
Towards Believable Autonomous Actors in Real-Time Applications

N. Courty∗, F. Devillers†, S. Donikian‡, F. Lamarche§, D. Margery† and S. Menardais§

IRISA
Campus de Beaulieu

F-35042 Rennes, FRANCE
[ncourty,fdeville,donikian,flamarch,dmargery,smenarda ]@irisa.fr

Abstract

Behavioural models offer the ability to simulate au-
tonomous agents like organisms and living beings. Psy-
chological studies have shown that the human behaviour
can be described by a perception-decision-action loop, in
which the decisional process should integrate several pro-
gramming paradigms such as real-time, concurrency and
hierarchy. Building such systems for interactive simu-
lation requires the design of a reactive system handling
dataflows with the environment, and involving task con-
trol and preemption. Since a complete mental model
based on vision and image processing cannot be con-
structed in real time using purely geometrical information,
higher levels of information are needed in a model of the
virtual environment. For example, the autonomous actors
of a virtual world would exploit the knowledge of the en-
vironment topology to navigate through it. Accordingly,
we present in this paper our programming framework for
real-time behavioural animation which is composed of a
general animation and simulation platform, a framework
for motion control, a behavioural modelling language, a
perception control module and a scenario authoring tool.
Those tools have been used for different applications such
as pedestrian and car driver interaction in urban environ-
ments, or a virtual museum populated by a group of visi-
tors.

1 Introduction

Behavioural animation consists of a high level closed con-
trol loop [31, 7, 5, 45], which offers the ability to simu-
late autonomous entities like organisms and living beings.
Such actors are able to perceive their environment, to take
decision, to communicate with each others [4] and to exe-
cute some actions, such as walking in the street or grasp-

∗IRISA/France-Telecom R&D
†IRISA/INRIA
‡IRISA/CNRS
§IRISA/University of Rennes I

ing an object. Realistic behaviours of autonomous actors
evolving in complex and structured environments can be
obtained if and only if the relationship between the actor
and its surrounding environment can be simulated. Infor-
mation that must be extracted or interpreted from the envi-
ronment depends on the abstraction level of the reasoning
performed by autonomous actors.

The issue addressed in our work concerns the specifica-
tion of a general formalism for behaviour modelling based
on psychological studies and compatible with real-time
constraints. In the next section, a complete programming
environment dedicated to behavioural animations is pre-
sented. Then, section 3 is devoted to the presentation of
an example: a virtual museum. Finally, we present work
in progress and conclude.

2 A programming environment for
behavioural animation

2.1 Introduction

The first development to put together research works per-
formed in the team started in 1994. The first architecture
of a general animation and simulation platform (GASP)
can be found in [13]. Then, we started to build both the
kernel of this platform and a set of tools dedicated to the
modelling of different aspects of an autonomous entity:
geometry, dynamics, motion control, behaviour, artificial
vision (see figure 1). The mechanical aspect is modelled
with DREAM, our rigid and deformable bodies modelling
system which generates numerical C++ simulation code
for GASP [9]. For human motion, a bio-mechanical ap-
proach has been preferred [40]. HPTS concerns the mod-
elling of the behavioural part of an actor [39] and is also
used as an intermediate level for scenario authoring [14].
VUEMS is the acronym for Virtual Urban Environment
Modelling System, and its main aim is to build a realistic
virtual copy of urban environments in which behavioural
simulations would be performed. Urban traffic is of a



high degree of complexity, as it requires interactions on
the same thoroughfare between not only cars, trucks, cy-
clists and pedestrians, but also public transportation sys-
tems such as trams. In the past years we have integrated
all these transportation modes into GASP and applied this
to different research projects [25, 35, 15, 34].

Actor

Decision ActionPerception

Actor

Decision ActionPerception

SLuHrG HPTS GFMC

C++ code generation

Actor

ActionPerception

Manager
Scenario

Informed
Environment

Visualization

Decision

Figure 1: Architecture of an application including several
autonomous characters..

In the context of national research projects, GASP has
already been used with success in other research labs in
France. Our objective is now to make it available to the
international community as an open-source version with
an API in english, including documentation and tutorials.
This new version of GASP (version 3.0) is currently in
beta testing and will be available at the beginning of year
2002. As GASP is a product already used by a company,
we have decided to rename it as OpenMASK (Open Mod-
ular Animation and Simulation Kit). The first release of
OpenMASK will be available during Imagina’02. In this
section, we will first present the main characteristics of
the simulation platform and then give an outline of the
dedicated tools.

2.2 OpenMASK: Modular Animation and
Simulation Kit

A behavioural animation is composed of a large set of
dynamic entities evolving and interacting in a complex
environment. To be able to model such applications, we
need to implement different models: environment models,
mechanical models, motion control models, behavioural
models, sensor models, geometric models and scenarios.

One of the objectives of openMask (modular anima-
tion and simulation kit, and multi-threaded animation and
simulation kernel) is to provide a common run-time and
conception framework for the creation of virtual environ-
ments. In openMask, the building block of a virtual envi-
ronment is the simulated object, which can be viewed as

the container of all the different models used for the simu-
lation of the evolution of the environment. More formally,
a simulated object can be seen as a container of a com-
putation function,(Ee, S, O, θn+1) = f(Er, I, CP, θn),
whereO is a set of outputs,S a set of fired signals,Er

a set of received events,Ee a set of emitted events,I a
set of inputs,CP a set of control parameters andθn the
state of the object at simulation stepn. Outputs and con-
trol parameters are object representing the public state of
an object, its position for example. Inputs are connected
(statically or dynamically) to the outputs and control pa-
rameters of other objects in order to establish data flow
connection between objects. Signals are events sent in
the environment without receivers for asynchronous com-
munication between objects, and are received by any reg-
istered object. Therefore, objects can communicate using
data-flow mechanisms and asynchronous ones at the same
time, enabling implementation of different models using
the most appropriate communication style for each model.

Object activation (the moment whenf is called) can be
done by the animation and simulation kernel either on a
regular basis (giving the object a simulation frequency),
only when the object receives events (if the object has no
frequency), or on a regular basis but also when events are
received. Therefore, the same framework can be used in a
natural way for reactive objects as well as for active (liv-
ing) objects.

Building an openMask application consists of compos-
ing simulated objects, by organizing them all in a simula-
tion tree (which can be flat) and giving the configuration
parameters necessary to obtain the required results. The
simulation tree is used to structure relations between ob-
jects, thus creating son-father and brother relations in the
simulation. These relations are for example used to es-
tablish dynamic connections between the components of
a simulated entity whose behavior has been implemented
using different simulated object (for example, one object
would be responsible for perception, one for decision, and
one for simulation of the (bio)-mechanical results of per-
formed actions).

Once the application has been built, the last step be-
fore achieving any result is choosing the run-time kernel
used. Indeed, the conceptual framework presented here is
a solid foundation for many different run-time constraints,
as it has been designed to enable off-line as well as on-
line simulation, and multi-threaded execution. Indeed, the
component responsible for the rendering of a simulation
is a simulated object, which can therefore be included or
excluded from the application. At the time of this writing,
openMask has a number of different run-time kernels, for
Irix and linux. These run-time kernels include a real-time
kernel (only for Irix), a multi-threaded kernel (for SMP
machines), a distributed kernel (using PVM) and a kernel



Figure 2: Autonomous characters visiting a museum and
cooperative interaction in a virtual environment.

for PC-clusters running linux1[33]. Discussion of the per-
formance and tradeoffs made by each of these kernels is
beyond the scope of this article, but it should be noted that
the distributed and the usual kernels have been extensively
used for a number of projects, ranging from behavioral
animation to distributed virtual reality.

2.3 A Global Framework for Motion Con-
trol

We propose a global framework to simplify the use of mo-
tion capture for computer animation. We first focus on the
process dealing with captured trajectories to calculate an-
gular trajectories required to animate a H-ANIM compli-
ant VRML model2. The motion capture files exhibit oc-
clusions, noise and do not have any angular information.
Our system [36] automatically computes the angles for
each degree of freedom without noise and without miss-
ing data. It also adapts the motion to respect new skeleton
morphologies and compress the final motion in order to
minimize data space. The motions can be blended and
synchronized together in an interactive simulation.

Our framework proposes a tool to export fully-
processed and adapted motions from captured trajectories.
For this purpose we provide the user with an interface that
gathers all the needed functions (see figure 3). First it al-
lows him to load a motion capture file (c3d files in the
Vicon370 system) and ageneral structure. The user at
this level can only see the markers’ positions, body seg-
ments andc3d internal data. Once anorigin structureis
loaded, the user can run the reconstruction process in or-
der to recover missing markers positions and avoid marker
inversion. This process takes into account the morphology
data of theorigin structurein order to recover the missing
points while ensuring the original skeleton links lenghts.

1Open-source versions will exclude the PC-cluster version because
its development is partially funded by a private company: IWI

2for more information on H-ANIM please consult
http://www.h-anim.org/

Recovering the missing points is performed by a 3-step
process:

First step: naïve interpolation and distance estimations.
This step deals with a first approximation of the miss-
ing points without taking the morphology into ac-
count. In addition, it evaluates how the distances
change depending on time for all couples of neigh-
bours.

Second step:association of uncertainty values and re-
construction ordering.
It consists of preparing the data in order to compute
the missing points. For example, it computes the
reconstruction order that optimizes the interpolation
quality.

Third step: computation of the missing points.
Depending on the number of neighbours and the dis-
tances evaluated in the first step, it recovers the posi-
tions of the missing points.

The next step is available when theanimation struc-
ture is loaded. The final morphology is known at this
step and one can adapt the motion to the synthetic fig-
ure. The user can specify constraints (like which markers
positions to maintain) at this step to help the adaptation
process. The resulting motion can be filtered, made cycli-
cal and processed in order to make the main displacement
follow a given direction. Before saving the motion, the
user can add specific constraints such as foot contact with
the ground. The saved trajectories are encoded in order to
minimize the number of keyframes while tuning a preci-
sion threshold that controls the compression quality.

Once several motions are encoded, the system allows
the user to replay them together while changing the po-
sition and orientation of the synthetic figure. It also en-
sures the synchronization of motions thanks to constraints
(such as foot prints). The user can gather and blend sev-
eral actions such as locomotion, vision targeting, object
handing, motion replay. . . Each action is linked to an in-
dependent module with its own variables. In addition, for
each node, the user can define priorities that can be tuned
during the animation. This priority can be specified for
each node and is not general to the action. Hence during
locomotion one can assign a high priority to the knee and
a lower priority to the hip. In this example, the high prior-
ity assumes that the knee trajectory is more important to
preserve than the hip one. The actions can be interactively
started and ended by the user. For example, human loco-
motion gives naturally high priority to the legs and low
priority to the remainder of the body. While walking or
running the human-like figure can also take objects that
engender higher priorities to the arms. Therefore taking
an object will progressively take control of the arms by

http://www.h-anim.org/


automatically increasing the corresponding action prior-
ity. A special action is always performed even if no action
is specified by the user. This action consists of animat-
ing the human-like figure at rest with a set of predefined
motions.

At the end of the process, the final posture is computed
with the resulting motions of the active actions synchro-
nized thanks to constraints. In the current version, our sys-
tem only deals with feet sequencing constraints: for exam-
ple, a single-support phase followed by a double support
phase while walking or a single-support phase followed
by a non-contact phase while running. As each action is
linked to a captured motion the feet sequence is intrinsi-
cally defined in the motion capture file. Once the final
posture is computed, the system send it to the 3d engine
to animate the virtual actor.

Compared to commercial tools such as Maya and Kay-
dara Filmbox, our system is capable of interpolating tra-
jectories while ensuring anatomical constraints. It also en-
ables to adapt the motion to a different skeleton while re-
specting the position or orientation constraints over some
particular points. Whereas Molet et al. [37, 38] used
anatomical corrections for magnetic-based motion cap-
ture we propose a new method for optic-based systems
that are widely used in entertainment and biomechanics.
This kind of system implies new constraints such as deal-
ing with occlusions. The main contribution of our system
is to gather new methods for motion capture and adapta-
tion in a unique tool. This tool was conceived for anima-
tors in order to improve motion design efficiency.

It is also designed for biomechanics where motion
capture is one of the major measurements. This tool
has been used by a biomechanics laboratory in Rennes
(http://www.uhb.fr/labos/LPBEM/) in order to process
very complex motions with a large number of occlusions.
For example, we experimented this tool with trampoline
figures (cf figure 4) that are performed in wide environ-
ments, with complex postures where parts of the body are
totally hidden and that exhibit very high accelerations (up
to 5 times the acceleration of gravity). The results are very
promising and enable the use of optical-based motion cap-
ture for such complex motions. Without this tool it would
not have been possible to analyze these motions. The tool
has also been used successfully in handball throwing, run-
ning, gymnastics, and soccer.

2.4 HPTS: A Model for Behavioural Ani-
mation

2.4.1 Introduction.

Information needed to describe the behaviour of an en-
tity, depends on the nature of this entity. No theory exists
for determining either the necessary or sufficient struc-

Figure 4: A trampoline motion sequence.

tures needed to support particular capabilities and cer-
tainly not to support general intelligence. As direction
and inspiration towards the development of such a theory,
Newell [42] posits that one way to approach sufficiency
is by modelling human cognition in computational lay-
ers or bands. He suggests that these computational layers
emerge from the natural hierarchy of information process-
ing. Lord [30] introduces several paradigms about the way
the brain works and controls the remainder of the human
body. He explains that human behaviour is naturally hi-
erarchical, that cognitive functions of the brain are run in
parallel. Moreover cognitive functions are different in na-
ture: some are purely reactive, while others require more
time. Executions times and frequencies of the different
activities are provided. Newell asserts that these levels
are linked by transferring information across hierarchical
levels, and that each of them operates without having any
detailed knowledge of the inner workings of processes at
other levels. All that is required is a transfer function to
transform the information produced by one level into a
form that can be used by another. Particularly important
is the notion that symbolic activities occur, locally based
on problem spaces constructed on a moment-to-moment
basis.

Different approaches have been studied for the decision
part of behavioural models in animation: sensor-effector
or neural networks, behaviour rules, finite automaton ap-
proach. As human behaviour is very complex, none of the
preceding models could be applied. More recently, a sec-
ond generation of behavioural models has been developed
to describe the human behaviour in specific tasks. The
common characteristics of these new models are: reactiv-
ity, parallelism and different abstract levels of behaviours.
In [6], authors describe a multi-agent development envi-
ronment named DASEDIS and use it to describe the be-
haviour of a car driver. In [43], a tennis game application

http://www.uhb.fr/labos/LPBEM/


C3D File General structure

Reconstruction of the missing markers positions

Morphologies adaptation

Computation of the frames and the angular trajectories

Filtering and interpolation of the angular trajectories

KeyFrames Encoding

animation structure

origin structure

Animation in real time

Blending of user controlled actions with priorities 
Synchronization of the used motions

Figure 3: The framework main steps and the corresponding user interface

is shown, including the behaviour of players and referees.
A stack of automata is used to describe the behaviour of
each actor. In the Motivate product proposed by Motion
Factory for the Game Design Market, they have also in-
troduced Hierarchical Finite State Machines, and actions
associated with the states and transitions can be described
by using an object-based programming language, named
Piccolo [26]. As humans are deliberative agents, purely
reactive systems are not sufficient to describe their be-
haviour. It is necessary to integrate both cognitive and
reactive aspects of behaviour. Cognitive models are rather
motivated by the representation of the agent’s knowledge
(beliefs and intentions). Intentions enable an agent to rea-
son about its internal state and that of others. The centre
of such a deliberative agent is its own representation of
the world which includes a representation of the mental
state of itself and of other agents with which he is cur-
rently interacting [19]. To do this, Badler et al. [1] pro-
pose to combine Sense-Control-Action (SCA) loops with
planners and PaT-Nets. SCA loops define the reflexive
behaviour and are continuous systems which interconnect
sensors and effectors through a network of nodes, exactly
like in the sensor effector approach described above. PaT-
Nets are essentially finite state automata that can be exe-
cuted in parallel (for example the control of the four fin-
gers and of the thumb for a grasping task). The planner
queries the state of the database through a filtered percep-
tion to decide how to elaborate the plan and to select an
action. More recently they have introduced Parameter-
ized Action Representation (PAR) to give a description of
an action, and these PARs are linked directly to PaT-Nets.
It allows a user to control Autonomous Characters actions
by instructions given in natural language[2]. In all these
systems, the action is directly associated with each node,
which doesn’t allow the management of concurrency.

2.4.2 HPTS

According to Newell, our goal is to build a model which
will allow some adaptative and flexible behaviour to any
entity evolving in a complex environment and interacting
with other entities. Interactive execution is also funda-
mental. This has lead us to state that paradigms required
for programming arealistic behavioural model are: re-
activity (which encompasses sporadic or asynchronous
events and exceptions), modularity in the behaviour de-
scription (which allows parallelism and concurrency of
sub-behaviours), data-flow (for the specification of the
communication between different modules), hierarchical
structuring of the behaviour (which means the possibil-
ity of preempting sub-behaviours) and time and frequency
handling for execution of sub-behaviours (This provides
the ability to model reaction times in perception activi-
ties). HPTS[16] which stands for Hierarchical Parallel
Transition Systems, is a formalism proposed to specify
the decisional part of an autonomous character. It offers
a set of programming paradigms, which permit to address
hierarchical concurrent behaviours. It consists of a reac-
tive and cognitive model, which can be viewed as a multi-
agent system in which agents are organized as a hierarchy
of state machines. Each agent of the system can be viewed
as a black-box with an In/Out data-flow, a set of control
parameters and an internal state. The synchronization of
the agent execution is operated by using state machines.
To allow an agent to manage concurrent behaviours, sub-
agents are organized inside sub-state machines. In the fol-
lowing, agents will be assimilated to their state machine
angle, as there is not any constraint imposed on the pro-
grammer, concerning the body part of the agent. Each
state machine of the system is either an atomic state ma-
chine, or a composite state machine.

Though the model may be coded directly with an im-



perative programming language like C++, we decided to
build a language for the behaviour description. Figure
5 presents the syntax of the behavioural programming
language which fully implements the HPTS formalism.
The behavioural description language is not described in
details. For a complete description of the model refers
to [11], and for the management of resources and prior-
ity levels, refers to [28]. Keywords are written in bold,
whereas italic typeface represents a non-terminal rule. A
∗ stands for a0..n repetition while a+ stands for a1..n
repetition and a statement enclosed in{ } is optional.

SMACHINE Id ;
{

PARAMS type Id{ , type Id} ∗ ; // Parameters
VARIABLES { { type Id;} ∗ } // Variables
OUT Id { , Id} ∗ ; // Outputs
PRIORITY = numeric expression;
INITIAL Id ; FINAL Id ;
STATES // States Declaration
{{

Id { [Id { , Id} ]} { RANDOM } { USE resource list} ;
{ { /* state body */}}

} +}
{ TRANSITION Id { PREFERENCE Value} ;
{

ORIGIN Id ; EXTREMITY Id ;
{ DELAY float ;} { WEIGHT float ;}
read-expr/ write-expr{ TIMEGATE } ;
{ { /* transition body */}}

}} ∗
}

Figure 5: Syntax of the language.

The description of a state machine is done in the fol-
lowing way: the body of the declaration contains a list
of states and a list of transitions between these states. A
state is defined by its name and its activity with regard to
data-flows. A state accepts an optional duration parame-
ter which stands for the minimum and maximum amount
of time spent in the state. Resources used by a state are
defined by using the instructionUSE resource list. A state
machine can be parameterized; the set of parameters will
be used to characterize a state machine at its creation.
Variables are local to a state machine. Only variables that
has been declared as outputs can be viewed by the meta
state machine. A priority is attached to each state-machine
and consists in a numeric expression which allow the pri-
ority to evolve during the simulation. A transition is de-
fined by an origin, an extremity, a transition expression,
two optional parameters and a transition body. The tran-
sition expression consists of two parts: aread-exprwhich
includes the conditions to be fulfilled in order to fire the
transition, and awrite-exprwhich is a list of the generated
events and basic activity primitives on the state machine.
A preference value is defined for each transition.

Afterwards, C++ code for our simulation platform

GASP [12] is generated. It is totally encapsulated: all
transitions systems are included in their own class directly
inheriting from an abstract state machine class which pro-
vides pure virtual methods for running the state machines
and debugging methods. An interpreter has also been im-
plemented, which is very useful for the behaviour specifi-
cation phase as it allows to modify state-machines during
the execution phase with an increase of only ten percent
on the execution time.

2.4.3 Behaviour Coordination

Reproducing daily behaviours requires to be able to
schedule behaviours depending on resources (body parts)
and priorities (intentions or physiological parameters). A
simple way is to say that behaviours which are using the
same resources are mutually exclusive. This approach is
not sufficient to obtain realism, as in the real life, humans
are able to combine them in a much microscopic way.
All day long, human being combines different behaviours,
like for example reading a newspaper while drinking a
coffee and smoking a cigarette. If all behaviours us-
ing common resources were mutually exclusive, an agent
could not reproduce this example, except if a specific be-
haviour, integrating all possible combinations, is created
for this purpose. This solution becomes rapidly too com-
plex, and has motivated the recent integration of resources
and priority levels into HPTS [28].

In the contrary of some previous approach, it is not nec-
essary to specify exhaustively all behaviours that are mu-
tually exclusive; this is done implicitely just by attaching
resources to nodes, preference values to transitions and
a priority function to each state machine, and by using
a scheduling algorithm at run-time [29]. Each state of
a state machine can use a set of resources which can be
considered as semaphores. Thus, resources are used for
mutual exclusion between behaviours. Entering a node
implies that resources are marked as taken and exiting it
implies that thoses resources are released. In order to con-
trol the execution of parallel state machines and to offer
an automatic adaptation between different behaviours, it
is necessary to add notions of priorities and preferences.
The degree of preference is a coefficient associated to a
transition and corresponds to the proclivity of the state
machine to use this transition when the associated tran-
sition is true. This coefficient allows to describe a be-
haviour with different ways of realization; possible adap-
tation depending on resources availability or need can be
described. A priority function is associated to each state
machine. This function returns a value representing the
importance of a behaviour in a given context. This func-
tion can be used to control a behaviour during the running
phase. As it is user defined, it can be correlated with the
internal state of the character (psychological parameters,



intentions) or with external stimuli. By combining those
two notions, it is possible to create a scheduling method
which globally favours the realization of most important
behaviours while automatically adapting the execution of
running ones. The scheduling system allows to describe
independently all behaviours with their different possibili-
ties of adaptation. During running phase, the adaptation of
all other running behaviours is automatic. Moreover, con-
sistency is ensured because the scheduler can only exploit
consistent propositions of transition for each behaviour
depending on the others.

In the example of fig. 6, the behaviour uses the follow-
ing set of resources: Hl (left hand), Hr (right hand), rHl
(reserve left hand), rHr (reserve right hand), M (mouth)
and E (eyes). Resources rHl/rHr are used to handle re-
leasing of resources Hl/Hr. The scheduler can only act on
the next transition of a state machine. Hands are resources
that often need more than one transition to be freed, for in-
stance, putting down an object to free the hand resource.
Then a state which only use resource Hr/Hl corresponds
to a behaviour of freeing a hand resource. Note that once
behaviours are described through state machines, they are
controlled through their priority. This property allow to
handle every type of executive behaviour without need of
information about their internal structure in term of re-
sources or possible adaptations.

Figure 7: Behavioural Coordination Example.

2.5 Perception Control

Perception can be achieved through a direct access to
the world data-base or a subset of this data-base (e.g.,
[47, 49]) or through synthetic vision (e.g.[3, 22, 48, 27]).
Once data related to the environment are collected, the
decision module provides the actor with a set of actions
to be executed. The animation of the avatar may be han-
dled considering various techniques from full kinematic
approaches to motion warping and other. These three
modules have to be integrated in a more complex system
that provides a task to be achieved by the actor.

We consider the case where the task given as input to
the autonomous actor is specified as a visual task. Though
every task cannot be specified this way, most of interesting
task for a humanoïd can be taken into account: gazing at
an object, following moving objects or trajectory, track-
ing, etc. We have proposed a complete framework that
allows to directly control the humanoïd kinematic chain
considering only visual informations, bringing a close link
between the perception and action steps[8]. The deci-
sion step is then in charge of giving visual tasks to be
achieved. This approach is based on the visual servoing
framework. This method has been first introduced in the
robotics field [23, 17] and considered more recently in the
computer animation context [21, 32]. Along with realiza-
tion of the specified task, this approach allows the intro-
duction of constraints in, for example, the joint trajectory.
It is then possible to simply handle the joint limits prob-
lem that is fundamental in the humanoïd animation prob-
lem.

Figure 8: An example of articular chain involved in the
perception process.

We choosed to link the visual information with the ar-
ticular joints of the humanoïd by using a method similar
to inverse kinematic. The position/orientation of the eyes
are given by the visual task, and is linked with the artic-
ular joints by the inverse of the Jacobian of the chain (cf
figure 8). Hence, the eyes constitute a “special” node of
the inverse kinematic process. One of the main advan-
tage of such a technique is to allow a closed loop control,



true, 1 GetHand

true, 1

true, 1

endOfMovement, 1
endOfMovement, 1
endOfMovement, −1

endOfMovement, 1
endOfMovement, −1

PutObject

End

{rH, H}

true, 0.4

true, −0.4
true, −1 true, −1

endOfMovement, 0.6

MoveAndWatch

{rH}

Begin TakeObject

MoveObject

{rH, H, E} {H, E}

{rH, H, E}

endOfMovement, −1
endOfMovement, 1

Figure 6: Moving object behaviour.

which means that a new command is computed at each
frame wrt. a visual constraint, allowing reactivity of the
humanoïd to modifications of the environment.

(a)

(b)

Figure 9: Servoing on four points: (a) extern view of the
humanoïd (b) image “perceived”

In the following example, we consider a focusing task
hard to handle with basic animation techniques. The goal
of the visual task is to see a painting centered in the image.
The specification of the task is done as following: four
points matching with the corners of the painting are cho-
sen. We choose their desired locations such as the painting
appears centered in the image. The interaction matrix is
then defined as the stacking of the four Jacobians relative
to each of the four points. It is a8 ∗ 6 matrix of rank six,
which creates a rigid link between the humanoïd’s eyes
and the painting. The resulting animation is presented in
figure 9 (the painting is not in the field of view of fig-

ure 9(a)). In the images rendered from the humanoïd’s
point of view, we drawed the four desired positions of the
points (in red). At the end of the animation, they match
the four corners of the painting. Thus, the specification
for this task has been done in two steps: specify the four
corners of the painting, and place their desired positions
in the image. From a behavioral point of view, we can
assume that the desired position of the four corners may
be an information contained in the painting (i.e., looking
the painting would mean get the positions of the four cor-
ners). This approach has also been used with success to
control a camera including constraints given by the cine-
matographic language[32].

2.6 Informed Environments

Using 3D modelling systems allow the generation of real-
istic geometrical models in which walk through is possi-
ble in real time. As this modelling operation is still a long,
complex and costly task, a lot of work has been done to
partially automate the rebuilding process. All these tech-
niques are very useful for the visual realism of virtual ur-
ban environments but they are not sufficient due to the
lack of life of these digital mock-ups. Walking through
these virtual city models do not provide a real life feeling
as they are uninhabited. In order to populate these virtual
environments, it is necessary to specify the behaviour of
autonomous characters with the ability to perceive their
surrounding space and act on it. An autonomous actor
whose main action is obstacle avoidance in an unstruc-
tured environment does not need other knowledge than the
geometrical one. In order to simulate more sophisticated
behaviours, other kind of information must be manipu-
lated. The simplest behaviour, for a pedestrian walking
in a street, consists in minimizing possible interactions,
which mean avoiding static and dynamic obstacles. But,
even in this simple walking activity, one needs to know
the nature of objects he will interact with. For example, a
public phone is considered as an obstacle to avoid for most
people, but some of them will be interested by its func-



tionality and will use it. For the crossing of a street, one
activity consists in reading the signals, which mean that it
is necessary to associate semantic information to geomet-
ric objects in the scene, and to update it during the sim-
ulation. N. Farenc[18] has suggested using an informed
environment, dedicated to urban life simulation, which is
based on a hierarchical breakdown of an urban scene into
environmental entities providing geometrical information
as well as semantic notions. S. Raupp Musse [41] has
used this informed environment to animate human crowds
by using a hierarchical control: a virtual human agent be-
longs to a group that belongs to a crowd, and an agent
applies the general behaviours defined at the group level.
The knowledge on the virtual environment used by the
crowd is composed of a set of obstacles (bounding box
information of each obstacle to be avoided), a list of inter-
est points (locations that the crowd should pass through
and their associated regions) and a list of action points
(regions where agents can perform actions).

In the realm of behavioural psychology, there have been
a few studies on visual perception, mainly based on Gib-
son’s theory of affordances [20]. The theory of affor-
dances is based on what an object of the environmentaf-
fords to an animal. Gibson claims that the direct percep-
tion of these affordances is possible. Affordances are re-
lations between space, time and action, which work for
the organism. What the world is to the organism de-
pends on what the organism is doing and might do next.
For computer scientists, Gibson theory is attractive be-
cause it assigns to each object some behavioural seman-
tic, i.e. what the human being is likely to do with a
given object. By associating symbolical information to
objects, Widyanto experienced the Gibson’s theory of "af-
fordances" [50], while M. Kallmann [24] introduces smart
objects, in which all interesting features of objects are de-
fined during the modelling phase.

In accordance with Gibson’s ecological theory, com-
ponents of the virtual urban environment should be in-
formed. To produce more realistic behaviours, we have
specified a city modelaffordantto autonomous actors[46].
In the field of psycho-sociology, M. Relieu [44] has de-
fined the notion of positive and negative affordances for a
pedestrian. A positive affordance specifies the fact that
the extrapolated trajectory of the corresponding pedes-
trian is not supposed to intersect the planned trajectory
of the other one, while a negative affordance points out
that they may collide. M. Relieu says also that a mobile
entity uses the urban discrimination3 to focus his atten-
tion, to select pertinent information for his actions inside
the current region, while he maintains a secondary task to
observe what is happening in regions close to its circula-

3A street is composed of connected lanes devoted to distinct mobile
entities such as cars and pedestrians

tion area. Thanks to this knowledge, autonomous virtual
actors can behave like pedestrians or car drivers in a com-
plex city environment. A city modeller, named VUEMS
(Virtual Urban Environment Modelling System), has been
designed, using this model of urban environment, and en-
ables complex urban environments for behavioural anima-
tion, and their 3D geometric representation, to be auto-
matically produced. The scene produced by VUEMS is
loaded and is then available for use by all autonomous en-
tities. First, sensors can determine visible objects in their
environment and then the behavioural module can have
access to the information on these visible objects. The be-
havioural model of pedestrians, that has been developped,
includes social and driving rules of interaction (minimize
the interaction and choose in priority the left side to over-
take), as explained in [47].

2.7 Scenario Authoring

The scenario component of a behavioural simulation car-
ries out the responsibility for orchestrating the activities
of semi-autonomous agents that populate the virtual en-
vironment. In common practice, these agents are pro-
grammed as independent entities that perceive the sur-
rounding environment and under normal circumstances
behave as autonomous agents. However, in most exper-
iments and training runs [25], we want to create a pre-
dictable experience. This is accomplished through direc-
tion of objects behaviours. To facilitate coordination of
activities, objects have to be built with interfaces through
which they can receive instructions to modify their be-
haviours. The scenario manager controls the evolution of
the simulation by strategically placing objects in the en-
vironment and guiding the behaviours of objects to cre-
ate desired situations. We have specified a scenario lan-
guage [14, 10], which permits to describe scenarios in
a hierarchical manner and to schedule them at the sim-
ulation time. This language has its own syntax and is
composed of a set of specific instructions. The language
contains classic instructions such asif, switch, repeat un-
til, random choice, waitand which are executed inside a
timestep. It contains also more specific instructions (wait-
for, eachtime, aslongas, every) that will spend more than
one timestep to be finished and that can run in parallel
during the execution of the scenario they belong to. All
those instructions can be composed in a hierarchical man-
ner. To manage actors, the language offers also specific
instructions to specify the interface of an actor, to reserve
and free actors. By using priorities, a scenario can take an
actor from another one, which will be informed by a mes-
sage. Concerning messages, each scenario can subscribe
to messages that are of interest for itself.

As the language is built upon C++, it is always possible



to include C++ code everywhere inside scenarios by us-
ing four specific instructions:include, declaration, imple-
mentationanddestructor. A scenario can be decomposed
into sub-scenarios and each scenario is corresponding to
a set of tasks or actions, ordered on a global temporal ref-
erential. Tasks in a scenario can modify characteristics
of actors, create them or ask an actor to perform a spe-
cific action. Internal representation is based on the use of
Allen’s logic and of rewriting rules to produce Hierarchi-
cal Parallel Transition Systems (cf figure 10). A scenario
can start at a predefined time given by the author but can
also be started when a situation occurs (conditional sce-
nario). Some of those scheduling informations are stored
in a dynamic execution graph. A scheduler uses it to start
or terminate scenarios. To detect situations, triggers and
sensing functions are managed by the simulation observa-
tion.

Figure 10: The global architecture of SLURGH.

3 Application to a Virtual Museum

The virtual Museum is an application which has been de-
veloped for a museum in Paris (Cité des Sciences et de
l’Industrie), and has been inaugurated in June 2001 as
part of the new permanent exhibition on images. This
application integrates a lot of our recent research devel-
opments. It consists of a museum visited by a group of
autonomous characters and it is also inhabited by a flock
of suribirds (birds with the behaviour of surikats). The hu-
manoid motion control integrates three kinds of technics:
a bio-mechanical model for locomotion, inverse kinemat-
ics algorithm for grasping or climbing and motion capture
for specific gestures. Different motions can be applied si-
multaneously to separate parts of the human body. As for
Urban Environment, an informed environment has been
specified to model the structure of the building and the
interior architecture (cf map of the museum in figure 11).

Figure 11: The Map of the Museum.

Thanks to an initial scenario, a set of specific characters
has been modelled:

• an attendant,

• a thief who want to steal paintings and sculptures,

• a photographer who damages the colors of a painting
when he takes a picture of it,

• a mother and her child who have conflicting desires,

• a guide who present the exhibition to a group of vis-
itors;

• a woman who is in charge of restoring damaged
paintings.

The purpose of this application is to propose the real
visitor to observe the life evolving in a virtual world and
to see how the modification of behavioural parameters of
one or more autonomous characters can affect this virtual
life4. For example, the mother may have to choose be-
tween following the explanation given by the guide and
looking at her child. If the child obey to her mother, there
is no problem for the mother to follow the visit. In the
contrary, her behaviour will depend on her interest for the
visit and on the look she wants to have on the activity
of her child. Concerning the attendant, it is possible to
choose the level of interest (no interest, weak, medium,
high, very high) that he will have to survey the thief, the
photographer and the child. It is also possible to choose
its speed and its weariness. Behavioural parameters can
also be modified for the other main characters. It is also
possible to specify a global level of disorder inside the
museum: this will for example modify the response of
visitors to damages caused by the thief and the photogra-
pher.

Figure 12 shows some snapshots taken from the appli-
cation. On the top left image, the thief is in action, while
on the top right image the guide is moving inside the mu-
seum. On the bottom left image, we can see a group of
visitors listening to the explanation given by the guide
(including the mother and her child). The bottom right

4This can easily be done due to the preemption mechanism, and the
dynamicity and parameterization of state machines.



Figure 12: Images of the Virtual Museum Application.

image is an overview of one part of the museum, includ-
ing around twenty autonomous characters. As this appli-
cation should run all the day, sevend days a week, when
the attendant ask the thief or the photographer to leave the
museum, a women is asked to restore paintings and sculp-
tures are put back on their pedestal. After a moment, the
thief or the photographer are asked to come back into the
museum by the entrance.

4 Conclusion

Our main objective is real-time simulations of several en-
tities evolving in realistic informed environments. Many
studies have been performed by psychologists to analyse
the human behaviour. The behavioural model allows us
to describe, in a same way, different kinds of living be-
ings, and to simulate them in the same virtual environ-
ment, while most of behavioural models are presently re-

stricted to the animation of one model in a specific envi-
ronment. The use of Hierarchical Parallel Transition Sys-
tems allows us to take into account several programming
paradigms important to describerealisticbehaviours. Be-
cause of the integration of our behavioural model in a sim-
ulation platform, we have also the ability to deal with real
time during the specification and the execution phases.
Another important point is that our behavioural model has
been built to generate dynamic entities which are both au-
tonomous and controllable by a scenario, allowing us to
use the same model in different contexts and moreover
with different levels of control.

Concerning behaviour coordination, our scheduler is
currently only able to handle a fixed number of resources
declared at compilation time. An extension would be to
allow resource declaration at runtime in order to handle
external resources. Another extension will be to con-
nect this work to a higher level of reasoning, in order to



determine automatically which behaviour should be acti-
vated or inhibited. Concerning scenario authoring, work
in progress concerns scenarios in natural languages to be
able to offer an authoring tool to scenarists of interactive
drama. This requires to take into account spatio-temporal
semantics of natural language and the theory of drama as
expressed by structuralists. A first demonstration of this
work, entitledLifetime at the grocery, will be shown at
the Industry and Innovation Village of Imagina.02.

Video sequences can be found on the following web
page: http://www.irisa.fr/prive/donikian.

References
[1] N. Badler, B. Reich, and B. Webber. Towards personalities for

animated agents with reactive and planning behaviors.Lecture
Notes in Artificial Intelligence, Creating Personalities for synthetic
actors, (1195):43–57, 1997.

[2] R. Bindiganavale, W. Schuler, J. Allbeck, N. Badler, A. Joshi, and
M. Palmer. Dynamically altering agent behaviors using natural
language instructions. In C. Sierra, M. Gini, and J. Rosenschein,
editors, International Conference on Autonomous Agents, pages
293–300, Barcelona, Spain, June 2000. ACM Press.

[3] B. Blumberg. Go with the flow: Synthetic vision for autonomous
animated creatures. InAAAI Conference on Autonomous Agents,
1997.

[4] B. Blumberg and T. Galyean. Multi-level direction of autonomous
creatures for real-time virtual environments. InSiggraph, pages
47–54, Los Angeles, California, U.S.A., Aug. 1995. ACM.

[5] D. Brogan, R. Metoyer, and J. Hodgins. Dynamically simulated
characters in virtual environments.IEEE Computer Graphics and
Applications, pages 58–69, 1998.

[6] B. Burmeister, J. Doormann, and G. Matylis. Agent-oriented traf-
fic simulation. Transactions of the Society for Computer Simula-
tion International, 14(2), June 1997.

[7] E. Cerezo, A. Pina, and F. Seron. Motion and behaviour modelling:
state of art and new trends.The Visual Computer, 15:124–146,
1999.

[8] N. Courty, E. Marchand, and B. Arnaldi. Through-the-eyes control
of a virtual humanoïd. In N. M.-T. e. H.-S. Ko, editor,IEEE Int.
Conf. on Computer Animation 2001, Seoul, Korea, 2001.

[9] R. Cozot and B. Arnaldi. A language for multibody systems mod-
elling. In European Simulation Symposium, Erlangen-Nuremberg,
Oct. 1995.

[10] F. Devillers. Langage de scénario pour des acteurs semi-
autonomes. PhD thesis, Université de Rennes I, Sept. 2001.

[11] S. Donikian. HPTS: a behaviour modelling language for au-
tonomous agents. InFifth International Conference on Au-
tonomous Agents, Montreal, Canada, May 2001. ACM Press.

[12] S. Donikian, A. Chauffaut, R. Kulpa, and T. Duval. Gasp: from
modular programming to distributed execution. InComputer Ani-
mation’98, pages 79–87, Philadelphie, USA, June 1998. IEEE.

[13] S. Donikian and R. Cozot. General animation and simulation plat-
form. In D. Terzopoulos and D. Thalmann, editors,Computer Ani-
mation and Simulation’95, pages 197–209. Springer-Verlag, 1995.

[14] S. Donikian, F. Devillers, and G. Moreau. The kernel of a scenario
language for animation and simulation. InEurographics Workshop
on Animation and Simulation, Milano, Italia, Sept. 1999. Springer
Verlag.

[15] S. Donikian, G. Moreau, and G. Thomas. Multimodal driving
simulation in realistic urban environments. In S. Tzafestas and
G. Schmidt, editors,Progress in System and Robot Analysis and
Control Design, pages 321–332. Lecture Notes in Control and In-
formation Sciences (LNCIS 243), 1999.

[16] S. Donikian and E. Rutten. Reactivity, concurrency, data-flow
and hierarchical preemption for behavioural animation. In E. B.
R.C. Veltkamp, editor,Programming Paradigms in Graphics’95,
Eurographics Collection. Springer-Verlag, 1995.

[17] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual
servoing in robotics. IEEE trans. on Robotics and Automation,
8(3):313–326, June 1992.

[18] N. Farenc, R. Boulic, and D. Thalmann. An informed environment
dedicated to the simulation of virtual humans in urban context. In
P. Brunet and R. Scopigno, editors,EUROGRAPHICS’99, pages
309–318. Blackwell, Sept. 1999.

[19] J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling: Knowl-
edge, reasoning and planning for intelligent characters. InSIG-
GRAPH’99, pages 29–38, Los Angeles, Aug. 1999.

[20] J. Gibson. The ecological approach to visual perception. NJ:
Lawrence Erlbaum Associates, Inc, Hillsdale, 1986.

[21] M. Gleicher and A. Witkin. Through-the-lens camera control.
In Proc. of SIGGRAPH 92, in Computer Graphics Proceedings,
pages 331–340, Juillet 1992.

[22] D. H. Noser, O.Renault and N. Magnenat-Thalmann. Navigation
for digital actors based on synthetic vision, memory and learning.
Computer & Graphics, 19(1):7–19, 1995.

[23] S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo
control. IEEE trans. on Robotics and Automation, 12(5):651–670,
October 1996.

[24] M. Kallmann and D. Thalmann. Modeling objects for interaction
tasks. InEurographics Workshop on Animation and Simulation,
Lisbon, Portugal, Sept. 1998. Springer-Verlag.

[25] J. Kearney, P. Willemsen, S. Donikian, and F. Devillers. Scenario
languages for driving simulations. InDSC’99, Paris, France, July
1999.

[26] Y. Koga, G. Annesley, C. Becker, M. Svihura, and D. Zhu. On
intelligent digital actors. InIMAGINA’98, 1998.

[27] J. Kuffner and J. Latombe. fast synthetic vision, memory, and
learning models for virtual humans. In I. C. Society, editor,Com-
puter Animation ’99, pages 118–127, Genève, Suisse, mai 1999.

[28] F. Lamarche and S. Donikian. The orchestration of behaviours
using resources and priority levels. In M. Cani, N. Magnenat-
Thalmann, and D. Thalmann, editors,Computer Animation and
Simulation 2001, pages 171–182, Manchester, UK, Sept. 2001.
Springer-Verlag.

[29] F. Lamarche and S. Donikian. Automatic orchestration of be-
haviours through the management of resources and priority levels.
In W. L. Johnson and C. Castelfranchi, editors,Autonomous Agents
& Multi-Agent Systems (AAMAS 2002), Bologna, Italy, July 2002.
ACM.

[30] R. G. Lord and P. E. Levy. Moving from cognition to action : A
control theory perspective.Applied Psychology : an international
review, 43 (3):335–398, 1994.

[31] P. Maes, T. Darrell, B. Blumberg, and A. Pentland. The alive sys-
tem: Full-body interaction with autonomous agents. InComputer
Animation’95, pages 11–18, Geneva, Switzerland, Apr. 1995.
IEEE.

[32] E. Marchand and N. Courty. Image-based virtual camera motion
strategies. InGraphics Interface Conference, GI2000, pages 69–
76, Quebec, Montréal, May 2000.

http://www.irisa.fr/prive/donikian


[33] D. Margery. Environnement logiciel temps-réel distribué pour la
simulation sur réseau de PC. PhD thesis, Université de Rennes 1,
2001.

[34] D. Maurel and S. Donikian.Intelligent Vehicle Technologies, chap-
ter ACC Systems - Overview and examples. Arnold, 2000.

[35] D. Maurel, M. Parent, and S. Donikian. Influence of acc in
stop&go mode on traffic flow. InSAE Future Transportation Tech-
nology Conference, Costa Mesa, California, USA, Aug. 1999.

[36] S. Menardais and F. Multon. Amélioration des trajectoires ac-
quises par des systèmes optiques pour l’animation de personnages
synthétiques.Revue Internationale de CFAO, pages 99–113, 2000.

[37] T. Molet, R. Boulic, and D. Thalmann. A real time anatomical
converter for human motion capture. InEurographics Workshop
on Computer Animation and Simulation, pages 79–94, Sept. 1996.

[38] T. Molet, R. Boulic, and D. Thalmann. Human motion cap-
ture driven by orientation measurements.Presence, 8(2):187–203,
1999.

[39] G. Moreau and S. Donikian. From psychological and real-time in-
teraction requirements to behavioural simulation. InEurographics
Workshop on Computer Animation and Simulation, Lisbon, Portu-
gal, Sept. 1998.

[40] F. Multon, L. France, M. Cani-Gascuel, and G. Debunne. Com-
puter animation of human walking : a survey.Journal of Visual-
ization and Computer Animation, 10:39–54, 1999.

[41] S. R. Musse.Human Crowd Modelling with Various Levels of Be-
haviour Control. PhD thesis, EPFL, Lausanne, Suisse, Jan. 2000.

[42] A. Newell. Unified Theories of Cognition. Harvard University
Press, 1990.

[43] H. Noser and D. Thalmann. Sensor based synthetic actors in a
tennis game simulation. InComputer Graphics International’97,
pages 189–198, Hasselt, Belgium, June 1997. IEEE Computer So-
ciety Press.

[44] M. Relieu and L. Quéré.Les Risques urbains : Acteurs, systèmes
de prévention, chapter Mobilité, perception et sécurité dans les es-
paces publics urbains. anthropos : Collection VILLES, 1998.

[45] D. Thalmann and H. Noser. Towards autonomous, perceptive, and
intelligent virtual actors. InArtificial Intelligence Today, volume
1600 of Lecture Notes in Artificial Intelligence, pages 457–472.
Springer, 1999.

[46] G. Thomas and S. Donikian. Modelling virtual cities dedicated to
behavioural animation. In M. Gross and F. Hopgood, editors,EU-
ROGRAPHICS’2000, volume 19:3, Interlaken, Switzerland, Aug.
2000. Blackwell Publishers.

[47] G. Thomas and S. Donikian. Virtual humans animation in in-
formed urban environments. InComputer Animation, pages 129–
136, Philadelphia, PA, USA, May 2000. IEEE Computer Society
Press.

[48] X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion,
perception, behavior. InComputer Graphics (SIGGRAPH’94 Pro-
ceedings), pages 43–50, Orlando, Florida, July 1994.

[49] B. Webber and N. Badler. Animation through reactions, transition
nets and plans. InInternational Workshop on Human Interface
Technology, Aizu, Japan, October 1995.

[50] T. Widyanto, A. Marriott, and M. West. Applying a visual per-
ception system to a behavioral animation system. InEurograph-
ics Workshop on Animation and Simulation, pages 89–98, Vienna,
Austria, 1991.


	1 Introduction
	2 A programming environment for behavioural animation
	2.1 Introduction
	2.2 OpenMASK: Modular Animation and Simulation Kit
	2.3 A Global Framework for Motion Control
	2.4 HPTS: A Model for Behavioural Animation
	2.4.1 Introduction.
	2.4.2 HPTS
	2.4.3 Behaviour Coordination

	2.5 Perception Control
	2.6 Informed Environments
	2.7 Scenario Authoring

	3 Application to a Virtual Museum
	4 Conclusion

