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Abstract

The navigation activity is an every day practice for any human being capable of locomotion. Our objective in this
work is to reproduce this crucial human activity inside virtual environments. Putting together the high complexity
of a realistic environment such as a city, a big amount of virtual humans and the real-time constraint requires to
optimize each aspect of the animation process. In this paper, we present a suitable topological structuring of the
geometric environment to allow fast path finding as well as an efficient reactive navigation algorithm for virtual
humans evolving inside a crowd.

1. Introduction

The autonomy of a virtual human is defined by its capacity
to perceive, act and decide of its actions. The behaviour is
usually described through several simple skills that can be
mixed to generate a more complex and credible behaviour.
One of the most important skills is the ability to navigate
inside a virtual environment as it is part of a large num-
ber of behaviours. Reproducing this fundamental behaviour
requires to address different topics such as the topological
model of the environment, path planning and collision avoid-
ance techniques. In order to credibly animate several hun-
dreds of pedestrians in real-time, each of these techniques
should be optimized without leaving out behavioural stud-
ies. In this article, we propose a general model, inspired by
studies on human behaviour to simulate the navigation pro-
cess inside indoor and outdoor environments. This model is
compounded of four parts:

• a spatial subdivision algorithm detecting bottlenecks in-
side the environment;

• a hierarchical path planning algorithm based on the ab-
straction and generalisation of topological properties ex-
tracted from the spatial subdivision;
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• an efficient structure computing neighbourhood relations
between entities;

• a general and modular algorithm which handles reactive
navigation and includes visual optimization of the tra-
jectory and collision avoidance. The human behaviour is
configured through complementary modules describing
rules inspired by psychological studies.

Related works are presented in the next section, includ-
ing the presentation of characteristics of the pedestrian be-
haviour. Section 3 presents the spatial subdivision algorithm
and the hierarchical path-planning algorithm. Section 4 de-
scribes the neighbourhood structure and the reactive naviga-
tion architecture based on studies on pedestrian behaviour.
Finally, section 5 gives some results and benchmarks.

2. Related works

2.1. Spatial subdivision and path planning

Path planning and environment representation have been
widely studied in the field of robotics where navigation
is a necessary task to achieve [Lat91]. In the field of be-
havioural animation, similar methods are used. Three gen-
eral approaches can be distinguished : roadmaps, cell de-
composition and potential fields.

The roadmap approach consists in computing a network
of standardized paths (lines, curves) passing through free
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spaces. Different approaches are used to compute roadmaps.
The visibility graph [ACF01] connects together vertices of
the environment if and only if they see each other. The com-
putation of the Voronoi diagram inside free spaces allows to
use generated edges to produce the roadmap. The cell de-
composition method consists of decomposing free spaces
into cells. Once this decomposition is computed, a connec-
tivity graph can be extracted, whose nodes are cells and
edges traduce cells adjacency. Two general methods can be
distinguished: the exact cell decomposition consists in com-
puting cells such as their union is exactly the free space (con-
strained Delaunay triangulation, convex polygons, trape-
zoidal), and the approximate cell decomposition consists in
using predefined cell shapes, whose union is strictly included
in the free space (uniform grids, quadtrees) [BT98, Kuf98].
An interesting discussion, outlining the interest of generat-
ing abstract cells on the top of uniform grids, can be found
in [TB96]. This solution provides a great increase of perfor-
mance for path finding computation as the number of cells
is smaller. In the potential field method, the environment
is discretized into a fine regular grid. A potential is associ-
ated to each cell which corresponds to the sum of a repulsive
potential generated by the obstacles of the environment and
an attractive potential generated by the goal. Thus, gradient
methods can be applied to find a path to the goal. But this
method is subject to local minima problems and does not
necessary reach the goal. To recover from local minimas,
some randomized methods have been studied [KKL96].

2.2. Reactive navigation

A spatial subdivision of the environment is not sufficient
to handle navigation as several moving entities can popu-
late the same environment. In that case, a system allowing
dynamic collision avoidance is necessary to achieve consis-
tency and realism. Several approaches can be distinguished
such as particle systems, flocking and behavioural systems.
Those techniques differ essentially by the number of simu-
lated entities, their level of control and the associated colli-
sion detection method.

Particle systems are physically based simulations defin-
ing attractive and repulsive forces associated to obstacles
and simulated entities. Forces applied to the entity are
added in order to determine the new direction of the entity
[RKBB94, HFV00, BMdOB03]. Flocks are rule based sys-
tems defining the behaviour of an entity in function of the
behaviour of the nearest entities [Rey00, BLA02]. Loscos et
al. [LMM03] use a fine regular grid to handle reactive navi-
gation and to store information about pedestrian movements
enabling the emergence of flows of pedestrians. Ulicny et
al. [UT02] use a layered approach to model the individ-
ual behaviour inside a crowd by combining rules and finite
state machines. Those types of systems raise the problem of
nearest neighbour queries which is one of the bottlenecks
on the number of possible simulated entities. Several ap-

proaches have been proposed to optimize those requests us-
ing spatial data structures such as bin-lattice [Rey00], K-d
trees [O’H00] or Kinetic Data Structures [GKM∗01]. Meth-
ods based on the exploitation of an informed environment
have been developed [TD00, FBT99]. This way, some spe-
cific behaviours related to the type of the entity and the nav-
igated area [HK02] have been modelled. Some studies have
also focused on crowd simulation and its levels of autonomy
[MT97] in order to provide a realistic crowd behaviour in-
side virtual environment. Complementary works have been
performed on the optimization of the real time visualization
of crowds by using hierarchical impostors [O’H02] and real-
time shading of impostors [TLC02]. In order to increase the
realism of animation, Ashida et al. [ALA∗01] made a sta-
tistical analysis of pedestrians walking along a section of
sidewalk. They exhibit subconcious actions, that they inte-
grated into the animation system with a stochastic process to
control their activation.

2.3. Pedestrian behaviour

Goffman [Gof71] describes techniques used by pedestri-
ans to avoid bumping into each other. The social link be-
tween strangers is characterized by silence and indifference
[RQ98] and to perform that, different behaviours are used.
The first technique called externalization concerns the way
that people are constantly making others aware of their in-
tentions in order to minimize the interaction. Lee et al.
[LW92] show that pedestrians are using social conventions
such as driving rules to let other people easily predict their
normal trajectory. The second technique called scanning is
used by pedestrians to selectively gather externalized infor-
mation from other people. The third technique is called the
minimization of adjustment which expresses that people ad-
just their trajectory several meters before the conflict to make
it perceptible early by others with the objective to reduce
interaction and avoid coordination. Goffman introduces the
notion of the oval security region whose front distance cor-
responds to an anticipation area depending on the pedestrian
speed, while the width is the accepted gap to pass beside a
person or an obstacle or to follow a wall. He defines also the
law of minimal change which means that a pedestrian will
try in its journey to reduce the amount and the amplitude of
turns.

Hillier et al. [HPH∗93] show that the majority of human-
pedestrian movement occurs along lines of sight, that they
named as axial lines. A. Turner et al. [TP02] propose the
EVA system based on a visibility graph, compare results
of this agent-based simulator with real data on the Tate
Britain Gallery and conclude that they were able to repro-
duce the aggregate movement with a good correlation. M.
Relieu [RQ98] introduces the notion of urban discrimination
which means that the pedestrian focuses his attention inside
his current region to select pertinent information relevant of
the activity he is engaged in.
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Figure 1: Computation steps of spatial subdivision.

Figure 2: Example of a map extraction from 3D database.

3. From environment to path finding

3.1. Spatial subdivision

Our spatial subdivision model is presented in fig. 1. It is
compounded of several computation steps starting from the
3D geometric database and generating a 2D spatial subdivi-
sion using convex cells and identifying bottlenecks.

2D map extraction
The first step converts the 3D geometric database of the envi-
ronment into a 2D map containing all constraints delimiting
obstacles under the assumption that the environment is flat. It
consists in cutting the database with two parallel planes cor-
responding to the floor and a cutting plane whose distance
to the floor is generally equal to the height of a humanoid.
This extracts all geometry belonging to the navigation area.
This geometry is then projected on the XY plane in order to
compute a 2D map representing the environment. In order
to organize this information and to simplify the constraints,
a constrained Delaunay triangulation is computed [KBT03],
resulting in a first spatial subdivision using triangular cells.
A connectivity graph is extracted from this triangulation and
a transitive closure is computed starting from a user selected
cell in order to extract the navigation area. Constraints are
then filtered in order to extract those delimiting this area
while removing the other ones and filtered in order to merge
colinear segments (with a given threshold). The example of
fig. 2 presents different steps of the 2D map extraction on a
part of the 3D model of a city: the projection of the geom-
etry on the XY plane and the map extracted after constraint
filtering and simplification.

Minimal distance between corners and walls

(a) (b)

(c) (d)

Figure 3: (a) 2d map of environment. (b) Original con-
strained Delaunay triangulation. (c) Computed shortest dis-
tances between corners and walls. (d) Constrained Delau-
nay triangulation with shortest distances.

The constraints previously extracted delimit the navigation
area. But an information is still missing for the navigation
inside the environment: bottlenecks. Those bottlenecks char-
acterize the minimal distance between corners and walls.
Without this information, it is difficult to ensure that a given
humanoid can navigate from one point to another. To detect
bottlenecks, we propose an algorithm based on a modifica-
tion of the constrained Delaunay triangulation algorithm. In
the following, we will consider two types of segments and
two types of points inside the triangulation:

• Cs : is the set of constrained segments.
• Fs : is the set of free segments.
• Cp : is the set of points extracted from the environment
• Dp : is the set of points generated for the purpose of min-

imal distance computation between walls and corners.

First, a constrained Delaunay triangulation of the segments
in Cs is computed. Then, for each triangle (A,B,C) of the tri-
angulation, if (BC ∈ Cs)∧(AC ∈Fs)∧(AB∈ Cs∪Fs)∧(A∈
Cp) and if the orthogonal projection PA of A lies on segment
BC then the segment BC is removed and replaced by seg-
ments BPA and CPA which are added in Cs and PA is added
in Dp. Triangulation is locally recomputed in order to take
those modifications into account. This process is repeated
until no more triangle satisfies the condition of the rule. An
example of generated shortest distances is shown in fig. 3(c).
The fact that points belonging to Dp can not be reprojected
ensures the convergence of the algorithm. This computation
generates a triangulation containing shortest distances be-
tween corners and walls (Cf. fig. 3(d)). This identification of
bottlenecks ensures that if the width of an entity is smaller
than the length of a free segment, the entity can pass through
the segment without colliding with walls.

Convex cell optimisation
The constrained Delaunay triangulation computed during

the previous step constitutes a first spatial subdivision us-
ing triangular cells. In order to simplify this subdivision and
to minimize the number of cells, an algorithm merges tri-
angles in order to generate convex cells while locally con-
serving bottleneck information. This algorithm first sorts all
free segments, based on their decreasing length. The sorted
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Figure 4: The subdivision of the environment of fig. 3

1 21 13

11 10 9

87654

122

3

14 19 20

15 16

22 1817

Figure 5: Graph extracted from spatial subdivision of fig. 4.

list is iterated and the two cells sharing the current segment
are merged if and only if the resulting cell is convex and the
length of the shared free segment is greater than the length
of all free segments delimiting the resulting cell. The result-
ing subdivision is compounded of convex cells and identifies
bottlenecks. An example of convex cell optimisation can be
found in fig. 4. This spatial subdivision accurately maps the
environment geometry and the extraction of bottlenecks au-
tomatically identifies the most constrained parts of this envi-
ronment. Thanks to this information, accessibility between
adjacent cells can be filtered before any path planning com-
putation by using the humanoid width.

3.2. Topology and abstraction

Once the convex cell subdivision is computed, a graph con-
taining topological relations is extracted. A node of this
graph is a convex cell and an edge represents a free seg-
ment shared by to adjacent cells with a length greater than
the width of the humanoid. The figure 5 represents the graph
extracted from the spatial subdivision presented in figure
4. Each node c of the graph can be topologically qualified
according to the number of connected edges given by the
arity(c) function:

• if arity(c) = 0 then c is a closed cell.
• if arity(c) = 1 then c is a dead end cell.
• if arity(c) = 2 then c is a passage cell.
• if arity(c) > 2 then c is a crossroads cell.

This information enables the topological abstraction of the
environment. For example, a sequence of passage cells can
be interpreted at a certain level of abstraction as a unique
passage. Thus, when planning, the geometric information
related to the low level cells can be omitted and summa-
rized in a higher abstract level. The main idea of the abstrac-
tion algorithm is to generate an abstraction tree by merg-
ing interconnected cells while trying to preserve topologi-
cal properties. When merging several cells into a single one,

the composition of cells is stored in a tree structure in order
to generate the abstraction tree. Before explaining the algo-
rithm, some functions have to be defined. Let note p(c) =
arity(c) ∗ (arity(c)− 1) the number of paths traversing the
cell c. Let note add(c1, c2) = p(c1 ∪ c2)− p(c1)− p(c2)
the number of added paths when merging cells c1 and c2
and removing all shared boundaries. The abstract levels are
computed as follow:

1. All dead end and passage cells are extracted. Then all
sequences of interconnected cells are abstracted in order
to generate a balanced binary tree. Thus, each sequence
of cells is reduced to a unique abstract cell.

2. All dead end cells are merged with their adjacent cross-
roads cells. If this pass generates new dead end cells, the
algorithm returns to step 1.

3. All passage cells are merged with one of their adjacent
crossroads cells.

4. For all pairs (c1, c2) of crossroads cells, the number of
added paths add(c1,c2) is computed. Let m be the min-
imum number of added paths. All pairs of cells such as
add(c1, c2) = m are merged to create a new abstract cell.
If this step generates new dead end or passage cells, the
algorithm returns to step 1. Otherwise, this step is re-
peated until the obtention of a unique closed cell.

The proposed algorithm removes dead ends and linear
paths. This suppression of dead ends is a very good prop-
erty as they are often responsible for the worst computation
time. Moreover, the use of the add function during step 4
tends to reduce the number of traversals for a given abstract
cell compounded of two crossroads cells.

3.3. Hierarchical path planning

Thanks to the spatial subdivision, it is possible to automati-
cally generate a roadmap enabling path-planning. But inside
large and complex environments, this roadmap can also be
large and then reduce the performances of path finding al-
gorithms. But the parallel exploitation of the roadmap and
the topological abstraction enables a drastic reduction of the
path planning graph size, resulting in real-time path finding
computation inside large and complex environments.

Roadmap generation and abstraction
As cells are convex, there always exists linear paths travers-
ing each cell and connecting all free segments belonging
to the boundaries. For each cell, key points are generated
on free edges and are connected with linear paths (Cf. fig.
6). Let suppose that k key points are generated on each of
the n free segments belonging to the boundaries of a given
cell c. The number of generated paths inside this cell is
n(n−1)k2 = p(c)k2. Each cell is then informed with its as-
sociated paths. Moreover, in accordance with the topological
abstraction, all paths traversing abstract cells are precom-
puted and stored using references to the sub-precomputed
paths in order to limit the amount of needed memory.

c© The Eurographics Association and Blackwell Publishing 2004.
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Figure 6: A roadmap generated using 1 key point by free
segment in the environment of fig. 4

Path Finding
During the previous step, a data structure containing the
topological abstraction and the associated roadmap abstrac-
tion has been generated. It is used to compute the minimal
topological graph needed to extract the minimal roadmap en-
abling path planning. Let note Ce the cell containing the en-
tity, Cg the cell containing the goal, Ctop the top level abstract
cell containing Ce and Cg. Before explaining the algorithm,
two functions need to be introduced:

• pickElement(S): it removes an element from the set S and
returns this element.

• split(C) : it returns a set containing the lower level cells
or abstract cells compounding the abstract cell C.

In the following algorithm, Sresult will contain all cells nec-
essary for path planning computation:

Sresult = Sresult
tmp = ∅ ; Sexplore = Ctop

while Sexplore 6= ∅ do
while Sexplore 6= ∅ do

c = pickElement(Sexplore)
if (Ce ∈ c∧Ce 6= c)∨ (Cg ∈ c∧Cg 6= c) then

Sexplore
tmp = Sexplore

tmp ∪ split(c)
else

Sresult = Sresult ∪{c}
end if

end while
Sexplore = Sexplore

tmp ; Sexplore
tmp = ∅

end while

The set Sresult contains cells Ce, Cg and several abstract
cells corresponding to abstract paths connecting those two
cells. All precomputed paths associated to the cells of Sresult

are extracted and used to compute the path-planning graph in
which nodes are key points and edges are paths linking those
key points. In order to compute the path, start and goal points
are added in the graph and connected to all key points gen-
erated on the boundaries of their respective cells. The gener-
ated path, that is partially abstract, is then materialized using
stored information about the composition of precomputed
paths. The resulting path is then furnished as a sequence of
free segments instead of a sequence of key points. In the next
section, we will show that this feature enables visual path
optimization that is a characteristic of human navigation.

The graph is minimal in respect with the topological ab-
straction and is drastically smaller than the original non ab-
stracted roadmap. It contains a maximum of two dead ends

Neighbourhood graph

��� �
ironment

Path planning

Decisional

model
Trajectory

optimisation

Personal

space

Collision

avoidance

Path

speedspeed

normnorm

speedspeedspeed
t � � ��� t

speed

speedspeedspeed

position

speed

current speed

Model of

movements

Security

module

Figure 7: The reactive navigation model.

(if Cg and Ce belongs to a dead end) ; thus it removes the
worst case for path-planning algorithms. Moreover, the num-
ber of available paths to the goal is reduced thanks to the use
of precomputed paths associated to abstract cells. The im-
pact on path finding computation time and complexity is log-
arithmic (see the result section for benchmarks). This prop-
erty enables real-time path finding for several virtual humans
within large environments, enabling this key feature for real-
time applications.

4. Navigation

Each virtual human is now able to plan its own path to reach
its goal. The next step is to follow the path while avoiding
collisions with other humanoids and with the environment.
The architecture of our reactive navigation model is summa-
rized in fig. 7. The first part is the computation of the neigh-
bourhood graph. The second part is the reactive navigation
modular algorithm filtering the optimal speed computed to
follow the path in order to predict and avoid collisions while
generating a human like behaviour.

Notations. By now, the humanoid H is represented with
the following parameters: P(H) is its position, W (H) is its
width and S(H) is its speed.

4.1. Neighbourhood graph

All collision prediction algorithms are based on neighbour-
hood computation. When dealing with this sort of computa-
tion, two aspects need a particular attention:

1. the construction complexity of neighbourhood relations,
2. the possible relation between the computation complexity

and the prediction distance.

The neighbourhood graph is a compromise between those
two aspects. It creates long distance neighbourhood relations
in sparse crowds and short distance relation in dense crowds
without impact on computational cost. It is based on a two
dimensional Delaunay triangulation of the humanoid’s po-
sitions filtered with visibility. This triangulation has a con-
struction cost of O(n lnn) [BY98] for n humanoids that en-
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Figure 8: Filtered Delaunay triangulation between entities.

ables its computation for a large number of pedestrians. It
generates a linear number of neighbourhood relations (edges
of the triangulation) with an upper bound of 3n − 3 rela-
tions. This results in an average number of direct neighbours
lower than 6. Those relations ensure the prediction of all col-
lisions, because one of the Delaunay triangulation proper-
ties is to link each point (humanoid) to its nearest neighbour.
Moreover, this triangulation generates the crowd topological
structure with a computational cost independent of the dis-
tance between entities. The neighbourhood relation length is
correlated to the local density inside the crowd allowing far
collision prediction in sparse crowds and near prediction in
dense crowds.

As the triangulation is not correlated with the environ-
ment geometry, neighbourhood relations are filtered using
ray casting inside the convex cell structure. The number
of rays is lower than 3n − 3 and the associated computa-
tional cost is optimized thanks to the underlying subdivision.
This filtering process generates the neighbourhood graph in
which each edge represents a neighbourhood and a visibil-
ity relation. An example of such a graph is given in fig. 8;
green edges are removed during the filtering process. Once
computed, this graph enables a direct access to visible neigh-
bours of a given humanoid while automatically adapting the
prediction distance to the crowd density. In the following,
the term of direct neighbourhood will refer to the set of
neighbours connected with an edge to the humanoid.

4.2. Reactive navigation

The reactive navigation process is described through a pipe
filtering the speed vector of the entity (Cf. fig. 7). First, the
planned path is analyzed in order to provide an ideal speed to
adopt. This speed is filtered by the personal space module in
charge of respecting a given minimal distance to humanoids
and obstacles. Then the collision avoidance module modifies
this speed in order to avoid collisions. This part of the algo-
rithm is parameterized in order to copy out human like navi-
gation rules. Finally, a security module verifies this speed in
order to take into account the inertia of the humanoid.

Visual trajectory optimization
As described in the section 3.3, the path is furnished as a se-
quence of segments (or portals) to pass, in order to reach the

AA

B
F

B
F

(a) (b) (c)

O O O

Figure 9: Visual trajectory optimization.

goal. In this path, two consecutive segments are belonging
to the same convex cell. A characteristic of pedestrian be-
haviour is to use visual optimization of the path. In order to
do so, we propose a simple and fast visual optimization al-
gorithm exploiting properties of the convex cell subdivision.

The visual optimization algorithm consists of sequentially
intersecting visibility cones defined thanks to the path seg-
ments. This computation stops if the cone is empty or if the
angle of the cone in O is lower than a certain threshold. If
one of those two constraints is violated, the last valid cone
is selected by the algorithm. As cells are convex, this cone
defines an obstacle free region in which the humanoid can
navigate. In figure 9, the cones OAB, OCD and OFE are se-
quentially intersected to compute the speed chosen collinear
to the bisecting line. The second constraint influences the
trajectory taken by the pedestrian: if the angle has a high
value, the humanoid will pass through the center of the seg-
ments, if this value is low, the humanoid will skim along ob-
stacles. This parameter, defined for each humanoid, enables
the configuration of the pedestrian trajectory. This algorithm
reproduces a well known characteristic of the pedestrian be-
haviour and rapidly computes an optimized and realistic tra-
jectory continually refreshed in function of the pedestrian
location relatively to the segments compounding its path.

Personal space
The personal space is a social rule defining a distance to
respect between navigating pedestrians (dN ) and between
pedestrians and obstacles (dW ). At least three situations can
justify the violation of this distance: the crowd density is too
high, the humanoid navigates inside a group, the humanoid
is overtaking one of its neighbours. This rule is weak and
do not have to be always respected. It is modeled as a repul-
sion force modifying the orientation (but not the norm) of
the speed vector. Let SN be a set containing the positions of
the direct neighbours and SW be a set containing the projec-
tions of the pedestrian position on the constraints delimiting
its current cell. The output speed SO is computed from the
input speed SI as follow:






R(p,S,d) = ∑x∈S
−||x−p||+d

d (x− p)

SO = ||SI ||
R(p(H),SN,dN )+R(p(H),SW ,dW )+SI

||R(p(H),SN,dN )+R(p(H),SW ,dW )+SI||

If the sum of repulsive forces and SI is null, this equation is
not valid. In this case, SO is equal to SI . This equation only
modifies the direction of the speed vector but not the norm in
order to deform the trajectory to respect the personal space
constraint.

c© The Eurographics Association and Blackwell Publishing 2004.



F. Lamarche & S. Donikian / Crowd of Virtual Humans

Rear collision Front collision Back collision Static collision

Figure 10: The four collision types.

Collision avoidance
The collision avoidance algorithm uses a linear trajectory ex-
trapolation for collision prediction and a local optimization
algorithm for the computation of a new speed avoiding col-
lisions. This algorithm is configured with collision reaction
modules describing possible typologies of reaction.

Collision prediction
Let SI be the proposed speed for humanoid H and N be the
tested neighbour. Pr = P(H)−P(N) is the location of H rel-
atively to N. Sr = S(N)−SI is the speed of H relatively to N.
Solutions of the following equation are the possible collision
times between humanoids H and N:

P2
r +(Pr.Sr)t + S2

r t = (W (N)+W (H)+ ε)2

This equation expresses the evolution of the distance dur-
ing time between humanoids N and H. ε is a minimal se-
curity distance which can, eventually, vary over time. If this
equation has no solution or a unique solution, there is no
predicted collision. If there are two solutions t1 and t2, with
t1 < t2, three cases can arise:

• t2 ≤ 0 : this is a past collision, so there is no possible
collision in the future.

• t1 < 0∧ t2 > 0 : this is a collision, repulsive forces must
be generated in order to correct the situation.

• t1 ≥ 0 : a collision will arise at time t1.

This information is also used to qualify the type of the col-
lision. Let tc be the computed collision time, CH = P(H)+
SI .tc be the location of H at tc and CN = P(N)+ S(N).tc be
the location of N at tc:

• if (CN −CH).SI < 0 the collision is a rear collision,
• if (CN −CH).SI > 0∧SI .S(N) < 0 the collision is a front

collision,
• if (CN −CH).SI > 0∧SI .S(N) ≤ 0 the collision if a back

collision,
• if ||S(N)|| = 0 the collision is a static collision.

Those types of collision are summarized in fig. 10. They are
used to configure the local avoidance algorithm with a sub-
scription of collision avoidance to different types of colli-
sion.

Collision reaction modules
Reactions adopted when avoiding collisions can be classi-
fied in two (non-exclusive) categories: speed modification
and direction modification. In order to describe the naviga-
tion behaviour, we introduce the notion of collision reaction

module. Its role is to compute a new speed SO for humanoid
H with an actual proposed speed SI that avoids the collision
with humanoid N. The position of H relatively to N has the
following expression: Pr(t) = P(H)−P(N)+ (SI −S(N))t

Avoiding the collision is equivalent to finding a new rela-
tive speed S′r = SO −S(N) such as the distance between the
straight line defined by P(H)−P(N)+ S′rt and point (0,0)
is greater than W (H)+W (N)+ ε, where ε is a security dis-
tance. The problem can be reformulated as the research of
SO such as P(H)− P(N) + S′rt is a tangent to the circle C
centered in (0,0) with a radius equal to W (H)+W (N)+ ε.
Let Tl and Tr be the two points lying on C and defining
tangents passing through Pr. Dl = Tl − (P(H)−P(N)) and
Dr = Tr −(P(H)−P(N)) with Dl .((SI −S(N))×R( π

2 )) > 0
and Dr.((SI − S(N))×R( π

2 )) < 0 defines the left and right
relative avoidance directions in which R(α) stands for a ro-
tation of angle α. The collision avoidance speed SO is a so-
lution of the following system, assuming that D = Dl for a
left avoidance and D = Dr for a right avoidance:

{

αD = SO −S(N)
α > 0

(1)

By using this system, we defined four modules: left avoid-
ance, right avoidance, accelerate and decelerate. Each of
those modules find a new speed and adds new constraints:

• left and right avoidance: the constraint ||SI || = ||SO|| is
added in order to maintain the norm of the speed.

• deceleration module: the constraint SO = βSI with 0 ≤
β < 1 in order to maintain the speed direction.

• acceleration module: the constraint SO = βSI with β > 1
in order to maintain the speed direction.

Once all collision reaction modules are described, they can
be used to define the navigation behaviour of an entity. For
special purposes, an acceptation module has been defined in
order to accept a given speed even if it results in a collision.

As we use a local optimization algorithm to find the best
speed to adopt, each solution computed by a collision re-
action module has to be evaluated and rated. If SI is the
proposed speed resulting in a collision and SO is the output
speed avoiding this collision, following formulas are used to
rate the proposition:

cd(SO,SI ,β) = ((1 + SO+SI
||SO||×||SI||

)∗0.5)β ×2−1

cn(SO,SI ,β) = (
min(||SO||,||SI||)
max(||SO||,||SI||)

)β

n(SO,SI ,βd,βn) = cd(SO,SI ,βd)∗ cn(SO,SI ,βn)

Those three functions compute a factor in the interval [0;1]
evaluating the quality of the speed SO relatively to the
speed SI . The function cd evaluates the direction difference
whereas the function cn evaluates the speed norm difference.
Finally the function n evaluates the overall quality of the
computed speed SO. This function accepts two parameters
βd and βn allowing to penalize high speed norm variations
and/or high speed direction variations.
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Driving rule model.

rear front back static

RA n(I,O,1,1) n(I,O,1,1)

LA n(I,O,1,1) n(I,O,1,1)

D n(I,O,1,1) n(I,O,1,1)

A n(I,O,1,5) n(I,O,1,5)

AC X

Minimal adjustment model.

rear front back static

RA n(I,O,1,1) n(I,O,1,1) n(I,O,1,1)

LA n(I,O,1,1) n(I,O,1,1) n(I,O,1,1)

D n(I,O,1,1) n(I,O,1,1)

A n(I,O,1,5) n(I,O,1,5)

AC X

Figure 11: Different configurations of the navigation model.

Local optimization algorithm
The local optimization algorithm is configured with in-
stances of collision reaction modules. A list of collision re-
action modules with a partially instantiated evaluation func-
tion n (only βd and βn are defined) is associated to each colli-
sion type (rear, back, front and static). The figure 11 presents
different configurations of the navigation model: the driving
rule model and the minimal adjustment model. In this figure,
RA stands for right avoidance, LA for left avoidance, D for
decelerate, A for accelerate and AC for acceptation.

Once the model is configured, this information is used by
the local optimization algorithm. Each module is specialised
for the computation of a speed avoiding a collision with one
entity. Thus the computed speed can result in a new collision
with an other neighbour. The role of the algorithm is to find
a combination of reactions producing an "optimal" speed.

1. The algorithm uses a sorted list L containing data of the
form (q, s, t) sorted decreasingly in function of q × t.
(q, s, t) is a speed proposition in which q stands of the
quality of the speed s proposed in reaction to a collision
occurring at time t. This list is initialised with (1,SI ,∞).

2. If L is empty, no solution have been found so the resulting
speed SI is null. Otherwise, (q,v, t) is extracted from the
head of L.

3. A collision prediction is computed using v as the hu-
manoid speed. This computation searches the earliest oc-
curring collision. Two cases can arise:

a. A collision is predicted at time tc but tc ≥ t or no col-
lision is detected. The actual speed v is selected be-
cause it is the best compromise between the quality
of reactions to collisions and predicted time without

collision. The first condition tc ≥ t ensures the conver-
gence of the algorithm by assuming that this predicted
collision will be avoided later.

b. A collision is detected and tc < t. The type of the col-
lision is determined (back, rear, front, static) and each
corresponding collision reaction module is consulted.
If one of those modules is an acceptation module, the
current speed is selected. Otherwise, for each module,
its proposed speed v′ and the speed quality q′ are com-
puted and (q′,v′, tc) is inserted in L. The algorithm re-
turns in step 2.

The resulting speed SO computed by this algorithm is a com-
promise between the quality of the reactions and the pre-
dicted time without collision.

Security module
As the speed computed by the local optimization algorithm
can not avoid all collisions, a security module as been added.
This module reduces the norm of the speed SI in order to
maintain a given reaction time (treact) with the next collision.
The next collision is predicted with direct neighbours and
with obstacles (thanks to ray casting in the convex cell subdi-
vision) using the speed S(H) (and not SI ) in order to take into
account the inertia of the pedestrian. Let tc be the moment of
the predicted collision. If tc < treact then SO = SI

tc
treact

. This
speed modification ensures wall collision avoidance and re-
duces the speed in case of possible collision with neigh-
bours.

The proposed architecture includes a wide variety of
pedestrian characteristics and is configurable. It enables the
reproduction of a large number of navigation behaviours in-
spired by psychological studies without leaving out real-time
constraints as shown in the result section. But when control-
ling animated characters using a combination of motion cap-
ture and inverse kinematic for legs motion, the algorithm can
cause jerky motions due to a noisy absolute position. This
position needs to be filtered in order to solve this problem.

5. Results

The performances of the path planning algorithm have been
tested on a database representing the center of a city. The
three dimensional model represents about 2600 buildings on
a surface of 1.3× 1.3km2. The resulting spatial subdivision
is compounded of 8165 convex cells containing 8005 con-
strained segments and 10439 free segments. The figure 12
presents a comparison between A∗ path planning in the full
graph and path planning with A∗ in the abstract graph. This
figure exhibits a logarithmic gain on path planning time. In
the worst case, A∗ running on the full graph computes a path
in 45ms whereas A∗ using our algorithm computes a path in
2.5ms. Our system is thus able to plan a path in real-time in
large environments, enabling this feature in interactive ap-
plications.

Thanks to the precise representation of the environment
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Figure 12: Path planning benchmark.

Figure 13: Indoor and outdoor navigation.

through the convex cell subdivision, humanoids can navi-
gate in indoor and outdoor environments (Cf. fig. 13). The
proposed architecture of navigation is rich. It includes char-
acteristics of pedestrian behaviour such as visual trajectory
optimisation and personal space rule. Moreover, the collision
avoidance algorithm enables the description of a wide vari-
ety of pedestrian behaviour through the translation of social
rules (driving rules, minimal adjustments...). But it is also
efficient. The figure 14 presents some benchmarks (realised
on an athlon XP 1800+). This figure traduces the evolution
of the computation time (neighbourhood graph construction
and reactive navigation algorithm) in function of the number
of pedestrians. Whereas the computation complexity of the
Delaunay triangulation is O(n lnn), the evolution looks lin-
ear. The algorithm is able to simulate about 2000 pedestri-
ans at a frequency of 10Hz with about 20-25% of computa-
tion time dedicated to the computation of the neighbourhood
graph. Other tests have been made with pedestrians evolv-
ing inside the 3D database of a city. We are able to simulate
about 400 fully animated pedestrians on a XEON 3GHz with
a quadro FX graphics card.

6. Conclusion and future work

The approach presented in this paper enables the real-time
animation of several hundreds of pedestrians, populating
large and complex indoor and outdoor environments. An
accurate hierarchical topological structure is built from the

0 s

0.1s

0.2s

0.3s

2000 4000 8000

0.4s

6000

��
�������� �����

Neighbourhood

graph

Figure 14: Evolution of the computation time in function of
the number of pedestrians (Athlon XP 1800+).

geometric database of a virtual environment. Based on this
structure an optimized path planning algorithm has been
built. Moreover, it also handles visibility computation be-
tween different entities. The neighbourhood graph filtered
with visibility, allows to bound the complexity of collision
detection to O(n) while offering a rich topological informa-
tion on crowds through neighbourhood relationships. More-
over, this structure, thanks to the underlying Delaunay tri-
angulation, automatically adapts to the density of the pop-
ulation, allowing near collision avoidance in dense crowds
and far collision avoidance in sparse crowds with the same
computational cost. Finally, the proposed reactive naviga-
tion architecture is configurable and inspired by psychologi-
cal studies on pedestrian behaviour without leaving out real-
time constraints.

Future work will focus on two points. The first one con-
cerns the extension of the hierarchical topological structure
of the environment to allow the automatic generation of in-
formed and structured environments and thus more complex
behaviours. The second one is the use of the neighbourhood
graph for automatic group detection as it contains sufficient
information to allow real time classification of entities. This
classification should improve the realism of the simulation
by performing group avoidance instead of pedestrian avoid-
ance and will allow to model both individual and group be-
haviour and to combine them.
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