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Abstract

This paper treats two linked subjects underlying behavioural simulation. First, the

way to describe a virtual environment through an informed hierarchical abstract graph.
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This graph stores some pre-computations such as potential visibility sets, oriented grids,

or densities of people, which can be used individually by simulated entities. Second, the

way to use this abstract graph to perform a realistic and efficient path planning, which

takes care of individual preferences as well as individual knowledge of the environment.

Moreover, the path planning method we propose is reactive to some events, reflecting

the perceived modifications of the environment, which allows the entity to adapt its

behaviour in consequence.

Keywords: Environment Description, Path Planning, Simulation Involving Virtual Humans

Introduction

Simulating crowds of people is a complex topic, implying to manage many entities at the

same time, possibly thousands, while making them sufficiently realistic to be analysed. For

these entities to be realistic, they must handle some behavioural procedures which will guide

them during the simulation. One of these necessary behaviours is unquestionably the capac-

ity to move, and so the capacity to plan a path. Our study is undertaken within the frame-

work of microscopic crowd simulation inside constrained environments, and particularly

exchange areas like train stations. We want to provide maximal entity autonomy and real-

ism to achieve two main goals. First, an entity must be able to adapt its behaviour to take

into account environments with low population as well as overcrowded ones, making it pos-

sible to produce the macroscopic emergent behaviour called crowd. Second, an entity must
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achieve a sufficiently realistic behaviour in order to make the interpretation of data from the

simulation possible. Moreover, as previously stated, crowd simulation implies to simultane-

ously manage many entities, making computation cost a major constraint in our model. The

point we are focusing on in this study is the way an agent can plan a realistic path inside a

more or less known environment. We start, in the related work section, by presenting the

spatial subdivision, environmental abstraction, and path planning techniques, including our

previous work which is used as a basis for this paper. We also talk about crowd studies in

that section. Then, we present the improvements done to our previous environment abstrac-

tion, making it more adapted to realistic path planning. We continue with our path planning

method, which is hierarchical, handles many criteria (including subjective ones), and can

react to some adaptation events. After that, we present some applications of our model with

our industrial partner, AREP, and technical benchmarks. Finally, we conclude by giving the

main advantages of this work, and address future work.

Related work

Spatial subdivision converts complex geometric data, made up of a great number of poly-

gons, in a more or less informed database. The three principal approaches, which have been

reused in behavioural animation, come from the field of robotics [1]. Potential fields [2]

associate repulsive powers with the environment’s obstacles, and an attractive one with the

agent’s destination. Roadmaps [3] discretise the navigation space in a network of paths
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made up of lines and curves. Cell decomposition computes a connexity graph in two differ-

ent ways: an approximate decomposition [4], using grids or quadtrees, covers a subspace

included in the environment’s free space; an exact decomposition [5], generally using con-

vex cells, covers the whole of the environment’s free space. Our previous model’s starting

data is obtained with such an exact decomposition, provided in part by F. Lamarche et al. [6]

algorithm. This algorithm is applied to a 2D graphical representation of the environment,

and extracts a set of convex cells by computing a constrained Delaunay triangulation while

keeping the bottlenecks of the environment. Topological abstraction is a complementary

process, used to better organise the information obtained at the time of spatial subdivision,

which generally consists in producing a hierarchical graph representation of the environ-

ment. The unification process is addressed principally in two ways: a pure topological

unification [6] associates the subdivision cells according to their number of connexions;

a more conceptual unification introduces a semantical definition of the environment, like

with the IHT-graph structure [7], producing an informed environment [8]. Path planning

is the agent behaviour which produces a path in order to reach a destination. This process

is generally performed by a graph crossing algorithm, which can exploit the hierarchical

aspect given by a topological abstraction [9]. Even if travelled distance impacts path plan-

ning, some experimental research have shown that a certain number of other factors must

be taken into account [10]. The least-angle strategy [11] minimises the angle between the

agent’s direction and the destination, allows to take into account the agent’s knowledge

about the environment, and introduces the notion of preference in the decision process. The
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simplest path strategy [12] introduces a cognitive cost minimisation for path evaluation. The

congestion of an area of the environment [13] is an important factor, especially for crowd

simulation. A stress factor [14] can also be taken into account, based on the number of sur-

rounding people, or the difference between the current and the shortest path. Our previous

model did not directly address path planning, but was defining the way to manage an indi-

vidual knowledge of the environment, and the processes to update (observation) and access

(remember) this knowledge. Even if J.J. Fruin [15] has been a pioneer in the seventies, the

development of crowd simulation is still recent and limited. Macroscopic simulation [16]

has been historically the first approach, globally managing all the entities of the simulation.

Based on a large number of observations, statistical models [17] have been proposed to ex-

press the evacuation delay of a building through equations. Particle systems [18] are based

on physical laws that describe attractive and repulsive forces that can be associated to obsta-

cles and moving entities. Some studies have also focused on crowd simulation and its levels

of autonomy [19] in order to provide realistic crowd behaviour inside virtual environments.

Topological abstraction

Introduction

The first necessary step to perform path planning is to describe the simulated environment.

Our previous model [20] was based on a pure topological unification. A hierarchical
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graph, composed by three interconnected layers (as shown in figure 1), is computed: the

first layer corresponds to the output of the spatial subdivision process, while layers two

and three are successive groupings. The type of the nodes of the graph is set according

to their number of connections c : dead end (c = 1), corridor (c = 2), and crossroad

(c ≥ 3). Moreover, two flags can be set for some specific nodes: the nodes connected to

the subdivision bounding limits are virtual; the nodes connected to at least one virtual and

one non virtual node are entry/exit. Through the rest of this paper, we will call the nodes

of the first layer cells, of the second layer groups, and of the third layer zones. In order to

improve the expressivity of the informed hierarchical graph, we proposed to pre-compute

some static data. The surface area of each node is stored, enabling to compute the node’s

density. A potential visibility set (PVS) is computed for each inter-group connection. We

also associate a grid representation to each group, which is used to compute the density

values corresponding to the inner paths of the group. Finally, a set of data is associated to

each oriented pair of external connections of a group or a zone, which gives c × (c − 1)

sets per node. Each set of data contains the information corresponding to the crossing of the

node through the corresponding connections. This information is composed of : the shortest

path length; the minimal path width; the path direction; a flows of people counter, refreshed

by the entities currently moving through these connections; and a density of people marker,

which is filled by a dynamic global process using grids. We will present in the following

how the topological abstraction of our previous model can be improved in order to make it

more suited to realistic path planning.
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Improved groupings

In order to improve the overall aspect of the abstraction, we have introduced a geometrical

heuristic in the algorithm. This heuristic is concurrent with the topological heuristic, with

the need to validate the topological property for both layers two and three of the abstraction

graph. The geometrical heuristic has a greater priority than the topological heuristic for

the first abstraction grouping, and a lower one for the second abstraction. The goal of the

geometrical heuristic is to obtain groups with the best convex aspect. To do so, oriented

bounding boxes are computed for every node of the working layer. Then the coverage ratio

of the bounding box is evaluated as the surface of the box divided by the actual surface of

the node. The geometrical heuristic finally performs groupings of a set of connected nodes

if and only if the group ratio is better, i.e. closer to one, than every base node ratio. The

direct application of this geometrical grouping method is to keep subdivision bottlenecks in

groups (as shown in figure 2.c), as well as to highlight large areas, thus allowing efficient

pre-computations and graph traversal. The topological heuristic has also been modified

concerning the computation of the last abstraction layer. Indeed, in the previous heuristic,

dead end groups were absorbed by their adjacent crossroad group to form a resulting zone,

which was a terminating condition for groupings. In the modified algorithm, if the resulting

zone is also a dead end connected to a crossroad zone, they are merged, and so on until

the adjacent crossroad zone is connected to at least two non dead end zones. This last

improvement highlights zones which are much more conceptual (as shown in figure 2.e),
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and prepares the environment for a fast discriminant path planning heuristic.

Improved information

To improve the information stored in the environment abstraction, we have introduced new

types of nodes in addition to previous dead end, corridor, crossroad, and virtual nodes.

These nodes are called conceptual because they do not correspond to any physical area,

i.e. they have a null surface. All of these nodes are ungroupable: a conceptual cell, group

or zone is represented by the same node, present in the three layers of the graph. More-

over, these conceptual nodes are named to be easily targeted by a path planning procedure,

and thus can be used in a rational behaviour process. Stoppage nodes have no outgoing

connection, and an unlimited number of incoming connections. They are used to stop any

graph crossing algorithm, while preserving the standard nodes connection abilities for fu-

ture graph modifications. So, if a connection must be temporarily broken in the graph, it

is redirected to a stoppage node, thus respecting the integrity of the abstract graph, i.e. re-

lieving the constraint to recompute the abstraction. Oriented nodes give a direction for

graph exploration algorithms. They are specific corridor nodes, whose orientation can be

changed dynamically thanks to their automatic management of stoppage connections (as

shown in figures 3.a-d). Access nodes are a refinement of oriented nodes. They are used as

connections between a virtual cell and a non virtual one, thus representing possible entries

and exits of the environment. Link nodes are also a refinement of oriented nodes. They are

8



used as gates between two hierarchical graphs, allowing to manage more than one abstracted

graph. For example, to represent a train station composed of two floors, a hierarchical graph

is created for each floor. Then, a link node is introduced everywhere a connection between

the floors is necessary, like for stairs (an illustration is shown on figure 3.e). But, as opposed

to access nodes, a link node does not directly connect two standard nodes. Instead, it is

connected to a standard node of its corresponding graph, and to another specific conceptual

node called connected links. Connected links nodes are the only nodes which are not asso-

ciated to a specific hierarchical graph. They are used to associate a set of link nodes between

each other. To take again the example of the two story train station, a connected link will

represent a stairwell or an elevator, and thus be connected to all the link nodes associated to

this stairwell or elevator. By introducing these new types of nodes, we have made the hierar-

chical graph oriented, re-orientable, and able to be associated to any number of other graphs.

Moreover, the introduction of connected links nodes between graphs enables us to describe

environments containing as many abstracted graphs as needed. The direct application is to

simulate buildings containing more than one floor, but another application can be to divide

a huge environment into interconnected conceptual hierarchical graphs ; for example, a city

can be represented by a graph, and some buildings of the city by other graphs connected to

the first one. The most interesting property of this approach is that finally, all interconnected

hierarchical graphs can be used as one global hierarchical graph, and thus, be used by graph

exploration algorithms (including path planning) without any specific management.
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Path planning

The path planning method we propose has two major constraints. First, it must attain min-

imal calculation costs, in order to allow the simulation of a great number of agents, to

achieve crowd simulation. Second, it should maintain a high level of realism, in order to

allow data extraction for further analysis by specialists. So, we propose to base our path

planning method on our informed environment description, using a hierarchical approach

with a multi-criteria heuristic. Moreover, we propose to take care of the changes that might

occur inside the environment since the last planned path by triggering events, which are

handled by the reactive part of our algorithm.

Hierarchical path planning

Since we provide a topological description of the environment as three hierarchical graphs,

we propose to take advantage of it by using hierarchical path planning. The algorithm is

divided into three main steps (figure 4.a), one for each level of the graph:

1. Plan in the highest abstraction graph, from current to destination zones. If no path

is found, then the ending condition cannot be satisfied. Otherwise, proceed to step 2.

2. Plan in the first abstraction sub graph included in the current zone, and the next

one if any. If the zone path only contains one node, plan from current to destination

groups both located in the current zone. Otherwise, plan from the current group to the

first encountered group in the next zone. Proceed to step 3.
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3. Plan in the informed subdivision sub graph included in the current group, and the

next one if any. If the group path only contains one node, plan from current to destina-

tion cells both located in the current group (the entire path is computed). Otherwise,

plan from the current cell to the first encountered cell in the next group (this sub part

of the path is computed and can be used for navigation).

The best property of such a hierarchical method is the smoothing of calculation costs over

time. Indeed, the whole path is only computed for the most abstracted graph, which contains

a small amount of nodes compared to the informed subdivision. Then, both sub paths are

computed only when needed, as the entity moves. Consequently, lost computation time

when a path is invalidated and must be recomputed is reduced compared to a complete path

evaluation on a graph which is neither abstracted nor hierarchical. As for any graph crossing

algorithm, this hierarchical path planning minimises the cost to find the best path. The cost

evaluation method, which is based on multiple criteria, will be detailed in the next section.

In addition, the algorithm only takes into account the connections of the graph which are

known by the entity, simply ignoring the others. Finally, the algorithm can be specialised

in three ways according to the type of ending condition used, allowing to handle specific

cost evaluations. The reaching specialisation has a unique known node of the graph as a

goal. In this case, the subjacent algorithm for graph exploration is the well known A∗. The

choosing specialisation has a set of known nodes of the graph as a goal. This procedure can

be used by a higher behaviour to choose the best location to go to, for outgoing accesses for
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example. In this case, the subjacent algorithm for graph exploration is a flood fill. Indeed,

an A∗ is difficult to use because a predictive cost estimation of the ending conditions from

a given place cannot be easily done. Even if the flood fill method has a greater complexity

than the A∗ algorithm, it remains acceptable since the most abstracted graph only contains

a small number of nodes. The exploration specialisation describes a more conceptual path

planning. Here, the goal is not to reach a specific location, but to improve the agent’s

topological knowledge. So, the ending condition of that procedure is when a partially known

node has been reached. For the same reasons as for the choosing procedure, the subjacent

algorithm for graph exploration is a flood fill.

Multiple criteria path planning

We propose to take into account many criteria for our cost evaluation, in order to make the

decision process as realistic as possible, and more specific to each simulated entity. The cost

we evaluate is divided into two parts. First, a time to travel cost represents the amount of

time needed by the entity to travel through the path. Second, a preference cost increases

or decreases the first cost by filtering it using individual affinities. One can notice that if an

infinite cost is produced, then the corresponding part of the path is considered uncrossable

by the entity.

The time to travel cost is the first to be evaluated, and corresponds to the time needed

by an entity to travel through a node. So, the initial cost is computed as cost = distance
desired speed
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where desired speed is the travel speed chosen by the entity. The distance is retrieved as

shown on figure 4.b. The density over the path can then be taken into account for the zones

which have been seen by the entity a little while ago. It allows to evaluate the maximum

speed (Smax) available for an entity, according to J.J. Fruin [15] study on levels of services:

Smax =







































desired speed if density < 0.3

(3.79 − density) ∗ 0.37 if 0.3 ≤ density ≤ 3

0 if density > 3

Then, if this maximal speed is smaller than the entity’s desired speed, but not null, the cost

is modified: cost = cost × desired speed
Smax . For the case where the maximum speed is null,

the cost is infinite. One can notice that the cost could be under evaluated for the zones of

the environment that have not been seen by the entity for a long time. The solution to this

problem will be addressed in the section describing the reactive part of the algorithm.

The preference cost is obtained by filtering the time to travel cost according to individual

affinities. These affinities are represented by preference levels PF : the higher a preference

level is, the more a filtered cost is impacted; a null preference simply cancels the filter.

In fact, this preference level corresponds to the time that an entity is ready to spend in

order to avoid a zone which really does not satisfy the corresponding criterion (a negative

preference signifies that the filter is attractive). One can notice that the preference level

can be dynamically changed to reflect the entity’s current state of mind (in a hurry, lazy,

etc.), or its current goal (reaching, choosing, exploration). The filter function is applied

thus : costF = cost + PF × VF where VF is the computed value of that filter, with VF ∈
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{[0; 1], infinity} in order to make the filters comparable between each other.

The first filters are based on static data, and thus can be computed without any prelimi-

nary test. The passage width filter reflects the need to travel through large areas :

Vwid =







































infinity if passage width < entity’s width

0 if passage width > entity width ×11

1.1 − passage width
entity width×10

otherwise

where the passage width is a precomputed value obtained as shown in figure 4.c. The current

direction filter reflects the need for the entity to minimise its direction changes through the

path : Vcdir = 1

2
× (1 −

−−−→dircrt ·
−−−−→dirprev) where both current and previous directions are

normalised vectors obtained as shown in figure 4.d. The destination direction filter reflects

the need for the entity to find the most direct path to its goal : Vddir = 1

2
×(1−

−−−→dircrt ·
−−−→dirdest)

where both current and destination directions are normalised vectors obtained as shown in

figure 4.e. The discovering potential filter reflects the need of the entity to increase its

topological knowledge : Vdp = known node connections
supposed node connections where known node connections is

extracted from the entity’s individual knowledge, and supposed node connections is taken, for

now, as the real number of connections of the node in the abstract graph.

The other filters are based on dynamic data, and thus can only be evaluated for the zones

seen by the entity a little while ago. Moreover, as the dynamic data are only computed

for groups and zones, these filters are not evaluated for cells. The flows of people filter is

composed of two sub-filters: one for the flows of people going in the same direction than

the entity (Fsf ) and one for all other directions (Fof ). Both of these sub-filters have their
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own preference and value: Vsf = same direction flows
population of the node and Vof = other directions flows

population of the node .

One can notice that Vsf 6= 1 − Vof because it is possible that some people of a node are not

moving. The preference of the same direction flow sub-filter is negative in order to express

the desire of the entity to travel through nodes with same direction flows. The density of

people filter reflects the desire of the entity to avoid overcrowded areas : Vden = density
3

.

Reactive path planning

As seen before, the cost evaluations that depend on dynamic data can only be done if the

entity has seen the corresponding node a little while ago. So, a path could be computed at

a time, then become invalid since the entity can observe new areas. That is why our model

needs an adaptation method which can correct the current path when new data are available.

A possibility is to check the validity of the path at a regular frequency, and to recompute

the invalid part of the path. Such a process is unnecessarily costly as it would certainly

find a valid path most of the time. Moreover, the validity evaluation is difficult to calculate,

having to be sensitive enough to allow decision changes, but permissive enough not to lead

to behaviour oscillations.

So, we propose in our model to handle specific events which request the recomputation

of a part of the path, depending on the modified data. The reactive aspect is well shown

by the recomputation decision heuristic: 1) If the event may decrease the weight of a node

not belonging to the path, recompute the whole path. 2) Else, if the event may increase the
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weight of a zone of the path, recompute the whole path. 3) Else, if the event may increase

the weight of a group of the current zone, recompute the group then the cell part of the path.

The path recomputation we are talking about is a little specific, because it takes care of

the previously computed path. Indeed, the new path is computed with a part of the nodes

of the previous path as additional ending conditions. The part of the previous path which is

taken starts from the further invalidated node and finishes with the destination node. Then,

when the algorithm validates an ending condition, and if that condition corresponds to a

node of the previous path, the corresponding reminder of the previous path is appended to

the found path. In addition, the events are not taken into account immediately, but are stored

and processed collectively at a low frequency (once a second is largely sufficient). The

events we manage are classified in two categories. The observation events are triggered

by the navigation process of the entity. Such events occur when new nodes are discovered

by the entity, and recorded in its topological knowledge, allowing it to find a better path.

These events also occur when an already known node is seen again after a while, allowing

to take into account the dynamic data that may have changed. The rational events are more

conceptual, and can occur when the destination is modified (here the events are automati-

cally triggered), or when the current path is too old (here the events are triggered by a low

frequency individual control process). This last case occurs when a dynamic value on which

the path depends becomes out-of-date, i.e. when the time passed since the last evaluation of

a dynamic criterion is larger than the time of validity of the information.
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Results

Our model has been integrated in a larger application, to be used by architects specialised

in flows of people study inside exchange areas. The simulation environment is described

in a simple way, through AutoCAD. Then, an automated process extracts the environment’s

information, including walls and any specific orientation data, directly from the AutoCAD

file. These simulation data can then be saved in XML for future use. The last part of the ap-

plication automatically performs the subdivision of the environment, and finally computes

the informed abstraction. This application has been used by our partners, the architects of

AREP, to study the flows of people inside the St Lazare train station in France. To config-

ure the simulated flows of people, some investigations have been done inside the real train

station: people distribution at the entries and exits and time spent in the environment. This

experiment is the first in a series, which will allow us to fine tune our model’s parameters

(essentially the path planning costs), and to validate our results.

The computation performances of our model are obtained using one core of a Xeon 3.8GHz

processor. For the two story train station, whose definition map is presented in figure 3.e,

the whole abstraction process, including all pre-computed data (such as PVS, shortest path

lengths, oriented grids, etc.), is obtained in 5 seconds. The abstraction memory cost is

20 MB, while an entity’s knowledge takes 1.5 KB. The environment refreshing, to update

the densities of people markers, is performed with an average time of 11 ms, independently

of the number of simulated entities. Finally, an entity average planning cost, including the
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initial planning as well as the stages of hierarchical plannings and the reactions to the events,

is 0.2 ms (also independently of the number of simulated entities). Such performances do

not make it possible to perform a simulation with thousands of people in interactive time,

but allows all the same to obtain it in an exploitable time. We have already performed large

simulations, with two thousand people, obtaining a 3 Hz simulation with all entities ani-

mated in 3D, and a 7 Hz simulation with non animated impostors for the entities. Since a

simulated entity’s main frequency is 20 Hz, the simulation of 2,000 people is performed at

a third of real time.

Conclusion and future work

The approach presented in this model has two major advantages. First, it allows the de-

scription of virtual environments in an automated way, and renders information concerning

this environment available at low costs: PVS, fine densities of people, shortest paths, etc.

Second, our model describes a complete path planning method: efficient in computation

time thanks to the hierarchical aspect; realistic thanks to the number of managed criteria;

individual to each entity thanks to the preference costs and the environment knowledge; and

automatically adaptive thanks to the managed events.

Our future work will treat two topics. First, the informed environment abstraction will

be updated to integrate specific information about the interactive objects of the simulation.

Thus, the path planning method will be able to select the best object to use, for example
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while performing a specific behaviour, with only minor changes. Moreover, some specific

objects will be managed to give more conceptual data to the entities. These objects could be

maps or signs offering a visual interaction to the entities, which could update their environ-

ment knowledge or be taken into account in an additional preference cost. Second, we plan

on continuing our experiments, by comparing them with real cases, to fine tune our model.
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Figure 1: Informed hierarchical graph.
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Figure 2: Three levels of abstraction of a train station environment. The left column cor-
responds to our original model, while our improved groupings are on the right.
The same colour keys as for figure 1 are used (virtual areas are darker).
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Figure 3: Principle (a-d) and example (e) of the oriented nodes.
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Figure 4: Hierarchical path planning principle (a), and data evaluations (b-e) used
for some criteria computation (for each pair of figures, the cells evalua-
tion is represented on the left, while the groups and zones evaluations are
on the right).
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