018]

Limited belief

Solution

Model the knowledge computation via proof systems!
[Levesque, 1984], [Lakemeyer, 1994], [Kaplan and Schubert, 2000]

Deduced facts (implicit beliefs)

omniscient
[Liu et al., 2004], [Schwering, 2017], [Chen, Saffidine, Schwering, 2018]

Limited belief

Theorem

With one agent, theorem proving is:

- NP-complete,
- but PSPACE-complete when the belief level is part of the input [Chen, Saffidine, Schwering, 2018]

Question

- Extension to the multi-agent case?
- Extension to DEL actions?
- Provide approximate solutions?

Hintikka's World

Implement many different models

- belief revision, plausibility models
- probabilistic models
- interpreted systems
- explicit VS implicit beliefs
- verification/synthesize of knowledge-based programs

A tool for advertising AI techniques
Planning SAT Sampling (cf. Kuldeep's talk)

Trugarez bras. Merci. Thank you.

Feel free to use it!
http://hintikkasworld.irisa.fr/

