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Abstract

Behavioural animation techniques provide autonomous characters with the ability to react credibly in interactive
simulations. The direction of these autonomous agents is inherently complex. Typically, simulations evolve ac-
cording to reactive and cognitive behaviours of autonomous agents. The free flow of actions makes it difficult to
precisely control the happening of desired events.
In this paper, we propose a scenario language designed to support direction of semi-autonomous characters. This
language offers temporal management and character communication tools. It also allows parallelism between sce-
narios, and a form of competition for the reservation of characters. Seen from the computing angle, this language
is generic: in other words, it doesn’t make assumptions about the nature of the simulation. Lastly, this language
allows a programmer to build scenarios in a variety of different styles ranging from highly directed cinema-like
scripts to scenarios which will momentary finely tune free streams of actions.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Languages

1. Introduction

The goal of the behavioural model is to simulate autonomous
entities like organisms and living beings. A behavioural en-
tity has the following capabilities: perception of its envi-
ronment, decision, action and communication 4. The sce-
nario component of a behavioural simulation carries out
the responsibility for orchestrating the activities of semi-
autonomous agents that populate the virtual environment.
In common practice, these agents are programmed as inde-
pendent entities that perceive the surrounding environment
and under normal circumstances behave as autonomous a-
gents. However, in most experiments and training runs 13,
people want to create a predictable experience. This is ac-
complished through the direction of agent’s behaviours. To
facilitate coordination of activities, actors have to be built
with interfaces through which they can receive instructions
to modify their behaviours. Scenario processes control the
evolution of the simulation by strategically placing object-
s in the environment and guiding the behaviour of actors to

create desired situations. Scenario Authoring Tools are al-
so important for digital crowds used as special effects for
the cinema Industry. Jon Labrie, Chief Technology Officer
at Weta, who was in charge of crowd animation for the film
The Lord of the Rings said: It turns out that it is at least as
difficult to control an intelligent autonomous agent as it is to
control a real actor. They don’t necessarily do what you want
them to do. So tools for choreography are just as important
as anything else14. Another domain in which scenario be-
comes very important is the interactive art experience in vir-
tual or mixed reality 10, 20: the problematic here is to provide
a way for the artist to control the interactive experience lived
by the user as his actions are not predictable.

To one point of view, a scenario can be treated as the be-
haviour of a disembodied object. This suggests that the same
languages used to program the behaviours of simulated char-
acters with material properties can be used to program the
modules that manipulate the environment by creating, de-
stroying or modifying characteristics of entities, and coor-
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dinating the actions of other actors. A number of research
teams working on simulation have converged on hierarchies
of parallel state machines as a model for programming re-
active behaviours 12, 16, 2, 8. We think that the state machine
model has also much to offer for scenario programming. The
issue in this paper is to present how we intend to describe a
scenario whose objective is to partially constrain the activity
of semi-autonomous entities.

2. Related Works

ASAS, proposed by Reynolds in 1982 18, is one of the first
animation language based on actors and scripts, and its goal
is to offer to the animator the ability to control an animated
sequence by using a script. ASAS is based on LISP, and adds
specific notions such as geometric and photometric charac-
teristics, transformation operators and the data structure of
an actor. Ridsdale et al. 19 proposed a system to animate
characters in a theatrical environment. A scenario is decom-
posed in a sequence of scenes for which the scenarist has
to define, initial and final location of actors, their goals and
relational constraints. An expert system is used to determine
actions that each actor will have to perform during the scene.
If we address the problem of controlling semi-autonomous
entities, the preceding descriptive languages cannot be of use
as it is impossible to know in advance the behaviour of char-
acters. In such a case, a simulation consists of decentralized
autonomous agents that evolve in an environment and inter-
act with each other and with the environment. In the case of
a semi-autonomous entity model, instructions might be giv-
en by a coordinator. Different kinds of coordination can be
implemented:

goal oriented: define goals to achieve during the animation.
The main complexity consists in planning actions to be
done by actors;

rules: observe actors evolving in the scene, and on a specif-
ic situation, start a script;

ambient: there is a main character (usually the user in the
loop) and all actions of other actors are determined de-
pending on his own behaviour and are executed in order
to test and study his reaction;

sequence of actions: determine a set of action to be done
and their time schedule.

In all those cases, a script cannot be exhaustive and vir-
tual actors should be able to improvise or decide themselves
actions to perform. A script will specify actions only on a
few number of entities at each time and all other should e-
volve autonomously. On the basis of their behavioural mod-
el described with SCA control loops (reflexive behaviour)
and PatNets (finite state machines), Badler et al. 2 propose
to use higher levels of PatNets to define goals of actors
and their schedule. In a similar way, J. Kearney et al. 5 use
HCSMs (Hierarchical Concurrent State Machines) in their
Hank simulator to describe ambient scenarios, acting on the

traffic around the user driven car. Such scenarios are com-
posed of triggers and beacons which are used to produce
some specific events and directors which are responsible
for choreographing entity behaviours to create specific sit-
uations. More recently, P. Willemsen 22 introduces SDL, a
Scenario Description Language. It is an interpreted script-
ing language that interactively evaluates expressions entered
by an experimenter and translates them into HCSM inserted
and executed into a simulator. This language contains some
instructions such as mathematical functions, conditions and
four monitor statements (when, every, aslongas, whenever).
Due to the interpretation choice, some limitations are im-
posed on the combination of instructions. We will use the
same kind of monitoring instructions in our language but in
a more complex way thanks to a compilation process.

In ViCrowd 15, crowds can be controlled at different levels
and one of them consists in a script language where action,
motion and behavioural rules are defined in order to speci-
fy the crowd behaviours. Improv is an authoring system 17

for scripting interactive actors in virtual worlds. Participants
are represented by fully articulated human figures or avatars.
Body movements of avatars are computed automatically by
the system. The author needs to control the choices an actor
makes and how the actors move their bodies. Authors spec-
ify individual actions in terms of how those actions cause
changes over time to each degree of freedom (DOF) in the
model. An Improv actor can be doing many things at once,
and these simultaneous activities can interact in differen-
t ways. The author can place actions in different groups, and
these groups are organized into a "back-to-front" order. Ac-
tions which are in the same group compete with each other
and each action possesses some weight (global actions are
located in the rear groups, and local ones in the front group-
s). Different scripts can run in parallel and can be ordered
on the same temporal referential by using instructions like
wait n seconds. In that case, start time of actions are sched-
uled. Non deterministic behaviours can also be expressed by
specifying that an actor has to choose from a set of actions
or scripts. Weights can be used to affect the probability of
each item being chosen.

Usually scripts are applied to virtual actors which do not
have real cognition and hence are unable to understand natu-
ral language 21. Another key issue is the translation of scripts
or scenarios written in a simplified form of natural language
into something understandable by virtual actors. N. Badler
et al. 3 proposed to control character actions by using sen-
tences expressed in natural language. To support language
understanding and to transform it into actions executed by
autonomous characters, they have introduced the PAR mod-
el (Parametric Action Representation). A PAR gives a com-
plete description of an action, and it is parameterized by a
set of characteristics which can be given as adjuncts to the
action verb in a sentence. One of the biggest problem in us-
ing some kind of natural language to specify scenarios is the
reference to objects. In the current discourse, it is usual to

c© The Eurographics Association 2003.



Devillers and Donikian / Scenario Language

say "the object", because the author knows which object he
is talking about, but in a scenario it is necessary to name ob-
jects or to refer to them by a designation operation. In some
very directive scenarios, the animator will be able to give
a name to all objects and there will be no ambiguity in the
description, but in other cases like situations which produce
events to start a goal oriented scenario, it is not possible to
plan in advance which objects will be involved in it. Our ob-
jective is to specify a language which will allow dynamic
selection of actors at run-time based on class and set op-
erations. This language should be able to describe the four
kinds of scenarios and mix them together. In this paper, we
will focus on the structure of the scenario language and will
illustrate its potential use on an example.

3. Scenario Authoring

3.1. Introduction

We have specified a scenario language which allows a de-
scription of scenarios in a hierarchical manner and their
scheduling at simulation time. This language has its own
syntax and is compounded of a set of specific instructions.
The language contains classic instructions such as if, switch,
repeat until, random choice, wait which are executed inside
a time-step. It contains also more specific instructions (wait-
for, eachtime, aslongas, every) that will spend more than one
time-step to be finished and that can run in parallel during the
execution of the scenario they belong to. All those instruc-
tions can be composed in a hierarchical manner. To man-
age actors, the language offers also specific instructions to
specify the interface of an actor, to reserve and free actors.
By using priorities, a scenario can take an actor from anoth-
er one, which will be informed by a message. Concerning
messages, each scenario can subscribe to those that are of
interest to itself.

Simulation Observation
Triggers and Sensing functions

Actors 

temporal inconsistency detection

Scheduler

events function
call

searchstart
terminate, request,
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vent
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ataflow

terminationactionstarted,
terminated
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Figure 1: The global architecture.

A scenario can be decomposed into sub-scenarios and
each scenario is corresponding to a set of tasks or actions,
ordered on a global temporal referential. Tasks in a scenario
can modify characteristics of actors, create them or ask an
actor to perform a specific action. A scenario can start at a
predefined time given by the author but can also be start-
ed when a situation occurs (conditional scenario). Some of
those scheduling informations are stored in a dynamic exe-
cution graph. A scheduler uses it to start or terminate sce-
narios. To detect situations, triggers and sensing function-
s are managed by the simulation observation (cf figure 1).

For example, a circular trigger will detect any object enter-
ing or exiting its area. Instead of creating a complete and
self-contained language, we have chosen an open approach
which consists in a full integration in C++. As explained be-
low, the scenario language is built upon C++ and it is possi-
ble to introduce C++ code everywhere inside scenarios.

3.2. State Machine Approach

A state machine approach has been chosen to specify most
of the instructions of the scenario language, and also their
composition. Due to the expressivity of their graphical rep-
resentation, we will present it to specify the semantics of
those instructions. Each state machine is composed of states
and transitions between states. As illustrated in figure 2, a
transition between a state A and a state B is composed of
two parts: a condition and a sequence of actions. If the sym-
bol # is the condition part, it means that the condition is
always true, while if # constitutes the action part, no ac-
tion is associated to the transition. Each state machine of
the system is either an atomic state machine, or a compos-
ite state machine. Some specific instructions can be used to
start (start(SM)) and terminate (terminate(SM)) a sub-state
machine SM and to know if a set of sub-state machines are
terminated (end(SM1 . . .SMn)).

Optional duration parameters can be attached to a state.
The first one (dmin) is used to force the state machine to keep
a state active for a minimum duration. This allows the mod-
elling of delay: it is not possible to fire any transition until
the time spent in the state become higher than this duration.
On the contrary, a maximum duration dmax can also be spec-
ified. When this value is reached, an event eod is generated
in order to warn the system that something that should have
happened actually did not.

A
condition / actions

B

C
# / start(SM1)

D too late
eod / #

E

!c / timegate

[dmin,dmax,eod]

Figure 2: the state machine model

Our state machine model makes use of the superstep se-
mantics of Statecharts 11, i.e. the ability to fire several fol-
lowing transitions at the same date, this being limited by a
timegate (which prevents from firing the following transition
at the same date). This state machine model has been imple-
mented through a description language which is compiled
and used to generate C++ code8.
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3.3. Grammar of the Scenario Language

Let us introduce now the different instructions of the
language and their semantics. We first introduce the
low-level instructions which can be directly expressed
in state machines. Then, hierarchy, scheduling and actor
management issues are addressed. Concerning the grammar
of the scenario language, keywords are written in bold,
whereas italic typeface represents a non-terminal rule. A
∗ stands for a 0..n repetition, while a + stands for a 1..n
repetition. | is the alternative operator. A statement enclosed
in {} is optional and [] are used to enclose alternatives.

Language ::= { list_of_Actors } { list_of_Modules }
scenario ( scenario )∗

scenario ::= scenario ID ( { parameters } )
{ scenarioDef }

scenarioDef ::= ( instance )+ schedule | SeqElemTask

The rule list_of_Actors is used to specify the C++ type
of the Actor’s Interface, while the rule list_of_Modules is
used to specify which objects have to be created to receive
actors. Each scenario is composed of a name (ID), a set of
parameters (rule parameters) and a body scenarioDef inside
brackets. Two alternatives are offered to describe the body
part of a scenario (rule scenarioDef of the grammar):

• a meta-scenario composed by different sub-scenarios
(named and parameterized) and a specific part to speci-
fy their scheduling.

instance ::= instance ID of ID (Params);
schedule ::= schedule {

[ allenRelation | instantRelation ]+ };

• a scenario consisting of a sequence of elementary instruc-
tions (rule SeqElemTask).

SeqElemTask ::= elemTask ;
( { wait (timeExpr), } elemTask ; )∗

elemTask ::= [Declaration | Implementation
| Include | Destructor
| if | switch | repeat
| waitfor |asLongAs | eachtime | every
| join | randomChoice | use
| extraction | subscription
| reserve | free | confiscation]

All instructions in a sequence (rule SeqElemTask) are
executed one after each other. An optional delay can be
specified.

instruction A; wait(d1),
instruction B; wait(d2),
instruction C;

#/#
A

#/#

[d,d,eod]

eod/#

A; wait(d),

Figure 3: translation of A; wait(d),

Inside a sequence of elementary tasks, most of the instruc-
tions are completely specified by state-machines. Their cor-
responding state-machines will be presented to offer a better
understanding of their semantics. As first example, the figure
3 gives the translation into a state-machine of the instruction
A; wait(d),.

3.4. Elementary Tasks

As the language is built upon C++, it is always possible to
include C++ code everywhere inside scenarios by using four
specific instructions: include, declaration, implementation
and destructor.

Include ::= include {include_block};
Declaration ::= declaration {declaration_block};
Implementation ::= implementation {code_block};
Destructor ::= destructor {destructor_block};

The four rules are used to directly include specific C++
instructions. The include_block will be used to insert C++
#include instructions, while the declaration_block is used to
declare C++ variables that could be used inside the scenario.
The code_block is used to insert a sequence of instructions
written in C++ and the destructor_block is used to give the
specific C++ sequence of instructions that should be execut-
ed when the scenario will be terminated. Inside a scenario, it
is possible to insert several include, declaration and imple-
mentation blocks, but only one destructor block is allowed
per scenario. The content of those blocks is not analyzed dur-
ing the parsing of the scenario language but will be analyzed
during the C++ compilation.

The four following rules if, switch, repeat and random-
Choice describe usual conditional expressions. We will de-
scribe them by giving examples. Instructions if, re-
peat and switch are executed inside a time-step and cor-
responds to their usual meaning. In those instructions and the
following one sub-sequence A means any sequence of
elementary instructions (rule SeqElemTask).

The random choice instruction allows to choose be-
tween different subsequences. Each of them is guarded by a
condition and may have a weight (default weight is equal to
one). The choice is made between all subsequences whose
guarding condition is true, and by taking into account their
relative weight.

c© The Eurographics Association 2003.



Devillers and Donikian / Scenario Language

if (c1) {
sub-sequence A1

}
else {

sub-sequence A2
};

repeat {
sub-sequence B1

} until( c );

switch (num_expr) {
case (1) {

sub-sequence C1
}
case (2 to 4) {

sub-sequence C2
}
else {

sub-sequence C3
}

};

Figure 4: Instructions if, repeat and switch.

The waitfor instruction is a very simple synchroniza-
tion instruction: waitfor(condition), and its effect is also
very simple: The execution of the current scenario is stopped
until the condition becomes true.

random choice {
condition (cond1) {

sub-sequence B1
}
condition (cond2) weight(5) {

sub-sequence B2
}
. . .

};

Figure 5: Instruction random choice.

The figure 6 shows the state machine for the waitfor
instruction.

waitfor(c)

c/#

Figure 6: translation of the waitfor instruction.

The instruction aslongas allows to activate a sub-
sequence and to execute it until the condition c becomes
false:

aslongas (c) {
sub-sequence A

};

As illustrated on figure 7, the meaning is: as long as con-
dition c is true, run sub-sequence A. As A can be stopped
at any time, two distinct state machines are necessary be-
cause of this termination condition (With one state machine,
this could be possible only with one transition guarded by
(c==FALSE) from each state of A to the final state.). The
state machine on the left part of the figure 7 is in charge

of starting a sub-state machine (son) and of controlling, at
each time-step, the value of the condition c. When c becomes
false, it terminates the current A. The second state machine
is in charge of executing the sub-sequence A. If the end of A
is reached while c is true, do A again at the next time-step.
The timegate instruction avoids infinite looping if the s-
tate machine representing A has no duration.

aslongas(c) {A}

!c/#

c/start son

!c/terminate son

son

#/#

A

#/timegate

Figure 7: translation of the aslongas instruction.

The eachtime instruction is designed for reactive
scenarios:

eachtime (c1) {
sub-sequence A

} until (c2);

As shown in figure 8, the scenario continues just after
the eachtime’s launch, in parallel with the eachtime’s loop
(which runs via the loop state machine). Several instances
of the sub-state machine A can coexist at the same time de-
pending on the duration of those instances. The first instance
of A is launched if c1 is true when the initial state is reached,
or when c1 becomes true. But other instances are launched
only if c1 becomes false and then again true. The timegate
instruction is used for the same reason as for the aslon-
gas: only one A is launched during one time-step. The exit
condition until(c2) is optional. When it is used, the termi-
nation of the loop state machine depends on c2 but also on
the termination of all the Ai. When c2 is not used, there is
no final state in the loop state machine. The termination of
this state machine will then depend on the termination of its
parent.

1,A 2,... )/#end(A

eachtime(c1) {A} until(c2)

#/start loop

c2/#

!c1.!c2/#

loop c1.!c2/
start new(Ai);

c2/#

timegate

Figure 8: translation of the eachtime instruction.
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The every instruction is used to launch an instance of a
sub-scenario each time a delay is reached:

every (delay) {
sub-sequence A

} until (c);

As for the eachtime instruction, a loop state machine is
launched, and runs in parallel with the scenario (cf figure 9).
The first instance of A is launched only after the first d de-
lay. It is possible to use a termination condition c. If c occurs
during a delay, no more A will be launched. Here again, dy-
namic state machines are used, because multiple instances of
A can coexist at the same time, if the duration of A is longer
than d.

,A2,... )/#end(A1

i)start new(A

every(d) {A} until(c) loop

[0,d,eod]

#/start loop c/#

!c.eod/

Figure 9: translation of the every instruction

The join instruction is used as a point of synchroniza-
tion in a sequence of instructions. It permits to wait for the
complete execution of all eachtime and every instruc-
tions currently running inside the current sequence. If the
join instruction is used after an eachtime or an ev-
ery instruction without an until condition, the part of the
sequence following the join instruction will never be exe-
cuted.

every (delay) {
sub-sequence A

} until (c);
. . .
join;

Figure 10: The join instruction.

The use instruction (use sc_name(sc_p1 ,. . . , sc_pn)) per-
mits to start the execution of an instance of the scenario
sc_name as a sub-scenario of the current one. The current
sequence of instruction is stopped until the end of the ex-
ecution of the called sub-scenario. Due to the semantic of
instructions eachtime and every, only a subpart of the
scenario may be stopped and other parts can run in parallel
with the sub-scenario. In the example shown in figure 11, de-
pending on the evolution of the value of the condition c2, the
sub-scenario scenarioA can be either executed before, after
or can overlap the execution of the sub-sequence A.

eachtime (c1) {
eachtime (c2) {

sub-sequence A
};
use scenarioA(param1 , . . . );
sub-sequence B

};
sub-sequence C

Figure 11: Example of a call to a sub-scenario.

To represent the sequence of instructions, their corre-
sponding state-machines have to be concatenated by using
transitions without condition nor action. A simplification al-
gorithm is then used to reduce the number of states and tran-
sitions as illustrated by the example of figure 12. More com-
plex simplifications can be operated but have not yet been
implemented.

aslongas(c1) {A1};waitfor(c2)

c1/start son !c1/terminate son

!c1/#

#/# c2/#
c1/start son

!c1/#

!c1/terminate son

c2/#

S
im

pl
ifi

ca
tio

n

Figure 12: An example of the composition and simplification
of state-machines.

3.5. Actor Management

An important part of scenario concerns the ability to dialog
with autonomous characters. In our language, this is done
via an interface of actor. For each object with which the sce-
nario will have to interact, an interface has to be built. This
interface describes the way the scenario can communicate
with the actor. This actor can be an autonomous agent, but it
can also be a camera, a button, a trigger or any reactive ob-
ject. All actors will be member of the global set ActorSet,
and will also belong to a specific type of actor. Different op-
erations can be performed on sets (union, intersection and
subtraction). We have also defined the forall instruction
to execute of a sub-scenario A for all the components x of a
set. A corresponding state machine A(x) is started for each
instance of x. All these state machines will be launched at
the same logic instant.

extraction ::= forall ID { type ID } in ID
{code}

reserve ::= reserve ( actorReserve
( , actorReserve )∗ )
{ success {code}
failure {code} }

actorReserve ::= [ from ID to ID { count (code) }
| actor ID ]
{ priority(code) }
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free ::= free [ [ (set) ] | [ actor ID ] ]
confiscation ::= on confiscation(parameters)

{code}
subscription ::= on ID(parameters)

from { actor ID }
type ID {code}

parameters ::= parameter (, parameter )∗

parameter ::= ( T_ID | * | & | :: )+

As several scenarios can run at the same time, we have de-
fined a reservation mechanism which allows a scenario to be
sure that it will be the only one to dialog with a set of actors.
This is done via the reserve instruction. It is both possible
to reserve specific actors (actor ID) or a certain number
of actors belonging to a set (from originSet to targetSet {
count (number) }). An optional priority allows a scenario
to specify its level of interest for an actor or a group of actors.
As some of the actors can already be used by other scenar-
ios, this reservation may either be successful (execution of
the success block) or not (execution of the failure
block). Due to the priority specification, a scenario has the
ability to take an actor to another one: the confiscation
instruction allows a scenario to be informed of this confis-
cation. The free instruction allows a scenario to release an
actor or a set of actors. For example, in the following sce-
nario (crampGroup), some actors are selected inside the set
_visitors to participate to the scenario. Eachtime another s-
cenario confiscates one of those actors, it is suppressed from
the set.

scenario crampGroup(
float xGoal, float zGoal,
ActorSet * ptrVisitorSet,
int requested_number,
int _priority

)
{
include {

#include "ActorSet.h"
};
declaration {

ActorSet _visitors;
ActorSet _reserve;
int _number;
bool _inProgress;

};
c++ {

_number = ptrVisitorSet.size();
if (_number > requested_number)
{ _number = requested_number; }

_visitors = *ptrVisitorSet;
_inProgress = true;

};

reserve (
from _visitors to _reserve
count(_number) priority(_priority)

)

{
success { }
failure {

cout«"Warning !!! Problem during the
initial reservation of actors"«endl;
exit(0) //termination;

}
};

forall visitor in _reserve
{ ptrVisitorSet -> erase(dynamic_cast

<actortype *>(visitor)); };

on confiscation(actortype *
confiscated_actor)

{
_reserve.erase(dynamic_cast<actortype *>

(confiscated_actor));
_number = _number - 1;

};

aslongas (_number>0 && _inProgress)
{
use moveGroup(&_reserve,xGoal,zGoal);
c++ { _inProgress = false; };

};
free(_reserve);
}

The instruction on EventName(transmitter, other param-
eters) from { actor ID } type ID {code} is executed
when the scenario receive an event EventName, and by this
way allows a scenario to receive information from actors.
For example, in the following scenario, a click on a button
will generate the call to a specific sub-scenario Secondary-
Action.

scenario scenarioClick(
ActorSet * ptrBadGuy,
ButtonActor * button

)
{
include {

#include "ButtonActor.h"
#include "ActorSet.h"

};
declaration { bool _click; };

on Leftclick(ButtonActorGenerator *
transmitter)

from actor button type ButtonActor
{ _click = true; };

c++ { _click = false; };
eachtime(_click)
{

c++ { _click = false; };
use SecondaryAction(ptrBadGuy);

};
join;

}
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3.6. Scheduling

At the lower level of granularity, a scenario is composed of a
sequence of elementary tasks. The scheduling of elementary
tasks is expressed by the concatenation of corresponding s-
tate machines. The structure of a scenario can also be spec-
ified as a hierarchy of parallel sub-scenarios and scheduling
constraints (temporal relations between them). Such kind of
scenario will be written by using the following syntax:

instance ::= instance ID of ID (Params);
schedule ::= schedule {

[ allenRel | instantRel ]+ };
allenRel ::= ID [

equals | before | after | meets |
met by | overlaps |
overlapped by | during |
contains | starts | started by |
finishes | finished by
] ID ;

instantRel ::= [ start | end ] of ID
instantRel0
[ start | end ] of ID ;

instantRel0 ::= [ { ( duration ) } [ before | after ] |
equals ]

Each scenario can be represented by a temporal interval
with its initial and final instants. All temporal constraints
between sub-scenarios are expressed in a scenario by using
Allen’s and instant logic. J. Allen 1 has defined a logic mod-
el which permits to describe all possible relative positioning
of two temporal intervals along an axis (cf figure 13). In the
instant logic, the relative positioning of two instants along
the temporal axis is either before, after or equals.

A equals B

A before B

A meets B

A overlaps B

A during B

A starts B

A finishes B A finished by B

A started by B

A contains B

A overlapped by B

A met by B

A after B

Figure 13: Allen’s relations between two intervals.

The example of figure 14 illustrates the use of those in-
structions. Each Allen’s relation can be expressed as con-
straints on the four extremities of the two intervals. For those
temporal relations (Allen and instant), we did not allow to
specify disjunction but only conjunctions of them, as it is

scenario name(parameters) {
instance sc1 of subScenario1(parameters) ;
instance sc2 of subScenario2(parameters) ;
instance sc3 of subScenario3(parameters) ;
schedule {

sc2 starts sc1;
sc3 finishes sc1;
end of sc2 (12.0) before start of sc3;

};
}

Figure 14: Example of a scheduled scenario.

a NP hard problem to find a solution to the description in
the general case. From the set of relations a directed val-
uated graph is constructed whose nodes are extremities of
intervals. This description is logically consistent if there is
at least one solution to order extremities of segments. The
consistency of the description can be checked by searching
for circuits during a unique graph traversal.

For each scheduling block inside a scenario a correspond-
ing scheduler will use the graph structure at run-time to
schedule sub-scenarios execution. However, errors can occur
at run-time if some scenarios do not respect constraints im-
posed in the partial order. This will be detected by the sched-
uler which will destroy such inconsistent sub-scenarios: the
global consistency of a scenario description remains under
the control and responsibility of the programmer.

3.7. Conclusion

We have developed a specific compiler for our scenario lan-
guage. Each scenario is compiled and transformed into an
equivalent C++ code, and by linking it with precompiled li-
braries, a scenario manager object is obtained that can be
used in a simulation application7.

4. Scenario Example

Different scenarios have been developed to illustrate the ca-
pabilities of our scenario language6 . One of them is present-
ed; it takes place inside a virtual museum, visited by a group
of autonomous agents. In this scenario, actions of the us-
er will determine the execution of different sub-scenarios.
The goal of the user consists in finding and taking a stat-
uette on its pedestal and coming back to put it on a second
pedestal. To perform his task the user uses a hand made pe-
ripheral composed of two mouses and a magnetic sensor put
on board. A yellow ray represents its direction of navigation.
A blue ray, whose orientation is controlled by the magnetic
sensor (a flock of bird with 6 degrees of freedom) will be
used by the user to select and move the statuette inside the
museum. Different buttons on the peripheral allows the us-
er to go straight, and forward, to turn left and right and to
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take and release the object selected by the blue ray. During
the displacement of the user in the museum, three groups
of visitors (Group1, Group2 and Group3) will be controlled
by different scenarios to cramp his navigation. Fourteen sub-
scenarios have been specified and are scheduled as follows:

schedule {
start of robot equals start of visit;
start of startGroup1 equals start
of visit;

start of startGroup2 equals start
of visit;

start of supervision1 equals start
of visit;

supervision1 meets crampGroup1a;
supervision1 meets crampGroup2a;
supervision1 meets supervision2;
supervision2 meets supervision3;
supervision2 meets crampGroup3a;
crampGroup3a meets crampGroup3b;
supervision3 meets crampGroup3b;
supervision3 meets supervision4;
supervision4 meets crampGroup1b;
supervision4 meets crampGroup2b;

};

Figure 15 illustrates the obtained scheduling between the
different sub-scenarios. The robot scenario controls the robot
displacement, it starts at the beginning of the main scenari-
o and terminates when the robot has finished to perform its
activity. The startGroup1 and startGroup2 scenarios ask two
groups of visitors to go on the way of the user. startGroup[1,
2] and crampGroup[1a, 1b, 2a, 2b, 3a, 3b] are different in-
stances of the same scenario crampGroup described above.
Those scenarios are used to cramp the user displacemen-
t depending on its own location inside the virtual museum.
supervision[1, 2, 3] are different instances of the scenario su-
pervision given below. They are used to track the displace-
ment of the user inside the museum. A rectangular trigger is
used and when the user enters the corresponding area the
scenario is ended. Due to the temporal relations between
both families of scenarios (crampGroup and supervision),
the user journey indirectly control the displacement of the
different groups of visitors. For example, the scenario super-
vision3 terminates when the user is near the statuette. By its
ending, the scenario crampGroup3b is started and asks the
third group to go around the user (cf image 5 of figure 16).

robot

startGroup1

startGroup2

supervision1

crampGroup2a

crampGroup1a

supervision2 crampGroup3a

supervision3

supervision4

crampGroup3b

visit

crampGroup1b

crampGroup2b

Figure 15: Scheduling of the sub-scenarios

scenario supervision(
MuseumTriggerActor * manager,
float xCenter, float zCenter,
float width, float length

)
{
include {

#include "MuseumTriggerActor.h" };
declaration { bool _enter; };

//----- init
c++ {

_enter = false;
manager -> trackPosition(xCenter,zCenter,

width,length);
};

//----- waiting for the user
on enterArea( MuseumTriggerActor * sender,

float x, float z)
from actor trigger type MuseumTriggerActor

{ _enter = true; };
//----- block the end of the scenario
//----- until the user enters the area
waitfor(_enter);

//----- end of the tracking
destructor { manager -> stopTracking(); };

}

The scenario moveGroup presented now is used as sub-
scenario of the crampGroup one to control the displacement
of a group of visitors to a new location (action moveTo sent
to each member of the set _input).

scenario moveGroup
(
ActorSet * input,
float xGoal, float zGoal

)
{
include {
#include "ActorSet.h"
#include "MapUser.h"

};

declaration {
int _number;
int _cpt;
ActorSet _input;

};

// ------ init
c++ {
_number = input->size();
_cpt = 0;
_input = *input;

};

// ------ displacement
forall humano type ptrMapUser in _input
{

humano -> moveTo(xGoal,zGoal);
};
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// ------ counting arrived actors
on reachedposition(GMapUser * sender,

float x,float z)
from type MapUser
{

actortype * ancestor = dynamic_cast
<actortype *>(sender);

if (_input.find(ancestor) != _input.end())
{
if ( (pow((xGoal - x),2) +

pow((zGoal - z),2)) > (2*2))
{

sender -> moveTo(xGoal,zGoal);
}
else { _cpt++; }

}
};
// ------- waiting fo the end
waitfor(_cpt == _number);
}

Images of figures 16 illustrate different steps of the sce-
nario execution.

1. The red area represents the target area of the statuette.
The blue robot on the right, is on the way to take its own
statuette. Some autonomous agents can be seen on the
background. Their behaviour consist in being in the way
of the visitor during his search of the statuette.

2. The user has started to move in the direction of the
statuette. In reaction, scenarios crampGroup1a and
crampGroup2a asked two groups to move in its direc-
tion: the visitor will have to avoid them.

3. After having avoided those groups, a third one is moving
in its direction (scenario crampGroup3a). The statuette is
now clearly in the field of view of the visitor.

4. The visitor takes the statuette by using the blue ray.

5. At this moment, when he turns around, the user can see
a group of autonomous agents just around him (scenario
crampGroup3b). The red arrow shows the location of the
robot who is moving slowly in the direction of the other
statuette.

6. The robot takes its own statuette.

7. On the way back, the two first groups will cross again
the visitor path (scenarios crampGroup1b and cramp-
Group2b).

8. The visitor leaves the statuette at its target location. This
is the end of the manipulation and of the scenario.

5. Conclusion

In this paper we have presented the architecture of a scenari-
o authoring system, based on a high level description lan-
guage. Internal representation is based on the use of Allen’s
logic and of rewriting rules to produce hierarchical state ma-
chines. Dedicated instructions of the language concerning
Scheduling and Actor Management issues has also been p-
resented. Using C++ code inside the scenario provides the a-
bility to describe a large variety of scenaristic elements with-
out being limited to a specific description language. The vir-
tual museum example illustrates one of the advantage of our
approach: the temporal synchronization of different scenar-
ios allows to reach the objective without having to write one
big scenario integrating all features. Some of the scenarios
are generic and can be used for several kinds of application,
like the supervision scenario to trigger an area or the move-
Group scenario asking a group of characters to reach a spe-
cific location. By using this scenario language in common
with triggers inside applications integrating controllable au-
tonomous characters7, it is very easy to describe three of the
four categories of scenario given in section 2: rules, ambi-
ent and sequence of actions. Concerning the goal oriented
family of scenario it is necessary to add an action planning
functionality which is not part of our scenario language, but
it can easily be combined with.

Nevertheless, our scenario language approach, combining
the use of dedicated instructions in common with C++ parts,
restricts the use of scenario language to programmers. De-
spite the benefits of the language approach described earli-
er, the description of behaviour remains quite difficult for
people who are not computer scientists. Therefore we are
working on a higher-level specification language, in order to
allow behavioural specialists to specify and test their mod-
els in an interactive simulation. Work in progress concerns
the connection of our scenario programming language with
the XML output of a scenario authoring tool9. This author-
ing tool allows scenarists to describe scenarios of interactive
fiction in natural language. A syntactic and spatio-temporal
semantic analysis of phrases corresponding to actions is per-
formed and the result consists in a decomposition of each
action phrase into several parameters (like the nature and
manner of the action, the subject and the object of the ac-
tion) and in a specification of their relative positioning on a
common temporal axis.
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Figure 16: Snapshots taken from an interactive experiment.
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