
1

Relating paths in transition systems: the fall of the modal
mu-calculus

CATALIN DIMA, Université Paris-Est, France
BASTIEN MAUBERT, Università degli Studi di Napoli “Federico II”, Italy
SOPHIE PINCHINAT, Université de Rennes 1, France

We revisit Janin and Walukiewicz’s classic result on the expressive completeness of the modal mu-calculus
with respect to Monadic Second Order Logic (MSO), which is that the mu-calculus corresponds precisely to
the fragment ofMSO that is invariant under bisimulation. We show that adding binary relations over finite
paths in the picture may alter the situation. We consider a general setting where finite paths of transition
systems are linked by means of a fixed binary relation. This setting gives rise to natural extensions ofMSO and
the mu-calculus, that we call theMSO with paths relation and the jumping mu-calculus, the expressivities of
which we aim at comparing. We first show that “bounded-memory” binary relations bring about no additional
expressivity to either of the two logics, and thus preserve expressive completeness. In contrast, we show that
for a natural, classic “infinite-memory” binary relation stemming from games with imperfect information, the
existence of a winning strategy in such games, though expressible in the bisimulation-invariant fragment
ofMSO with paths relation, cannot be expressed in the jumping mu-calculus. Expressive completeness thus
fails for this relation. These results crucially rely on our observation that the jumping mu-calculus has a
tree automata counterpart: the jumping tree automata, hence the name of the jumping mu-calculus. We also
prove that for observable winning conditions, the existence of winning strategies in games with imperfect
information is expressible in the jumping mu-calculus. Finally, we derive from our main theorem that jumping
automata cannot be projected, and ATL with imperfect information does not admit expansion laws.

CCS Concepts: • Theory of computation → Logic and verification; Modal and temporal logics; Au-
tomata over infinite objects; Automata extensions;

Additional Key Words and Phrases: Expressiveness, imperfect information, monadic second order logic,
mu-calculus, transition systems

ACM Reference Format:
Catalin Dima, Bastien Maubert, and Sophie Pinchinat. 2017. Relating paths in transition systems: the fall of
the modal mu-calculus. ACM Trans. Comput. Logic 1, 1, Article 1 (January 2017), 33 pages. https://doi.org/
0000001.0000001

1 INTRODUCTION
Monadic Second-Order Logic (MSO) is considered as a standard for comparing expressiveness
of logics of programs. Ground-breaking results concerning expressiveness and decidability of
MSO on infinite graphs were obtained first on “freely-generated” structures (words, trees, tree-like
structures, etc.) [49, 53], then on “non-free” structures like grids [33] or infinite graphs generated by
regularity-preserving transformations [11, 15]. In all the above settings, the syntax ofMSO utilises

Authors’ addresses: Catalin Dima, Université Paris-Est, Laboratoire d’Algorithmique, Complexité et Logique (LACL),
Créteil, France, dima@u-pec.fr; Bastien Maubert, Università degli Studi di Napoli “Federico II”, DIETI, Naples, Italy,
bastien.maubert@gmail.com; Sophie Pinchinat, Université de Rennes 1, IRISA, Rennes, France, sophie.pinchinat@irisa.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
1529-3785/2017/1-ART1 $15.00
https://doi.org/0000001.0000001

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 C. Dima, B. Maubert and S. Pinchinat

one or more binary relation symbols which are interpreted using the binary edge relations of the
graph structure. Additionally, much attention has been brought to the study of enrichments of
MSO with unary predicate symbols or with the “equal level” binary predicate (MSOeql) [19, 31, 48].
For many of these settings, MSO has been compared with automata and with modal logics.

Standard results on trees are Rabin’s expressiveness equivalence betweenMSOwith two successors
and automata on binary trees [40], and Janin and Walukiewicz’s result [27] showing that the
bisimulation-invariant fragment of MSO on transition systems coincides with the µ-calculus.
Notable exceptions to the classical trilogy between MSO, modal logics and automata are MSO on
infinite partial orders – where only partial results are known [7, 14, 43] – and MSOeql– where,
similarly, only partial results are known [48].
More recently, there has been an increased interest in the expressiveness and decidability of

logics defined on structures in which two “orthogonal” relations are considered: the so-called
temporal epistemic (multi-agent) logics [21], which combine time-passage relations and epistemic
relations on the histories of the system. Time-passage relations classically represent the evolution
of the system, while each epistemic relation captures some agent’s partial observation of the system
by relating indistinguishable histories. They allow to reason about what these agents know about
the state of the system along its executions. We may identify now an important sub-domain in
verification which is concerned with the expressivity, decidability and axiomatisability of logics of
knowledge and time [8, 21, 24, 25, 32, 51].
A natural question that arises regarding logics of agents that combine time and knowledge is

whether they admit a trilogy similar to the classic one: do there exist natural extensions ofMSO,
of the µ-calculus, and of tree automata for the temporal epistemic framework, and how would
they compare? To the best of our knowledge, these questions remain open. Only partial results
exist on relations between some extensions ofMSO, µ-calculus, tree automata and other logics of
knowledge and time [35, 45, 46, 51].

The first observation is that appropriate extensions ofMSO, of the µ-calculus and of tree automata
would rely on two sorts of binary relations: those related to the behaviour of the system and those
related to epistemic features. While the temporal part of these logics naturally refers to a tree-like
structure, the epistemic part requires considering binary relations defined on histories, in order to
model powerful agents that remember the whole past. The models of such an extension ofMSO
neither are tree-like structures, nor grid-like structures, nor graphs within the Caucal hierarchy. The
proposals in this direction that we know about are the following. In [51], an encoding of LTL with
knowledge into Chain Logic with equal-level predicate, which is a fragment ofMSOeql , is mentioned.
The epistemic µ-calculus is introduced and its model-checking problem studied in [45, 46]. An
extension of this epistemic µ-calculus is studied in [1], and [35] proposed a generalisation of tree
automata, called jumping tree automata, which is suited to the study of temporal epistemic logics.

In this work, which is an extended version of [17], we develop a general setting in which models
are unfoldings of transition systems together with a binary relation over their finite executions,
also called paths or histories. Such relations are called path relations, and their definition is general
enough to capture all indistinguishability relations considered in temporal epistemic logics, and
more. We propose extensions ofMSO and of the µ-calculus, respectively called the Monadic Second
Order Logic with path relation and the jumping µ-calculus.MSOwith path relation is an extension of
MSO interpreted over unfoldings of transition systems equipped with a path relation. The syntax is
that of MSO on graphs with an additional binary relation symbolÀ, interpreted “transversely” on
the tree-unfolding according to the binary relation over paths that equips the system. The jumping
µ-calculus is a generalisation of the epistemic µ-calculus defined in [45, 46]: it is also evaluated on
tree-unfoldings of transition systems, and it features a jumping modality À whose semantics relies

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:3

on the path relation that equips the system. In case the path relation is seen as modelling histories’
indistinguishability for some agent, this modality coincides with the classic knowledge operator K
for this agent (see, e.g., [21]). As in the classic setting of [27], definability in the jumping µ-calculus
entails definability inMSO with path relation. It is the converse statement that we explore, that
is the expressive completeness of jumping µ-calculus with regards to (the bisimulation invariant
fragment of)MSO with path relation.
We first show that the jumping tree automata recently defined in [35] are equivalent to the

jumping µ-calculus, and the two-way translation does not depend on the a priori fixed path relation.
We then address, like in [27], the question whether for bisimulation-closed classes of models,
definability inMSO with path relation implies definability in the jumping µ-calculus. As it turns
out, the answer to this question depends on the properties of the path relation one considers.
First, we consider the class of recognisable relations [3], which typically capture agents with

bounded memory. We establish that when the path relation is recognisable, the jumping µ-calculus
is expressively complete with regards to the bisimulation-invariant fragment ofMSO with path
relation. Indeed, recognisable relations being MSO-definable, both our extensions of MSO and the
µ-calculus with such relations collapse to the classicMSO and µ-calculus, respectively. Concerning
transition systems with bounded branching degree, we obtain that the jumping µ-calculus with
recognisable path relation is at most exponentially more succinct than the µ-calculus, while its
satisfiability problem is Exptime-complete. These results rely on the effective translation of jumping
tree automata equipped with recognisable path relations into two-way tree automata [35].

We then show that considering more powerful path relations can break this expressive complete-
ness, even for regular relations (i.e., relations accepted by synchronous finite transducers [3]). As
witness of this phenomenon we consider the so-called synchronous perfect recall relation over paths,
which is central in logics of knowledge and time as well as in games with imperfect information
(see, e.g., [21, 41, 45, 46]), and is accepted by a very simple synchronous transducer with only one
state. We establish that for synchronous perfect recall, the jumping µ-calculus is not expressively
complete with regards to MSO with path relation. To achieve this, we prove that the class of
two-player reachability games with imperfect information and synchronous perfect recall (with a
fixed number of observations and actions) where the first player wins, cannot be defined in the
jumping µ-calculus, but is closed under bisimulation and is definable in our extension ofMSO. The
proof heavily relies on the equivalence between the jumping µ-calculus and jumping automata:
assuming towards a contradiction that there is a jumping automaton that accepts unfoldings of
game arenas in which the first player has a winning strategy with imperfect information, we exhibit
a family of such unfoldings accepted by the automaton and exploit the “pigeon-hole principle” to
show that this automaton also accepts the unfolding of an arena in which the first player does not
win. We point out that the proof makes use of unobservable winning conditions: indeed, we also
prove that if winning conditions are assumed to be observable, and if the first player remembers
her actions, then the class of imperfect-information (either reachability or parity) games where the
first player wins is definable in the jumping µ-calculus.

The fact that, when relating paths with some relations such as the one representing synchronous
perfect recall, the mu-calculus is no longer as expressive as bisimulation-invariant MSO, motivates
the slightly outrageous title of this article. From this expressive incompleteness result, we also
derive a number of corollaries concerning jumping tree automata and strategic logics. First, we
obtain an argument to show that the class of jumping tree automata is not closed under projection.
The second impact concerns logics of coalitions and strategies, and in particular the comparison of
Alternating-time Temporal Logic (ATL) with fixed point logics. It is folklore that when agents have
perfect information, ATL is subsumed by the bisimulation-invariant fragment of MSO, and thus by
the µ-calculus. In addition, and in connection with the latter, ATL with perfect information admits

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 C. Dima, B. Maubert and S. Pinchinat

expansion laws, or fixed-point axioms, for combinations of strategic and temporal operators, and
can thus be translated into the Alternating-time µ-Calculus (AMC) of [2]. For imperfect information,
the situation is very different: it is proved in [9] that the alternation-free fragment of Alternating-
time µ-Calculus with epistemic operators and imperfect information (AEMCi) does not capture ATL
with imperfect information (ATLi) for memoryless semantics, which implies the absence of simple
expansion laws for ATLi without memory. They also proved that ATLi with synchronous perfect
recall is not captured by the alternation-free fragment of AEMCi without memory. As a corollary
of our main theorem we can strengthen the latter result. We obtain that ATLi with synchronous
perfect recall is not captured by the full AEMCi with synchronous perfect recall, thus implying the
absence even of complex expansion laws/fixed-point axioms for ATLi with synchronous perfect
recall. Interestingly, the simplicity of the ATLi formula and models considered in the proof of
Theorem 5.7 makes the latter result very robust to variations in the semantics of the strategic
operator.

The paper runs as follows: in Section 2 we develop the framework of our study. In Section 3 we
introduce the two logics we consider, MSO with path relation and the jumping µ-calculus, and we
state the expressive completeness problem as well as our main results on the matter, theorems 3.6 and
3.7. In Section 4 we first prove Theorem 3.6; we then introduce the notion of jumping tree automata,
and we show them to be equivalent to the jumping µ-calculus. Thanks to this equivalence we
then establish succinctness and complexity results for the jumping µ-calculus with recognisable
path relation. The equivalence between jumping tree automata and the jumping µ-calculus is
also crucial in the proof of Theorem 3.7, which we present in Section 5. There, we first introduce
two-player games with imperfect information and synchronous perfect recall. Then we show that
when winning conditions are observable and actions are remembered, the classes of reachability and
parity games where the first player wins are definable in the jumping µ-calculus (Theorem 5.2). We
finally prove that definability is lost when the assumption that winning conditions are observable is
relaxed (Theorem 5.7). In Section 6 we establish several results that follow from the latter theorem:
first, that jumping tree automata are not closed under projection, and second, that ATLi with
synchronous perfect recall does not admit expansion laws for the strategic operators. We conclude
and give some perspectives in Section 7.

2 PRELIMINARY NOTIONS
We first fix a few basic notations. Given two words w and w ′ over some alphabet Σ, we write
w ⪯ w ′ if w is a prefix of w ′; if w = a0a1 . . . ∈ Σω is an infinite word we let, for each i ≥ 0,
w[i] := ai and w[0, i] := a0a1 . . . ai . For a finite word w = a0 . . . an−1 ∈ Σ∗, its length is |w | := n.
Also, given a binary relation R ⊆ A × B between two sets A and B, for every element a ∈ A, we let
R(a) := {b | (a,b) ∈ R}.
In the rest of the paper, we fix AP = {p,p ′, . . .} a countable set of atomic propositions and
Act = {a,a′, . . .} a countable set of actions.
We now introduce transition systems and their unfoldings.

Definition 2.1. A transition system is a structure S = (S, sι , {aS}a∈Act , {pS}p∈AP), where S is a
(possibly infinite) set of states, sι is an initial state, each aS is a binary relation over S and each pS

is a subset of S . We let s
a
−−→ s ′ stand for (s, s ′) ∈ aS .

Because the logics that we aim at defining are concerned with paths in transition systems, i.e.,
finite sequences of states and actions that start in the initial state and follow the binary relations,
these logics cannot be evaluated on the transition systems themselves, but paths must be made
accessible first. We do so by considering their tree-unfoldings, that we define now after basic
definitions for trees.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:5

Trees. A tree is a nonempty, prefix-closed set τ ⊆ N∗. An element x ∈ τ is a node, and the empty
word ϵ is the root of the tree. If x · i ∈ τ then x · i is a child of x . A node with no child is a leaf.
We call branch a sequence of nodes in τ (either finite or infinite) in which each node (except the
first one) is a child of the previous one; a branch is maximal if it is infinite, or if it ends up in a
leaf. A node y is a descendant of a node x if x is a prefix of y (i.e., x ⪯ y), or equivalently if y can be
found along some branch that starts in x . We let [τ]x denote the subtree of τ rooted in x : formally,
[τ]x := {y | x ⪯ y}.

A marked tree is a pair t = (τ ,m), where τ is a tree andm : τ → (Act × 2AP) is a marking of the
nodes. The intuitive meaning ofm(x) = (a, ℓ) is that x was reached through action a, and that the
set of atomic propositions that hold in x is ℓ. We say that a is the action of x , and ℓ its label. Note
that the action of the root is meaningless. We say that y is an a-child of a node x if y is a child of x
and its action is a, i.e., ifm(y) = (a, ℓ) for some label ℓ. Given a node x with markingm(x) = (a, ℓ),
we write a x := a for its action and ℓ x := ℓ for its label.

The word of a node x is w(x) := m(ϵ)m(x1) . . .m(xn), where ϵ x1 . . . xn(= x) is the (unique)
branch from the root to x . For a finite subset AP ⊂ AP, an AP-tree is a marked tree t = (τ ,m) such
that for every node x ∈ τ , it holds that ℓ x ⊆ AP . For a marked tree t = (τ ,m) and a node x ∈ τ , we
let [t]x := ([τ]x ,m′), wherem′ is the restriction ofm to [τ]x . We may write x ∈ t instead of x ∈ τ .

For convenience and readability, our trees have (at most) countable branching degree. We point
out that, unless otherwise stated, our results still hold for arbitrary branching degree. Specifically,
Propositions 4.4 and 4.5 assume bounded branching degree, and Theorem 5.2 considers games with
finite branching degree.

We now define unfoldings of transition systems.

Definition 2.2 (Unfoldings). Let S = (S, sι , {aS}a∈Act , {pS}p∈AP) be a transition system. The
unfolding tS of S is the marked tree (τ ,m) with least tree τ such that:
(1) ϵ is associated1 to sι , and ℓ ϵ = {p | sι ∈ pS}, and a ϵ is any action;
(2) for each node x ∈ τ associated to state s , letting ⟨s

ai
−−→ si ⟩i ∈I be an enumeration of the

outgoing transitions from s (with I ⊆ N), for each i ∈ I we have
• x · i ∈ τ ,
• x · i is associated to si , and
• m(x · i) = (ai , {p ∈ AP | si ∈ p

S}).

Note that the choice of the enumeration in Point 2 of Definition 2.2 is irrelevant to the logics
we consider. Also, every marked tree can be seen as a transition system and is its own unfolding.
Therefore in the following we could equivalently forget about transition systems and consider only
trees, or keep seeing trees as unfoldings of transition systems. We choose the latter in order to
emphasise the particularity of the logics that we introduce, i.e., the necessity to unfold to capture
paths. Indeed, paths in a transition system S are in one-to-one correspondence with the nodes of
the marked tree tS .

Let us now define the means by which paths of a transition system are related.

Definition 2.3. A path relation is a binary relation over (Act × 2AP)∗.

A path relation links finite paths of transition systems overAP andAct . It also induces a binary
relation between nodes of marked trees (over AP and Act) in a natural way by relating nodes x
and y whenever their wordsw(x) andw(y) are related. We use typical elementÀ for path relations;
this symbol emphasises the “transversal” connection of nodes in the trees.

1We leave this notion of “associated state” informal, as it is only useful to define the unfolding. We could add a third
component in labeled trees that makes formal this association, and forget it after the construction.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 C. Dima, B. Maubert and S. Pinchinat

Example 2.4. A typical example of path relations are indistinguishability relations used in tem-
poral epistemic logics (see, e.g., [21, 24, 25]). Consider an agent who observes the evolution of a
transition system. Now assume that this agent has only a partial, imperfect observation of this
system. The agent’s observational power is usually defined by two parameters:

• how she observes a given state of the system, and
• how much she remembers of what she observes along executions of the system.

For the first point, the agent may for instance only have access to the truth value of a subset
Pub ⊂ AP of “public” atomic propositions, the others being “private”. For the second point,
classic assumptions are that the agent does not remember anything, in which case we talk about a
memoryless agent, or that she remembers everything, in which case we talk about an agent with
perfect recall. These two parameters together induce an indistinguishability relation, or epistemic
relation, that relates two paths of the system if the agent cannot tell the difference between them. In
the example of an agent with perfect recall who can only observe a subset Pub of public propositions,
this relation is the path relation such that two words overAct × 2AP are related if their projections
on Act × 2Pub are equal. If instead we consider a memoryless agent, then two words are related if
the projections of the last letter of each word are the same. Note that in this example the agent has
a perfect observation of the actions that take place in the system.

We end up this section by recalling the classic notion of bisimulation [36, 38, 50] between
transition systems.

Definition 2.5. Let S and S′ be two transition systems. A bisimulation between S and S′ is a
binary relationZ ⊆ S × S ′ such that, for all (s, s ′) ∈ Z:

(1) for all p ∈ AP, s ∈ pS iff s ′ ∈ pS
′ ;

(2) for all a ∈ Act , and for all r ∈ aS(s), there is r ′ ∈ aS′(s ′) such that (r , r ′) ∈ Z;
(3) and vice-versa.

We say that S and S′ are bisimilar, written S - S′, if there is a bisimulationZ between S and S′
such that (sι , s ′ι) ∈ Z. A class C of transition systems is bisimulation closed if S ∈ C and S - S′
imply S′ ∈ C, for all S and S′.

3 EXPRESSIVE COMPLETENESS ISSUES
In the rest of the paper, additionally to the sets AP and Act defined earlier, we fix a countable set
of second order variables Var = {X ,Y , . . .}. A valuation for a marked tree t = (τ ,m) is a mapping
V : Var→ 2τ . Classically, given X ∈ Var and T ⊆ t , we let V [T /X] be the valuation that maps X to
T , and which coincides withV on all other variables:V [T /X](Y) = T if Y = X , andV (Y) otherwise.

3.1 Monadic second order logic with path relation
We define the logic MSOÀ as an extension of the Monadic Second Order Logic (MSO) interpreted
over transition systems with a path relation.

Formulas ofMSOÀ are defined inductively by the following grammar:

(MSOÀ ∋)ψ ::= sr (X) | p(X) | a(X ,Y) | X ⊆ Y | ¬ψ | ψ ∨ψ ′ | ∃X .ψ (X) | XÀY
where p ∈ AP and X ,Y ∈ Var. The syntactic fragment of the logic which does not use predicate
À is MSO.

Given a path relationÀ, anMSOÀ formulaψ is interpreted over a marked tree t = (τ ,m) with a
valuation V : Var→ 2τ . We write t ,V |=À ψ to mean thatψ holds in marked tree t for valuation V ,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:7

which is defined inductively as follows:

t ,V |=À sr (X) if V (X) = {ϵ}

t ,V |=À p(X) if for all x ∈ V (X), p ∈ ℓ x

t ,V |=À a(X ,Y) if V (X) = {x},V (Y) = {y}, and y is an a-child of x

t ,V |=À X ⊆ Y if V (X) ⊆ V (Y)

t ,V |=À ¬ψ if t ,V ̸ |=Àψ

t ,V |=À ψ ∨ψ ′ if t ,V |=À ψ or t ,V |=À ψ ′

t ,V |=À ∃X .ψ (X) if there is T ⊆ t such that t ,V [T /X] |=À ψ (X)

t ,V |=À XÀY if V (X) = {x},V (Y) = {y}, and x Ày

If ψ ∈ MSOÀ is a sentence (i.e., it has no free variable), its semantics is independent of the
valuation. We then simply write t |=À ψ . For a sentence ψ ∈ MSOÀ, a path relation À and a
transition system S, we write S |=À ψ whenever tS |=À ψ .
We let L(ψ ,À) := {S | S |=À ψ } be the set of models ofψ .

3.2 The jumping µ-calculus
We now define the jumping µ-calculus, whose name comes from their automata counterpart, the
jumping tree automata (see Proposition 4.2). The term “jumping” indicates the fact that these
automata, in addition to sending copies of themselves to children of the current node in their input
tree as classic tree automata do, can also perform transversal “jumps” in the input tree, sending
copies to nodes related to the current one by some fixed path relation.

The syntax of the jumping µ-calculus (LÀµ) is defined by the following grammar:

(LÀµ ∋)φ ::= X | p | ¬φ | φ ∨ φ | a φ | Àφ | µX .φ(X)

where X ∈ Var, p ∈ AP, a ∈ Act and in the last rule, X appears only positively (under an even
number of negations) in φ(X). We classically define the dual operators ∧, a , À and ν as follows:
φ ∧ φ ′ := ¬(¬φ ∨ ¬φ ′), a φ := ¬ a ¬φ, Àφ := ¬À¬φ and νX .φ := ¬µX .¬φ[X ← ¬X].

Given a path relation À, a formula of LÀµ is interpreted over a marked tree t = (τ ,m) with a
valuation V : Var→ 2τ . For φ ∈ LÀµ , we inductively define JφKt,VÀ ⊆ τ as follows:

JX Kt,VÀ := V (X)

JpKt,VÀ := {x ∈ t | p ∈ ℓ x }

J¬φKt,VÀ := t \ JφKt,VÀ

Jφ ∨ φ ′Kt,VÀ := JφKt,VÀ ∪ Jφ ′Kt,VÀ

J a φKt,VÀ := {x ∈ t | x has an a-child in JφKt,VÀ }

JÀφKt,VÀ := {x ∈ t | there exists y ∈ JφKt,VÀ such that xÀy}

JµX .φ(X)Kt,VÀ :=
⋂
{T ⊆ t | Jφ(X)Kt,V [T /X]À ⊆ T }

Note that requiring that X appears only positively in φ(X) for each formula µX .φ(X) in LÀµ yields a
monotone function T 7→ Jφ(X)Kt,V [T /X]À , which hence has a least fixpoint, namely JµX .φ(X)Kt,VÀ .

If φ ∈ LÀµ is a sentence (i.e., it has no free variable), its semantics is independent on the valuation,
such that we may omit it from the semantics. For a sentence φ ∈ LÀµ , a path relationÀ and a marked

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 C. Dima, B. Maubert and S. Pinchinat

tree t , we write t |=À φ whenever ϵ ∈ JφKtÀ, and for a transition system S, we write S |=À φ if
tS |=

À φ. We let L(φ,À) := {S | S |=À φ} be the set of models of φ.
Finally, we let Lµ denote the sublanguage of LÀµ obtained by removing the modality À : as relation

À then becomes superfluous, for φ ∈ Lµ , we let L(φ) := {S | tS |= φ}.

3.3 Expressive Completeness
Whichever logic one considers, say L, a class C of transition systems is L-definable if there is a
formula of L whose set of models is exactly C.

Proposition 3.1. For every path relation À, every LÀµ -definable class is closed under bisimulation.

To establish this result, it is enough to prove Lemma 3.2 below, which states that whenever two
transition systems over Act are bisimilar, their unfoldings enriched with a given path relation are
also bisimilar as transition systems over Act ′ := Act ∪ {aÀ}. Indeed, Lemma 3.2 implies that the
unfoldings of two bisimilar transition systems satisfy the same LÀµ -formulas seen as µ-calculus
formulas over Act ′.

LetÀ be a path relation. Given a marked tree t , we define the enriched transition system tÀ over
AP and Act ′ := Act ∪ {aÀ}, where aÀ is a fresh action symbol, by letting (x ,y) ∈ at

À

À whenever
w(x) À w(y).

Lemma 3.2. Let S and S′ be two transition systems andÀ a path relation. If S - S′, then tÀ
S

- tÀ
S′
.

Proof. SinceS andS′ are bisimilar, so are their unfoldings tS and tS′ (seen as transition systems).
More precisely, given a bisimulation relationZ between S and S′, we describe how to define a
relationZ1 that is a bisimulation between tS and tS′ , and that only relates nodes that have the
same word.
First, let the roots of tS and tS′ be related by Z1. Then, for two non-root nodes x ∈ tS and

x ′ ∈ tS′ , we let (x ,x ′) ∈ Z1 if their parents are related by Z1, their actions a x and a x ′ are the
same, and their associated states2 are related byZ. An easy proof by induction on the nodes’ depth
shows that nodes related byZ1 indeed have the same word. It is also easy to check thatZ1 is a
bisimulation between tS and tS′ .

Now let us check thatZ1 is also a bisimulation between the enriched structures tÀ
S
and tÀ

S′
seen

as transition systems over Act ′ = Act ∪ {aÀ}. Relation Z1 already satisfies the conditions for
atomic propositions and successors by actions in Act , we just need to check that it also satisfies
the conditions for the additional action aÀ. Let (x ,x ′) ∈ Z1, and let y ∈ tÀ

S
be an aÀ-successor

of x in tÀ
S
, i.e., y is such that w(x) À w(y). Because Z1 is a bisimulation between tS and t ′

S
and

y is (obviously) reachable from the root of tS , there must be some y ′ ∈ t ′
S
such that (y,y ′) ∈ Z1.

Now because (x ,x ′) ∈ Z1, we have thatw(x) = w(x ′), and similarlyw(y) = w(y ′). It follows that
w(x ′) À w(y ′), so y ′ is an aÀ-successor of x ′ in tÀ

S
. Since (y,y ′) ∈ Z1, Point 2 of Definition 2.5

holds, which concludes. The argument for Point 3 is symmetric. □

The following proposition can easily be established with a straightforward extension of the
effective translation of µ-calculus formulas into MSO given, e.g., in [23, Ch14].

Proposition 3.3. For every path relation À, every LÀµ -definable class is MSOÀ-definable.

We now engage our main concern, the expressive completeness of LÀµ with respect toMSOÀ.
As in [27], due to Proposition 3.1, this question is meaningful only for bisimulation-closed classes
of transition systems. We thus seek properties on the path relation À so that LÀµ is expressive
complete with respect to MSOÀ, in the following sense:
2See footnote 1 page 5.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:9

Definition 3.4 (Expressive completeness). LÀµ is expressive complete with respect to MSOÀ if every
bisimulation-closed class of transition systems that is MSOÀ-definable is also LÀµ -definable.

Classes of relations.We recall the notions of recognisable, regular and rational relations. Let Σ
be a finite alphabet: A binary relation over Σ∗ is rational if there is a finite state automaton with
two tapes (a transducer) that accepts a pair of words over Σ if, and only if, it is in the relation (see
[3] for details). In general, transducers can read their two input words asynchronously, i.e., they can
progress at different paces on each tape. An example of rational relation is the epistemic relation of
an agent with asynchronous perfect recall (i.e., an agent that remembers the whole sequence of
observations she makes modulo stuttering; see, e.g., [39]). A binary relation over Σ∗ is regular if it
is accepted by a synchronous transducer3. An example is the epistemic relation of an agent with
synchronous perfect recall [4, 6]. Finally, a relation over Σ∗ is recognisable if there is a finite family

of regular languages L1,L
′
1, . . . ,Ln ,L

′
n ⊆ Σ∗ such thatÀ =

n⋃
i=1
Li × L

′
i (refer to [3, Th.1.5, p.46]

for details). For example, if an agent has bounded memory represented by a finite state machine
whose states represent the different possible states of the agent’s memory (as in, e.g., [18]), then
her indistinguishability relation is recognisable (see [34, Lemma 25, p.120]).

Definition 3.5. A path relation À is rational (resp. regular, recognisable) if there are finite subsets
AP ⊂ AP and A ⊂ Act such thatÀ is equal to some rational (resp. regular, recognisable) relation
over (A × 2AP)∗. In that case we also say that À is over signature (AP ,A). Finally, when we fix such
a rational, regular or recognisable path relationÀ over signature (AP ,A), we restrict logics LÀµ and
MSOÀ to transition systems over this signature, i.e., transition systems that only involve atomic
propositions in AP and actions in A.

We now present the two main results of this work. The first one will be proved in Section 4, the
second one in Section 5.

Theorem 3.6. For any recognisable path relation À, LÀµ is expressive complete w.r.t. MSOÀ.

Theorem 3.7. There exists a regular (and hence rational) path relation À such that LÀµ is not
expressive complete with regards to MSOÀ.

4 TREE AUTOMATA FOR THE JUMPING µ-CALCULUS
In this section we present the class of jumping tree automata, first introduced in [35]. We prove
that they are equivalent to the jumping µ-calculus, and from this result we derive corollaries on
the expressivity and complexity of the jumping µ-calculus with recognisable path relation, among
which Theorem 3.6. Because the semantics of jumping tree automata is given by two-player games,
we start with basics on parity games.

4.1 Two-player games
We define two-player turn-based parity games with perfect information. Because the only such
games we will consider are acceptance games for tree automata and evaluation games for the
µ-calculus, we call the players Verifier and Refuter. A game arena is a tuple G = (V ,vι ,E,V1,V2),
where V is a set of positions partitioned between positions of Verifier (V1) and those of Refuter (V2).
Binary relation E ⊆ V × V , that we assume left-total4, is a set of moves. Finally, vι is the initial
position. A play π ∈ Vω is an infinite sequence of positions such that π [0] = vι , and for all i ≥ 0,
(π [i],π [i + 1]) ∈ E. A partial play ρ = v0 . . .vn ∈ V ∗ is a finite prefix of a play, and we say that it
3i.e., it progresses at the same pace on each tape.
4for all v ∈ V , there is v ′ ∈ V such that (v, v ′) ∈ E

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 C. Dima, B. Maubert and S. Pinchinat

ends in vn . A strategy σ for Verifier is a partial function σ : V ∗ → V such that for every partial play
ρ ending in v ∈ V1, σ (ρ) is defined and (v,σ (ρ)) ∈ E. A play π follows a strategy σ if for all i ≥ 0
such that π [i] ∈ V1, π [i + 1] = σ (π [0, i]), and similarly for partial plays. Given a game arena G and
a strategy σ for Verifier in G, we denote by Out(G,σ) the set of outcomes of σ , i.e. the set of plays
in G that follow σ . A strategy is memoryless if it only depends on the last position of partial plays.

A parity game is a tuple G = (G,C), where G = (V ,vι ,E,V1,V2) is a game arena and C : V → N
is a colouring: a play is winning for Verifier if the least colour occurring infinitely often along the
play is even, otherwise it is winning for Refuter. A winning strategy for Verifier is a strategy whose
outcomes are all winning for Verifier. Finally, as we will focus on winning strategies of Verifier,
we say that a position v of a game G is winning if Verifier has a winning strategy in (G,v), i.e. the
game G where the initial position has been changed for v .
We recall that in a parity game with finitely many colours, if a player has a winning strategy

then she has a memoryless one [54].

4.2 Jumping tree automata and the jumping µ-calculus
For a set X , B+(X) is the set of positive boolean formulas over X , i.e. formulas built with elements
of X as atomic propositions using only connectives ∨ and ∧, where ∧ has precedence over ∨.
We also allow for formulas ⊤ and ⊥, and we denote typical elements of B+(X) by α , β . . . Let
Dir = { a , a | a ∈ Act} ∪ {À , À} be the set of automaton directions.

Definition 4.1. A jumping tree automaton (JTA) over AP is a tuple A = (AP ,Q,qι ,δ ,C) where
AP ⊂ AP is a finite set of atomic propositions, Q is a finite set of states, qι ∈ Q is an initial state,
δ : Q × 2AP → B+(Dir ×Q) is a transition function, and C : Q → N is a colouring function.

JTAs resemble alternating tree automata [23, Ch. 9]. Action directions, those of the form a and
a , are meant to go down the input tree, whereas the new jump directions À and À of JTAs rely on
an a priori given path relation. We shall denote a JTAA equipped with a path relationÀ by (A,À).
Acceptance of an AP-tree by (A,À) is defined on a two-player parity game between Verifier and
Refuter: let t = (τ ,m) be an AP-tree, and let A = (AP ,Q,qι ,δ ,C). Consider the following parity
game Gt

A, À = (V ,vι ,E,V1,V2,C
′): its set of positions isV = τ ×Q ×B+(Dir ×Q), its initial position

is (ϵ,qι ,δ (qι , ℓ ϵ)), and a position (x ,q,α) belongs to Verifier if α is of the form α1 ∨ α2, [a ,q′], or
[À ,q′]; otherwise it belongs to Refuter. The possible moves in Gt

A, À are the following:

(x ,q,α1 † α2) → (x ,q,αi) where † ∈ {∨,∧} and i ∈ {1, 2}

(x ,q, [a ,q′]) → (y,q′,δ (q′, ℓ y)) where a ∈ { a , a } and y is an a-child of x

(x ,q, [À,q′]) → (y,q′,δ (q′, ℓ y)) where À ∈ {À , À} and xÀy

Positions that have no possible move as defined above are made sink positions (to get a game
with no dead ends) that are winning for Verifier if they are of the form (x ,q,⊤), (x ,q, [a ,q′])
or (x ,q, [À,q′]), and winning for Refuter otherwise. The colouring function C ′ of Gt

A, À is in-
herited from the one of A by letting C ′(x ,q,α) = C(q). An AP-tree t is accepted by (A,À) if
Verifier has a winning strategy in Gt

A, À, and a tree is accepted by (A,À) if its underlying AP-
tree (obtained by intersecting all labels with AP) is accepted by (A,À). We let L(A,À) = {S |
tS is accepted by (A,À)}. If A is an alternating tree automaton (i.e. it has no jumping action), it
needs not be equipped with a relation, and we write L(A) for the set of systems whose unfoldings
it accepts.
In the following, the size of a JTA A, written |A|, is the sum of its number of states and its

number of colours.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:11

We show that JTA and LÀµ are equally expressive, in a strong sense: we establish a two-way
translation that does not depend on the a priori chosen path relation.

Proposition 4.2.
(a) For every formula φ ∈ LÀµ , there is a JTA Aφ such that, for every path relationÀ, L(φ,À) =
L(Aφ ,À),

(b) for every JTA A, there is an LÀµ -formula φA such that, for every path relationÀ, L(A,À) =
L(φA ,À).

Moreover, the translations are effective and linear.

Proof. First, as already explained in the proof of Proposition 3.1, given a path relationÀ, any
marked tree t gives rise to a transition system tÀ over actions in Act ′ := Act ∪ {aÀ}, where aÀ
is a fresh action symbol. Second, we make the two following observations:
(1) An LÀµ -formula over Act can be interpreted as an Lµ -formula on transition systems over
Act ′, and vice-versa.

(2) A JTA over Act can be interpreted as an alternating automaton on transition systems over
Act ′, and vice-versa.

We now prove Proposition 4.2.
For Point (a), take a formula φ ∈ LÀµ . Let φ ′ be the same formula as φ, but seen as an Lµ -formula

overAct ′. By the classic correspondence between alternating tree automata and the µ-calculus [23,
Chap. 9, Chap. 10], one can build in linear time an alternating tree automaton Aφ ′ such that, over
transition systems with actions inAct ′, L(φ ′) = L(Aφ ′). Now, letAφ be the same automaton, but
seen as a jumping tree automaton over Act .

First, observe that we have not fixed a path relation before building Aφ from φ. Now, let us take
a path relationÀ. We show that L(φ,À) = L(Aφ ,À). It is clear that L(φ,À) = {S | tÀS ∈ L(φ

′)},
and also that L(Aφ ,À) = {S | t

À
S
∈ L(Aφ ′)}; because L(φ ′) = L(Aφ ′), we are done.

For Point (b) of Proposition 4.2, we just roll back the above argumentation. □

4.3 The case of recognisable relations
In this section, we restrict our attention to recognisable path relations. The following proposition
relies on the fact that recognisable relations are MSO-definable, which is folklore.

Proposition 4.3. MSOÀ with recognisable path relation is not more expressive than MSO.

Proof. If À is a recognisable path relation over signature (AP ,A), by definition there is a finite

family of regular languages L1,L
′
1, . . . ,Ln ,L

′
n ⊆ (A × 2AP)∗ such that À =

n⋃
i=1
Li × L

′
i . By

Kleene’s theorem, every regular language of finite words is recognisable by a finite state automaton,
and by the Büchi-Elgot-Trakhtenbrot theorem every language of finite words accepted by a finite
automaton is definable in MSO[S] on words, with the successor binary relation symbol S and one
monadic relation symbol Qa, ℓ for each (a, ℓ) ∈ A × 2AP (see [49, Theorem 3.1, p.8]). Therefore, for
every i ∈ {1, . . . ,n} there are MSO[S] sentences φi and φ ′i such that for any wordw over A × 2AP ,
we have thatw |= φi (resp.w |= φ ′i) iffw ∈ Li (resp.w ∈ L ′i). We now describe how to transform
each such sentence φ into a formula φ̂(X) of MSO on trees such that t ,V |= φ̂(X) iff V (X) = {x}
andw(x) |= φ. First, one states that X needs be a singleton {x} (see, for instance, [23, p. 210]). Then
one restricts quantifications to nodes that are prefixes of x (recall that the prefix relation can be
expressed in MSO [23, Lemma 12.11, p. 212]), and replaces each formula of the form S(X ,Y) with∨

a∈A a(X ,Y) and each formula of the form Qa, ℓ(X) with a formula saying that X is a singleton
{x} such that x is labelled with ℓ and is either the root or an a-child. It is then easy to see that,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 C. Dima, B. Maubert and S. Pinchinat

on marked trees over signature (AP ,A), MSOÀ formula XÀY is equivalent to the MSO formula∨n
i=1

�φi (X) ∧�φ ′i (Y). Therefore everyMSOÀ formula φ can be turned into anMSO formula φ ′ such
that for every marked tree t over (AP ,A) and valuation V , it holds that t ,V |=À φ iff t ,V |= φ ′. □

Remark 1. Observe that in the latter proof, to move from MSO on words to MSO on trees, we use
a disjunction over the set of different possible actions. Such a disjunction is also used to express the
prefix relation inMSO on trees. This is possible because, following Definition 3.5, we restrict to
models that only use the finite number of actions considered in the alphabet of the fixed recognisable
path relation. Should it not be so, we would need to enrich MSO on trees, for instance with a
relation that relates nodes x and y if y is an a-child of x for some action a ∈ Act .

Note that Theorem 3.6 is obtained from Proposition 4.3, Proposition 3.1, and the expressive
completeness of the µ-calculus with regards toMSO. However, the train of thoughts above that
yields the collapse of the jumping µ-calculus down to the µ-calculus uses transformations that
cannot be exploited for accurate complexity bounds regarding the jumping µ-calculus.

Below, we first establish that the satisfiability problem for jumping µ-calculus with recognisable
path relation is Exptime-complete, and thus no harder than the satisfiability problem for the µ-
calculus [20, 44, 47]. We then prove an upper bound on the succinctness of the jumping µ-calculus
with regards to the µ-calculus. Our results rely on the automata counterpart of the jumping mu-
calculus, and on the relationship between two-way alternating automata and classic tree automata
as studied by [52] in the setting of trees with bounded branching degree.

Proposition 4.4. The satisfiability problem for LÀµ with recognisable path relation over transition
systems with bounded branching degree is Exptime-complete.

Proof. The hardness follows from EXPTIME-hardness of the satisfiability problem for standard
µ-calculus [20]. Now for the upper bound, the result follows from Proposition 4.2 together with the
following two points. First, from a JTA equipped with (an automaton representing a) recognisable
relation, one can build in polynomial time an equivalent two-way tree automaton [34, 35]. Second,
for trees of bounded arity, the emptiness problem for two-way tree automata is in Exptime [52]. □

Proposition 4.5. The jumping µ-calculus with a recognisable path relation over transition systems
with bounded branching degree is at most exponentially more succinct than the µ-calculus.

Proof. Fix a recognisable relationÀ. We explain how to build a µ-calculus formula φ ′ equivalent
to a jumping µ-calculus formula φ, whose size is at most exponential in the size of φ. By the equiva-
lence between alternating tree automata and the µ-calculus (with a linear two-way translation) [23,
Ch. 10], it suffices to show that for each φ ∈ LÀµ interpreted with any recognisable path relation,
there exists an alternating tree automaton of size exponential in the size of φ that accepts precisely
the models of φ. Let φ ∈ LÀµ . By Proposition 4.2, there exists a jumping tree automaton Aφ of
size linear in the size of φ such that L(Aφ ,À) = L(φ,À). Then, as proved in [35], there is a
two-way tree automaton AÀφ of size polynomial in the size of Aφ such that L(Aφ ,À) = L(A

À
φ).

Finally, because we consider trees of bounded branching degree, we have by [52] that there is a
non-deterministic (hence alternating) tree automaton BÀφ of size exponential in the size of AÀφ
such that L(BÀφ) = L(AÀφ). Automaton BÀφ is our candidate, which concludes. □

5 GAMES AND THE JUMPING µ-CALCULUS
This section is essentially dedicated to the proof of Theorem 3.7. To this aim, we focus on the
property stating the existence of a winning strategy in two-player turned-based reachability
games with imperfect information and perfect recall. While this property is bisimilar-invariant and
expressible in the monadic second order logic with path relation (MSOÀ), we demonstrate that it

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:13

cannot be expressed in the jumping µ-calculus (LÀµ). However, we point out that this property can
be expressed in LÀµ with the additional assumptions that winning conditions are observable, if we
consider the notion of perfect recall where also actions are remembered.

5.1 Two-player games with imperfect information and synchronous perfect recall
We recall the classic framework of two-player games with imperfect information [4, 5, 41, 42]. The
two players are Eve and Adam. In these games, Eve only partially observes the positions of the
game, such that some positions are indistinguishable to her, while Adam has perfect information.
Let us fix a countable set of observations, Obs = {o,o′, . . .}.

Arenas and plays. An imperfect-information arena is a tuple G i = (V ,vι , {a
G i
}a∈Act , {o

G i
}o∈Obs),

where V is a set of positions, vι ∈ V is an initial position, each aG
i is a binary relation over V

and each oG i is a subset of V such that {oG i
}o∈Obs forms a partition of V . For every position v , ov

denotes the unique observation such that v ∈ ov . For v ∈ V and a ∈ Act , we say that a is available
in v if aG i

(v) , ∅. We assume that there is at least one available action in every position, and that if
two positions have the same observation they also share the same set of available actions. Without
loss of generality, we additionally require that in any game arena, every position is reachable from
the initial position vι .

Players take turns, starting with Eve. If the current position isv , Eve chooses an action a available
in v , and Adam chooses a new position v ′ ∈ aG i

(v). Similarly to perfect information games, a play
(resp. partial play) is an infinite (resp. finite) sequence π = v0a1v1a2 . . . (resp. ρ = v0a1v1 . . . anvn)
such thatv0 = vι and, for all i ,vi+1 ∈ aG

i

i+1(vi). For a partial play ρ = v0a1v1 . . . anvn , we let |ρ | := n.

Indistinguishability relation and uniformity. Eve’s imperfect observation of the game yields
an equivalence relation over partial plays, gathering those plays that are indistinguishable to her.
This relation depends on the observation function o as well as on Eve’s memory abilities. We focus
on the classic case of synchronous perfect recall [39, 41], where Eve remembers the whole sequence
of observations that she receives as well as her actions. We therefore define the indistinguishability
equivalence over partial plays as follows: for ρ = v0a1 . . . anvn and ρ ′ = v ′0a

′
1 . . . a

′
nv
′
n , we let

ρ ∼ ρ ′ if for all 1 ≤ i ≤ n,ovi = ov ′i and ai = a′i .

Eve’s choices can only be based on the observations she receives, so that her strategy must be
defined uniformly over partial plays that are indistinguishable to her, as captured by the following
definition. Formally, a strategy for Eve is a partial function σ : {vι }(Act ·V)∗ → Act such that for
two partial plays ρ and ρ ′, if ρ ∼ ρ ′, then σ (ρ) = σ (ρ ′). We say that a play π = v0a1v1 . . . follows a
strategy σ if for all i ≥ 0, ai+1 = σ (v0a1v1 . . . aivi).

Winning conditions and classes of games. A parity (resp. reachability) game with imperfect
information Gi is an imperfect-information arena G i = (V ,vι , {a

G i
}a∈Act , {o

G i
}o∈Obs) together

with a parity winning condition C : V → N (resp. reachability winning conditionW ⊆ V).
Observe that a parity (resp. reachability) game with imperfect information is a transition system

over AP = Obs ∪ N (resp. AP = Obs ∪ {W }) and Act . To address logical definability of the
existence of winning strategies, we consider games that only use a finite number of actions,
observations and parities.
For every finite subsets of actions A ⊂ Act and observations O ⊂ Obs , and every k ∈ N, we

define the classes P(A,O,k) (resp. R(A,O)) of parity (resp. reachability) games with imperfect

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 C. Dima, B. Maubert and S. Pinchinat

information where actions range over A, observations range over O , and parities are not greater
than k . Note that each of these classes is definable in the propositional µ-calculus.

Observe also that the relation ∼ on partial plays induces a path relation, that we shall also write
∼ in the rest of this section. Also all notations whereÀ occurs will be specialised using ∼, e.g., L∼µ ,
MSO∼, |=∼ , etc.

The question that we address in this section is whether the subclass of P(A,O,k) composed of
games where Eve has a winning strategy is L∼µ -definable, and similarly for the class R(A,O).
As we show, the answers depend on whether the winning condition is observable [12] or not.

More precisely, a parity (resp. reachability) winning condition is observable if ov = ov ′ implies
c(v) = c(v ′) (resp. v ∈ W iff v ′ ∈ W). Note that the class of (parity or reachability) games with
observable winning condition, with finitely many actions, observations and parities, is also definable
in the µ-calculus. We define the classes Po(A,O,k) and Ro(A,O) as the subclasses of P(A,O,k)
and R(A,O) (respectively) where games have observable winning conditions.
Now, we recall the following result:

Proposition 5.1 ([6]). Let Gi and Gi ′ be imperfect-information parity games. If Gi - Gi ′, then
Eve has a winning strategy in Gi if, and only if, she has a winning strategy in Gi ′.

We point out that this result also holds for reachability games, and therefore the classesP(A,O,k),
R(A,O), Po(A,O,k) and Ro(A,O) are closed by bisimulation.

5.2 Observable winning conditions: definability in the jumping µ-calculus
This section is dedicated to the proof of the following result:

Theorem 5.2. The subclasses of Ro(A,O) and Po(A,O,k) with finite branching where Eve has a
winning strategy are both L∼µ -definable.

For a finite subset of actions A ⊂ Act and observations O ⊂ Obs , for k ∈ N, define:

WinReachA := µX .(W ∨
∨
a∈A

∼ a X), and

WinParityAk := νX0.µX1 . . .ηXk .
∨

0≤i≤k
(i ∧

∨
a∈A

∼ a Xi),

where η = µ if k is odd, ν otherwise.
We establish the following result, from which Theorem 5.2 follows.

Proposition 5.3. For all Gi
r ∈ Ro(A,O) and Gi

p ∈ Po(A,O,k), it holds that

Gi
r |=
∼ WinReachA if, and only if, Eve has a winning strategy in Gi

r , and

Gi
p |=
∼ WinParityAk if, and only if, Eve has a winning strategy in Gi

p .

Proof of Proposition 5.3. We only treat the case of parity games, the case of reachability games
being similar and simpler.
We assume that the reader is familiar with evaluation games for the µ-calculus (see [16]). Let
Gi = (V ,vι , {a

G i
}a∈A, {o

G i
}o∈O ,C) ∈ Po(A,O,k) be a parity game with imperfect information and

finite branching. Seeing formula WinParityAk as a formula from basic µ-calculus overA′ = A∪ {a∼},
we also let G∗ be the evaluation game of WinParityAk on the transition system t∼

Gi . This game is a
perfect-information game with parity condition. Its positions are of the form (φ,x), where φ is a
subformula of WinParityAk , and x is a node in tGi . Because there is a one-to-one correspondence

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:15

between nodes in tGi and partial plays in Gi, we can use the latter view and consider that positions
in G∗ are of the form (φ, ρ).
Game’s functioning. In this game, the initial position is (WinParityAk ,vι). If for each 0 ≤ i ≤ k

we let φi be the unique subformula of WinParityAk of the form ηiXi .ψ , then the only possible
(k + 1) first moves (say, for Refuter) are to go through (φ1,vι), . . . , (φk ,vι) and reach position
(
∨

0≤i≤k (i ∧
∨

a∈A ∼ a Xi),vι), which belongs to Verifier. In this position, Verifier chooses some
i ∈ {1, . . . ,k} and moves to (i ∧

∨
a∈A ∼ a Xi ,vι). Next, Refuter can either move to (i,vι) or

(
∨

a∈A ∼ a Xi ,vι). In the former case, the game moves to a position that is winning for Verifier
if i is the colour of vι , and winning for Refuter otherwise. In the latter case, Verifier chooses an
action a ∈ A and moves to (∼ a Xi ,vι); then Refuter chooses some partial play ρ with vι ∼ ρ and
moves to (a Xi , ρ). Observe that, since all plays start in vι , the only partial play equivalent to vι is
vι , so that in this first round Refuter can only choose ρ = vι . Then, from (a Xi ,vι) Refuter chooses
some a-child of vι in tGi , or equivalently some position v ′ ∈ aG i

(vι), and moves to (Xi ,vιav
′), from

where the only move is to go to (φi ,vιav ′), from where a new round begins.
Verifier’s real choices.We have seen that the only positions where Verifier makes a choice are
either of the form (

∨
0≤i≤k (i ∧

∨
a∈A ∼ a Xi), ρ), or (

∨
a∈A ∼ a Xi , ρ). But positions of the first type

do not offer Verifier a real choice as the only move that does not make her lose immediately is
to pick the colour of the current position in Gi, i.e., to choose i = C(last(ρ)), where last(ρ) is the
position in which ρ ends. In the following we thus assume, without loss of generality, that Verifier
always makes the right choice in such positions.
Relevant colours. Also, the colouring C∗ of positions in G∗ is such that only colours of positions
of the form (Xi , ρ) are relevant (other positions all have colours higher than k), and it is defined as
C∗(Xi , ρ) = i . For this reason, for a play π ∗ in G∗, we shall writeC∗(π ∗) for the sequence of relevant
colours in π ∗, i.e., the sequence of colours of positions of the form (Xi , ρ) in π ∗, and similarly for
partial plays. Note that if a partial play ρ∗ in G∗ ends in a position of the form (Xi , ρav), then
|C∗(ρ∗)| = |ρ |. Given a strategy σ ∗ for Verifier in G∗, we let C∗(σ ∗) := {C∗(π) | π ∈ Out(G∗,σ ∗)}.
Finally, for a memoryless strategy σ ∗ of Verifier and a position of the form (

∨
a∈A ∼ a Xi , ρ), if σ ∗

is such that σ ∗(
∨

a∈A ∼ a Xi , ρ) = (∼ a Xi , ρ), we shall abuse notation and vocabulary and write
σ ∗(

∨
a∈A ∼ a Xi , ρ) = a, as well as say that σ ∗ chooses a in this position.

We have that Gi |=∼ WinParityAk if, and only if, Verifier has a winning strategy in G∗ [16]. It
thus remains to prove the following proposition, and we are done:

Proposition 5.4. Verifier has a winning strategy in G∗ iff Eve has a winning strategy in Gi.

Proof. We start with the right to left implication. Assume that Eve has a winning strategy σ in
Gi. We define a memoryless strategy σ ∗ for Verifier in G∗ as follows: For every position of the form

v∗ = (
∨

0≤i≤k
(i ∧

∨
a∈A

∼ a Xi), ρ),

we let
σ ∗(v∗) := (i ∧

∨
a∈A

∼ a Xi , ρ),where i = C(last(ρ)),

and for every position of the form

v∗ = (
∨
a∈A

∼ a Xi , ρ),

we let
σ ∗(v∗) := (∼ a Xi , ρ),where a = σ (ρ).

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 C. Dima, B. Maubert and S. Pinchinat

To prove that σ ∗ is winning we prove the following lemma (the proof of which can be found in
Appendix A).

Lemma 5.5. Let π ∗ ∈ Out(G∗,σ ∗). For every finite prefix ρ∗ of π ∗ such that last(ρ∗) = (Xi , ρav)
for some 0 ≤ i ≤ k , some partial play ρ, action a and position v , it holds that C∗(ρ∗) = C(ρ) and ρav
follows σ .

We now prove that all outcomes of σ ∗ are winning for Verifier. Let π ∗ ∈ Out(G∗,σ ∗). By
Lemma 5.5, there are infinitely many prefixes ρ∗ of π ∗ such that C∗(ρ∗) = C(ρ) for some ρ that
follows σ . Consider the tree made of the set of all such ρ. Because Gi has finite branching, so has this
tree, and by König’s lemma we can extract a play π that follows σ and such thatC(π) = C∗(π ∗), from
which we can conclude that C∗(π ∗) verifies the parity condition. This finishes the first implication.

Before proving the left to right implication, we establish the following lemma (the proof can be
found in Appendix B):

Lemma 5.6. Let ρ and ρ ′ be two partial plays in Gi such that ρ ∼ ρ ′. For every two partial plays ρ∗

and ρ∗′ in G∗ that end respectively in (Xi , ρ) and (X j , ρ
′), it holds that C∗(ρ∗) = C∗(ρ∗′).

We can now finish the proof of Proposition 5.4.
For the left to right implication, assume that Verifier has a winning strategy in G∗. Because
G∗ is a parity perfect-information game with finitely many colours, Verifier has a memoryless
winning strategy σ ∗ [54]. We aim at defining a uniform winning strategy for Eve in Gi. To do so,
we first show that σ ∗ in G∗ can be made uniform in the following sense: We say that a strategy for
Verifier in G∗ is uniform on a partial play ρ of Gi if it chooses the same action a ∈ A in all positions
of the form (

∨
a∈A ∼ a Xi , ρ

′), where ρ ′ ∼ ρ. We first show that there exists a winning strategy
for Verifier that is uniform on all partial plays. To do so we inductively define, for every n ≥ 0, a
strategy σ ∗n such that:
(1) σ ∗n is memoryless,
(2) σ ∗n is uniform on partial plays of length |ρ | ≤ n, and
(3) C∗(σ ∗n) ⊆ C∗(σ ∗).
Observe that because σ ∗ is winning, Point 3 implies that σ ∗n is also winning. First, let σ ∗0 := σ ∗,

which is memoryless, clearly verifies Point 3, and is uniform on partial plays of length no greater
than 0, as there are none.

Now, take n ≥ 0 and assume that σ ∗n has been defined. For a partial play ρ such that |ρ | = n + 1,
we say that the position (

∨
a∈A ∼ a Xi , ρ) is reachable by σ ∗n if there is a play in Out(G∗,σ ∗n) that

contains position (
∨

a∈A ∼ a Xi , ρ). For every ∼-equivalence class ρ∼ of partial plays in Gi of length
n + 1, define aρ∼ ∈ A as follows: if there exists ρ ∈ ρ∼ such that (

∨
a∈A ∼ a Xi , ρ) is reachable by

σ ∗n , then choose one such ρ and let aρ∼ := σ ∗n(
∨

a∈A ∼ a Xi , ρ). Otherwise, define aρ∼ arbitrarily.
Now, the memoryless strategy σ ∗n+1 is defined as follows, where (φ, ρ) is a position of Verifier:

σ ∗n+1(φ, ρ) =

{
a[ρ]∼ if φ =

∨
a∈A ∼ a Xi and |ρ | = n + 1,

σ ∗n(φ, ρ) otherwise.

It is clear that σ ∗n+1 is uniform over partial plays of length no greater than n + 1. We show that, in
addition, C∗(σ ∗n+1) ⊆ C∗(σ ∗n). By induction hypothesis, C∗(σ ∗n) ⊆ C∗(σ ∗), so that Point 3 will follow.
Take a play π ∗ ∈ Out(G∗,σ ∗n+1). Either π

∗ is an outcome of σ ∗n , in which case C∗(π ∗) ∈ C∗(σ ∗n), or
there are ρ∗ and π ∗′ such that

π ∗ = ρ∗ · (
∨
a∈A

∼ a Xi , ρ)(∼ a Xi , ρ)(a Xi , ρ
′)(Xi , ρ

′av) · π ∗′,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:17

where |ρ | = n + 1, a = σ ∗n+1(
∨

a∈A ∼ a Xi , ρ), ρ ′ ∼ ρ and v ∈ aGi
(last(ρ ′)).

We show thatC∗(π ∗) ∈ C∗(σ ∗n). First, observe that position (
∨

a∈A ∼ a Xi , ρ) is reachable by σ ∗n+1,
and because σ ∗n+1 coincides with σ

∗
n on all positions in ρ∗, (

∨
a∈A ∼ a Xi , ρ) is also reachable by σ ∗n .

Therefore, by definition of a[ρ]∼ , there exists ρ ′′ ∈ [ρ]∼ such that (
∨

a∈A ∼ a Xi , ρ
′′) is also reachable

by σ ∗n and a[ρ]∼ = σ ∗n(
∨

a∈A ∼ a Xi , ρ
′′). By definition of σ ∗n+1 we have σ

∗
n+1(

∨
a∈A ∼ a Xi , ρ) = a[ρ]∼ ,

so that σ ∗n+1(
∨

a∈A ∼ a Xi , ρ) = σ
∗
n(
∨

a∈A ∼ a Xi , ρ
′′) = a.

Because (
∨

a∈A ∼ a Xi , ρ
′′) is reachable by σ ∗n , there exists ρ∗

′ such that ρ∗′ · (
∨

a∈A ∼ a Xi , ρ
′′)

is a partial play that follows σ ∗n . And because a = σ ∗n(
∨

a∈A ∼ a Xi , ρ
′′), we get that

ρ∗′ · (
∨
a∈A

∼ a Xi , ρ
′′)(∼ a Xi , ρ

′′)

also follows σ ∗n . Now, as ρ ′′ ∼ ρ ∼ ρ ′, we have that

ρ∗′ · (
∨
a∈A

∼ a Xi , ρ
′′)(∼ a Xi , ρ

′′)(a Xi , ρ
′)

is also a valid partial play that follows σ ∗n ; and because v ∈ aGi
(last(ρ ′)), so is

ρ∗′′ := ρ∗′ · (
∨
a∈A

∼ a Xi , ρ
′′)(∼ a Xi , ρ

′′)(a Xi , ρ
′)(Xi , ρ

′av).

Finally, let us define:
π ∗′′ := ρ∗′′ · π ∗′.

Because π ∗ follows the memoryless strategy σ ∗n+1 and π
∗′ is a suffix of π ∗, we have that π ∗′ also

follows the strategy σ ∗n+1. Observing that σ ∗n and σ ∗n+1 coincide on all positions of π ∗′, we get that
π ∗′ follows σ ∗n . And because ρ∗′′ also follows σ ∗n , we obtain that π ∗′′ ∈ Out(G∗,σ ∗n). Now, clearly,
ρ ′av ∼ ρ ′av , so that by Lemma 5.6 we obtain that

C∗(ρ∗ · (
∨
a∈A

∼ a Xi , ρ)(∼ a Xi , ρ)(a Xi , ρ
′)(Xi , ρ

′av)) = C∗(ρ∗′′),

and thus C∗(π ∗) = C∗(π ∗′′), which concludes.

We now consider σ ∗U , the limit of the sequence {σ ∗n}n≥0. More precisely, for every partial play ρ∗
that ends in a position of Verifier, let σ ∗U (ρ

∗) := σ ∗
|ρ∗ |(ρ

∗). Clearly, σ ∗U is uniform on all partial plays.
Also, because no σ ∗n adds new sequences of colours to the outcome, neither does σ ∗U , and therefore
it is winning for Verifier in G∗.

Now, let us define a winning (uniform) strategy for Eve in Gi . For every partial play ρ that ends
in a position of color i , let σ (ρ) := σ ∗U (

∨
a∈A ∼ a Xi , ρ). Clearly, because σ ∗U is uniform on all partial

plays, σ is uniform. It is then not hard to check that every sequence of colours induced by σ in Gi

is also induced by σ ∗U in G∗, and therefore σ is winning for Eve in Gi . This finishes the proof of
Proposition 5.4, and thus also of Proposition 5.3 and Theorem 5.2. □

Remark 2. Some works consider notions of perfect recall where the player does not necessarily
remember her own actions [6, 13]. Here, to establish Theorem 5.2 we need the assumption that
Eve sees and remember her actions. If she did not, formula WinParityAk would be too strong a
requirement: allowing the ∼ operator in the formula to range over partial plays with the same
sequence of observations but different actions amounts to require the existence of a winning
strategy even from equivalent partial plays that do not follow the strategy being built by the
evaluation of the formula. This is clearly more demanding than what the existence of a winning
strategy challenges.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 C. Dima, B. Maubert and S. Pinchinat

1vι

1

1

0

1

v1

v ′1

v2

v ′2

a

b

a,b

a,b

a,b

a,b

Fig. 1. Example of a parity game with imperfection information. Parities are indicated inside the positions.

For instance, consider the game in Figure 1, where a position’s observation is its parity, and
assume that Eve has perfect recall but does not remember her actions; in particular the two plays
vιav1 and vιbv ′1 are ∼-equivalent. Eve clearly has a winning strategy by playing a in the initial
position vι . However WinParityA1 = νX0.µX1.(0∧

∨
a∈A ∼ a X0) ∨ (1∧

∨
a∈A ∼ a X1) does not hold

invι : indeed, in the evaluation game forWinParityA1 , even if Verifier chooses the winning action a in
position (

∨
a∈A ∼ a X1,vι), the game reaches position (X1,vιav1) and then, assuming as usual that

Verifier chooses the right colour for v1, Refuter can choose to reach position (
∨

a∈A ∼ a X1,vιav1);
from there, no matter what action Verifier chooses, Refuter can win. Assume that Verifier chooses
c ∈ {a,b}. The game goes to position (∼ c X1,vιav1). Because we have assumed that Eve does not
remember her actions, we have that vιav1 is equivalent to vιbv ′1, and thus Refuter can move to
(c X1,vιbv

′
1). It is then easy to see that Refuter can force the game to stabilise among positions

whose second component ends in v ′2, the colour of which is 1, so that Refuter wins.
The assumption that Eve remembers her actions is used in the proof of Lemma 5.5 (Appendix A).
On the other hand, Theorem 5.7 also holds in the case where Eve does not remember her actions,

as its proof adapts very easily. In fact the only part to change in the proof is the third case of the
Zig part in the proof of Lemma 5.10, which is simpler if Eve does not remember her actions.

We now turn to the general case, where the winning condition is not necessarily consistent with
the observations.

5.3 Non-observable winning conditions: undefinability in the jumping µ-calculus
In contrast with the result presented in the previous section, for non-observable reachability
winning conditions we establish the following result:

Theorem 5.7. For finite subsets A ⊂ Act and O ⊂ Obs , if |A| ≥ 2 then the subclass of R(A,O)
where Eve has a winning strategy is not L∼µ -definable.

Before establishing Theorem 5.7, we show how it entails Theorem 3.7: First, observe that the
synchronous perfect-recall relation ∼ is regular (a one-state transducer that accepts it can easily
be exhibited). Second, by Proposition 5.1, the class R(A,O) considered in Theorem 5.7 is closed
under bisimulation. Also, observe that the existence of a winning strategy is expressible in MSO,
and that with the path relation one can express that a strategy is uniform (the reader may refer to
the next section for details). The sub-class of R(A,O) where Eve wins is thus definable inMSO∼

and invariant under bisimulation, but by Theorem 5.7 it is not L∼µ -definable, hence Theorem 3.7.

Proof of Theorem 5.7. Assume that A contains at least two actions, a0 and a1. The proof is dealt
with by contradiction: Assume that there is a formula ΦWin ∈ L∼µ such that for every Gi ∈ R(A,O),

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:19

Gi |=∼ ΦWin if, and only if, Eve has a winning strategy in Gi. By Proposition 4.2, there is a JTA
A = (AP ,Q,qι ,δ ,C) such that L(ΦWin,∼) = L(A,∼). Let N := |Q | + 1.

Outline. We describe 2N (tree unfoldings of) reachability games in R(A,O), written ti . In each
of them, Eve has a winning strategy, thus each ti is accepted by A and we can choose a winning
strategy σi for Verifier in GtiA, ∼, the acceptance game of A on ti (see Lemma 5.8). We then employ
the “pigeon hole” principle to show that there exist two trees ti and tj that we can combine into a
new tree t0 such that:

• Eve has no winning strategy in t0, and
• σi and σj can be combined into a winning strategy σ0 for Verifier in Gt0A, ∼ (Proposition 5.9).

These two points provide the desired contradiction. We now present the details of the proof.

Family of reachability games. The family of game unfoldings that we consider is depicted in
Figure 2. Formally, we only describe finite trees, but the full unfoldings of games that we aim at
defining are easily obtained by adding a0-loops on leaves and by unfolding them. In these games,
Eve is blind as all positions at a given depth have the same observation, either o1 in the first two
levels or o2 below.

For each i ∈ {1, . . . , 2N }, the tree ti = (τi ,mi) is given by:

(1) mi (ϵ) = (a0, {o1}) (Recall that the action in the marking of the root is meaningless).
(2) In node ϵ , there are 2N + 2 a0-children, and no a1-child. The 2N leftmost ones are inW , but

not the two rightmost ones. Formally, τi ∩ N = {0, . . . , 2N + 1}. For readability, we call xm+1
the nodem for eachm ∈ {0, . . . , 2N + 1} (see Figure 2). Regarding markings, for 1 ≤ k ≤ 2N ,
mi (xk) = (a0, {o1,W }), and for k ∈ {2N + 1, 2N + 2},mi (xk) = (a0, {o1}).

(3) For 1 ≤ k ≤ 2N + 2, node xk has one a0-child yk = xk · 0, outsideW : for 1 ≤ k ≤ 2N + 2,
mi (yk) = (a0, {o1}).

(4) For each 1 ≤ k ≤ 2N + 2, the subtree [ti]yk is a full binary tree of height N in which each
non-leaf node y ⪰ yk has an a0-child (in direction 0) and an a1-child (in direction 1). The
markings are as follows. Regarding actions, for 1 ≤ k ≤ 2N + 2 and w ∈ {0, 1}≤N , the
action in yk · w is a yk ·wi := ac , where c is the last letter of w . Now, concerning labellings,
for each 1 ≤ k ≤ 2N , we let wk ∈ {0, 1}N be the binary representation of k − 1. Then, for
w ∈ {0, 1}≤N and 1 ≤ k ≤ 2N , ifw = wk we let ℓ

yk ·w
i = {o2,W }, and ℓ

yk ·w
i = {o2} otherwise.

Regarding subtrees at node yk with k ∈ {2N + 1, 2N + 2}, ifw = wi we let ℓ
yk ·w
i = {o2,W },

and ℓ yk ·wi = {o2} otherwise.

Observe that for all i, j ∈ {1, . . . , 2N }, ti and tj share the same underlying tree, that we shall
write τ : τi = τj = τ . Observe also that for all 1 ≤ k ≤ 2N , the subtrees [ti]yk are identical for all i:
in these subtrees, the only node inW is yk ·wk . Between the different trees ti , the markings only
differ on the leaves of [τ]y2N +1 and [τ]y2N +2 : for 1 ≤ i ≤ 2N , in [ti]y2N +1 and [ti]y2N +2 , the only nodes
inW are y2N +1 ·wi and y2N +2 ·wi . Finally, remark that, since Eve is blind, her strategies are simply
described by (infinite) sequences of actions.
For each 1 ≤ i ≤ 2N , write Gi = (V i ,viι ,E

i ,V i
1 ,V

i
2 ,C

i) for Gti
A, ∼, i.e., the (perfect information)

acceptance game of A on ti with relation ∼.

Lemma 5.8. For all 1 ≤ i ≤ 2N , Verifier wins the game Gi .

Proof. Let i ∈ {1, . . . , 2N }. The sequence of actions a0a0wia
ω
0 is a winning strategy of Eve in ti .

Thus ti |=∼ ΦWin, i.e. ti ∈ L(A,∼), and therefore Verifier has a winning strategy in Gi . □

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 C. Dima, B. Maubert and S. Pinchinat

ti

W. . .W. . .W

.

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0
a0 a0

a0 a0 a0 a0 a0

W

w1

W

wk

W

w2N

W

wi

W

wi

tj

W. . .W. . .W

.

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0
a0 a0

a0 a0 a0 a0 a0

W

w1

W

wk

W

w2N

W

wj

W

wj

t0

W. . .W. . .W

.

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0
a0 a0

a0 a0 a0 a0 a0

W

w1

W

wk

W

w2N

W

wj

W

wi

Fig. 2. The tree ti , the tree tj , and the hybrid tree t0.

For each 1 ≤ i ≤ 2N , choose a winning strategy σi for Verifier in Gi ; this is possible as,
by Lemma 5.8, there exists one for each i . For every 1 ≤ i ≤ 2N , we also define the function
visitσi : τ → 2Q that associates to each node x of τ the set of states in which A can visit x when
Verifier follows σi in the acceptance game Gi ; formally:

visitσi (x) := {q | ∃π ∈ Out(Gi ,σi),∃n ≥ 0,∃α ∈ B+(Dir ×Q) s.t. π [n] = (x ,q,α)}.
Pigeonhole and combined tree t0. Since there are at most 2 |Q | different such sets of states, andwe
have 2N strategies with N = |Q | + 1, there must exist i , j such that visitσi (y2N +1) = visitσj (y2N +1).
For the rest of the proof we fix such a pair (i, j). We define the game unfolding t0, obtained from
ti by replacing the subtree [ti]y2N +1 with [tj]y2N +1 (see Figure 2). Note that t0 is the unfolding of
a game in R(A,O) and that by design of t0, Eve has no winning strategy in t0. Indeed, the same

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:21

sequence of actions cannot lead to a node marked byW in both subtrees [t0]y2N +1 and [t0]y2N +2 .
Therefore, t0 ̸ |=∼ ΦWin, and thence t0 < L(A,∼), i.e., Verifier does not have a winning strategy in
the acceptance game Gt0

A, ∼ of JTA A on t0 with path relation ∼.
We now establish Proposition 5.9 below, which provides a contradiction with the latter and

terminates the proof of Theorem 5.7.

Proposition 5.9. Verifier has a winning strategy in Gt0
A, ∼.

Proof. First, let us write G0 = (V 0,v0
ι ,E

0,V 0
1 ,V

0
2 ,C

0) for Gt0
A, ∼, and observe that the three games

Gi , Gj and G0 share the same set of positions: V 0 = V i = V j = τ ×Q × B+(Dir ×Q) that we now
write V , partitioned between V1 and V2. Also, for all 1 ≤ k ≤ 2N + 2 we have ℓ yk0 = ℓ

yk
i = ℓ

yk
j

(= {o}), that we now write ℓ. Because positions of the form (yk ,q,δ (q, ℓ)) play an important role in
the following, we succinctly write them v

q
k . We start with the following lemma, which will allow

us to transfer the existence of winning strategies in positions of the form v
q
k from Gi and Gj to G0:

Lemma 5.10.
(1) For all q ∈ Q and k , 2N + 1, (G0,v

q
k) - (Gi ,v

q
k), and

(2) for all q ∈ Q and k , 2N + 2, (G0,v
q
k) - (Gj ,v

q
k).

The proof of this lemma can be found in Appendix C.

Winning strategy for Verifier in G0: intuition. Let us define Startτ := {ϵ,x1, . . . ,x2N +2}, the
two first levels of τ , and StartG := {(x ,q,α) ∈ V | x ∈ Startτ }. Observe that every play in G0 starts
in vι = (ϵ,q0,δ (q0, ℓ ϵ0)), hence in StartG . Note that a play may remain in StartG for ever if it keeps
jumping without going down. Otherwise, it exits StartG by reaching some node yk , in position vqk
for some q. Observe also that from any position of StartG , the set of moves available in G0 and in Gi
(and in Gj) are the same. In G0, we let Verifier follow σi as long as the game is in StartG . If the game
remains in StartG for ever, the obtained play is an outcome of σi , which is winning for Verifier in Gi .
Because positions have the same colour in all acceptance games, this play is also winning for Verifier
in G0. Otherwise, the play exits StartG by going down the tree, hence it reaches some position vqk .
Because vqk has been reached by the winning strategy σi , it is a winning position for Verifier in
Gi . If k , 2N + 1, by Point 1 of Lemma 5.10, (G0,v

q
k) - (Gi ,v

q
k), and by Proposition 5.1, Verifier

also has a winning strategy from v
q
k in G0. If k = 2N + 1, because visitσi (y2N +1) = visitσj (y2N +1),

σj also visits position v
q
2N +1, and therefore v

q
2N +1 is a winning position for Verifier in Gj . By Point 2

of Lemma 5.10, G0,v
q
k - Gj ,v

q
k , and by Proposition 5.1, Verifier also has a winning strategy from

v
q
k in G0.

Winning strategy for Verifier in G0: formal definition. First, for each position of the form v
q
k ,

if vqk is a winning position for Verifier in G0, we pick a winning strategy for Verifier in (G0,v
q
k)

that we call σvqk . Recall that Startτ = {ϵ,x1, . . . ,x2N +2} consists in the two first levels of τ , and
StartG = {(x ,q,α) ∈ V | x ∈ Startτ }. Take a partial play ρ in G0 ending in a position of Verifier.
• If ρ ∈ Start∗

G
, let σ0(ρ) := σi (ρ).

• Otherwise, there exist ρ ′, k , q and ρ ′′ such that ρ = ρ ′ · vqk · ρ
′′, and ρ ′ ∈ Start∗

G
. Then:

– If vqk is a winning position for Verifier in G0, then σvqk is defined, and we let

σ0(ρ) := σvqk (v
q
k · ρ

′′).

– Otherwise, define σ0(ρ) arbitrarily.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:22 C. Dima, B. Maubert and S. Pinchinat

Proof that σ0 is winning for Verifier in G0. Let π ∈ Out(G0,σ0). If π ∈ Startω
G
, because the

labelings of t0 and ti are the same on Startτ , π is also a play in Gi . Moreover, because σ0 is defined
as σi on StartG and π follows σ0, we have that π follows σi , which is winning for Verifier in Gi , so π
is winning for Verifier in G0 (recall that positions have the same colours in the different acceptance
games). Otherwise, there exist ρ, k , q and π ′ such that π = ρ · vqk · π

′ and ρ ∈ Start∗
G
. Again, ρ · vqk

is also a partial play in Gi , and it follows σi . Because σi is winning for Verifier in Gi , we have that
v
q
k is a winning position in Gi . We distinguish two cases.

• k , 2N +1: sincevqk is a winning position for Verifier in Gi , by Lemma 5.10 and Proposition 5.1,
v
q
k is also a winning position for Verifier in G0.

• k = 2N + 1: By definition, we have q ∈ visitσi (y2N +1). Because visitσi (y2N +1) = visitσj (y2N +1),
there exists an outcome of σj in Gj that visits v

q
2N +1. Because σj is winning for Verifier in Gj ,

we get that vq2N +1 is a winning position in Gj . Again, by Lemma 5.10 and Proposition 5.1, we
obtain that vq2N +1 = v

q
k is also a winning position for Verifier in G0.

In both cases, σvqk is defined, and by definition of σ0, we have that v
q
k · π

′ ∈ Out((G0,v
q
k),σvqk

).
Because σvqk is winning for Verifier in (G0,v

q
k),v

q
k ·π

′ verifies the parity condition, and therefore also
does π = ρ · vqk · π

′. So π is winning for Verifier, which concludes the proof of Proposition 5.9. □

Remark 3. The whole proof would also work with only one observation shared by all positions. To
comply with the requirement that positions with the same observation must have the same set of
available actions, we have to either use two different observations, or add dummy moves, but we
find the latter solution to be more cumbersome.
Also, observe that when there is only one action, say A = {a}, then in every game in R(A,O)

with reachability winning conditionW there is only one possible (uniform) strategy for Eve, which
is to always play a. This strategy is winning if, and only if, every path from the initial position
visitsW , which is expressible by the µ-calculus formula µX .(W ∨ a X).

6 IMPACT
We discuss the impact of our results, first on the (im)possibility to project jumping automata,
and second on the (im)possibility to characterise strategic operators from ATL with imperfect
information via fixed points.

6.1 Projection of jumping tree automata
We first recall the projection operation for tree automata, introduced by [40]: Given a nondeter-
ministic tree automaton A over AP ⊂ AP and an atomic proposition p ∈ AP , one can build a
non-deterministic tree automatonA ′ overAP \{p} that accepts a marked tree if, and only if, it is the
projection on AP \ {p} of some tree in L(A). This operation captures the existential second-order
quantification of MSO.

This projection operation does not apply to alternating tree automata. However, the Simulation
Theorem of [37], allows one to first nondeterminise alternating tree automata, and then project the
obtained nondeterministic automata.

Since jumping tree automata generalise alternating tree automata, the projection operation does
not apply to them. Relying on Theorem 3.7 we prove that, unlike the case of alternating automata,
there is no hope of exploiting some sort of Simulation theorem to project jumping automata.

Corollary 6.1. The class of jumping automata equipped with the synchronous perfect recall
relation is not closed under projection.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:23

Proof. We exhibit a jumping automaton AX whose language has a projection that cannot be
described by any jumping automaton. Let us fix a finite set of actions A ⊂ Act such that |A| > 1, as
well as a finite set of observations O ⊂ Obs . The automaton AX arises from our construction from
Theorem 5.7: it is meant to read unfoldings of two-player reachability games with imperfect infor-
mation from R(A,O), marked with an extra proposition X , and it is equipped with the synchronous
perfect recall relation ∼ (see Section 4.1). Automaton AX thus runs on alphabet AP = O ∪ {W ,X },
and it accepts a game unfolding whenever proposition X marks a subtree tX that describes a win-
ning strategy for Eve. Actually, instead of explicitly describingAX , we define a jumping µ-calculus
formula φX , and by Proposition 4.2 we obtain AX such that L(φX ,∼) = L(AX ,∼). Formula φX is
the conjunction of three properties: the first one, StratX , states that tX characterises a strategy for
Eve5; the second one, UnifX , states that the strategy described by tX is uniform; lastly, WinX states
that the strategy described by tX is winning for Eve, i.e., that every path of tX eventually meetsW .

Formally, we let φX := StratX ∧ UnifX ∧WinX where:
StratX := X ∧ νZ .[X →

∨
a∈A(a X ∧

∧
b,a b ¬X ∧ a Z)]

UnifX := νZ .[X → (
∨

a∈A ∼ a X) ∧
∧

a∈A a Z]
WinX := µZ .[W ∨

∧
a∈A a (X → Z)]

Because the jumping µ-calculus translates into MSO∼ there exists a formulaψ (X) ∈ MSO∼ which
is equivalent to φX , thus characterised by AX . Now, it is clear that the MSO∼ formula ∃Xψ (X)
captures the subclass of R(A,O) where there exists a winning strategy for Eve. If the projection
of automaton AX onto the propositional alphabet O ∪ {W } (abstracting from X) were a jumping
automaton, this subclass would be L∼µ -definable, which would contradict Theorem 5.7. □

Notice that Corollary 6.1 is not that surprising a result.When considering classic non-deterministic
automata, projection can be achieved by guessing the missing label when a node of the input tree
is visited; this process is sound since any run of the automaton visits each node at most once. On
the contrary, for jumping tree automata, the classic notion of non-determinism would not make
this process sound because jumps may still allow to visit several times the same node.

6.2 ATL with imperfect information
The second impact concerns the place of logics of coalitions and strategies among logics of programs,
and in particular their relationship with the epistemic µ-calculus. One of the most influential logics
for strategic abilities is Alternating-time Temporal Logic (ATL), introduced by [2]. The models of
this logic are concurrent game structures (CGSs), which are transition systems where actions are
tuples of moves, one for each agent in a fixed finite set Ag. The interpretation is that in each round,
each agent (or player) chooses a move, and Nature chooses a state attainable from the current
state through this tuple of moves. The syntax is essentially that of CTL where the existential path
quantifier is replaced with the strategy quantifier ⟨⟨A⟩⟩, where A ⊆ Ag is a coalition of agents.
The intuitive meaning of formula ⟨⟨A⟩⟩φ is “agents in A each have a strategy so that together they
enforce that φ will hold whatever the other agents do”. It is well-known that, in the case of perfect
information, ATL can be encoded in the µ-calculus (assuming a fixed finite set of possible moves
for a fixed finite set of agents), and the fact that the µ-calculus captures many different logics such

5In fact it only describes the definition of the strategy on its set of outcomes, which is enough here.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24 C. Dima, B. Maubert and S. Pinchinat

as ATL or the dynamic logic of [22] (see [28]) contributes to its predominant position among logics
of programs.

ATLi and epistemic µ-calculus. We explain how our expressivity incompleteness result of Theo-
rem 3.7 establishes that this remarkable situation is shaken in the case of imperfect information.
ATL with imperfect information (ATLi), as defined in [2], is the same as ATL except that models are
concurrent game structures with imperfect information (CGSi), in which each agent has a partial
observation of the game structure modelled by a mapping from states to a set of observations. As a
consequence, strategies for an agent are required to be uniform with regards to her observation.
The existence of a winning strategy for Eve in a two-player reachability game with imperfect
information and synchronous perfect recall can thus be expressed in ATLi by the formula ⟨⟨Eve⟩⟩FW
(whereW is the reachability winning condition). But by Theorem 5.7, it cannot be expressed in
the epistemic µ-calculus. It follows that in the imperfect-information setting with synchronous
perfect recall, ATLi is not subsumed by the epistemic µ-calculus, which we argue is the most natural
extension of the µ-calculus to imperfect information. Also, observe that the proof of Theorem 5.7
considers games over a fixed set of two actions.

Corollary 6.2. ATLi with synchronous perfect recall is not subsumed by the epistemic µ-calculus
with synchronous perfect recall, even when restricted to CGSi over a fixed finite set of actions of size at
least two.

ATLi and expansion laws. Theorem 5.7 also impacts the possibility to characterise ATL strategic
operators as smallest or greatest fixed points. It is well known that in the perfect-information case,
combinations of strategic and temporal operators admit expansion laws: for instance, ⟨⟨A⟩⟩Fp is
equivalent to p ∨ ⟨⟨A⟩⟩X⟨⟨A⟩⟩Fp. These expansion laws can be turned into equivalent fixed point
formulas in the Alternating-time µ-Calculus (AMC), introduced in [2]. AMC is essentially an
adaptation of the µ-calculus to concurrent game structures, where standard modalities are replaced
with “one-step” strategic modalities: modalities are of the form ⟨A⟩, where A ⊆ Ag is a coalition
of agents, and the meaning of ⟨A⟩p is “agents in A have a move to enforce that in the next step, p
holds”. It is thus equivalent to the ATL formula ⟨⟨A⟩⟩Xp. According to the above expansion law, the
ATL formula ⟨⟨A⟩⟩Fp is thus equivalent to the AMC formula µX .p ∨ ⟨A⟩X , and in fact ATL translates
into AMC [2], which shows that in a sense strategies in ATL can be computed one step at a time.
Also, when axiomatising ATL, such expansion laws provide useful fixed-point axioms.

Theorem 5.7 allows us to establish that this sort of fixed-point characterisation does not exist
in the context of imperfect information: if there were, they could be translated into AMC with
imperfect information (AMCi), which we show cannot be done. To the best of our knowledge, the
only existing semantics for AMCi is defined in [9], where ATLi is compared to AMCi in a setting
where, unlike our perfect recall setting, agents have no memory at all and thus can only base
their actions on their observation of the current system’s state. In their semantics, ⟨A⟩φ holds in
a state s if agents in A have a joint move that, from any state observationally equivalent to s for
any of the agents in A, ensures that φ holds in the next step whatever the other agents do. This is
meant to help capture the existence of uniform strategies used in ATLi without memory. However
they show that this is not enough: ATLi without memory cannot be expressed in AMCi without
memory. Actually they show the stronger result that this is also the case when AMCi is enriched
with knowledge operators for each agent, obtaining the Alternating-time Epistemic µ-calculus with
imperfect information (AEMCi): for memoryless semantics, AEMCi does not subsume ATLi. This
implies that in the memoryless setting, the ATLi formula ⟨⟨A⟩⟩Fp does not admit any “expansion
law” like it does in the perfect information case, even if knowledge operators can be used: if it did,
it could be turned into an equivalent AEMCi formula.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:25

What about agents with perfect recall? In [9] a comparison between ATLi with perfect recall
and AEMCi without memory show that the latter does not capture the former. We argue that this
is not very surprising, since there is no operator in AEMCi without memory that could possibly
capture the notion of uniformity for strategies of agents with perfect recall. We propose here to
show that even when AEMCi is given perfect recall semantics, it still does not capture ATLi with
perfect recall. We recall that ∼a is the indistinguishability equivalence over finite plays for agent a
with synchronous perfect recall, as defined in Section 5.1, and we propose the following natural
semantics for AEMCi with synchronous perfect recall. We define the semantics of the one-step
strategy quantifier as follows: formula ⟨A⟩φ holds in a partial play ρ if there is a joint move for
agents in A that ensures to have φ in the next step from any partial play ρ ′ such that ρ ∼a ρ ′ for
some a ∈ A. In a similar way, the semantics of the epistemic operator Ka for agent a ∈ Ag is defined
as follows: Kaφ holds in a partial play ρ if φ holds in all partial plays ρ ′ ∼a ρ.

We first establish the following lemma.

Lemma 6.3. If we fix a finite set of moves Mov, the epistemic µ-calculus subsumes AEMCi over the
class of concurrent game structures over Mov.

Proof. Assuming a fixed finite set of movesMov for all agents and all concurrent game structures,
the one-step strategic operator of AEMCi can easily be expressed in epistemic µ-calculus (recall
that we assumed a fixed finite set of agents Ag):

⟨A⟩p ≡
∨
®m∈MovA

∧
a∈A

Ka

∧
®m′∈MovAg\A

b p, where b = (®m, ®m′).

All other operators of AEMCi, including knowledge operators, can be trivially translated into
epistemic µ-calculus. □

We now show how Theorem 5.7 entails the following result:

Corollary 6.4. ATLi with synchronous perfect recall is not subsumed by AEMCi with synchronous
perfect recall.

Proof. As already mentioned, the property P saying that there exists a winning strategy for
Eve in a two-player reachability game with imperfect information and synchronous perfect recall
can be expressed in ATLi with synchronous perfect recall with the formula Φ = ⟨⟨Eve⟩⟩FW , where
W marks the winning positions.

We show that this formula with synchronous perfect recall semantics cannot be expressed in
AEMCi with synchronous perfect recall semantics, which concludes the proof. Assume towards a
contradiction that there is such an AEMCi formula Ψ ≡ Φ. Let us fix a finite set of moves Mov such
that |Mov | > 1, and let CMov be the class of CGSi over Mov. By Lemma 6.3, there is an epistemic
µ-calculus formula Ψ′ that is equivalent to Ψ over CMov , which we write Ψ ≡CMov Ψ

′. Since formulas
Φ and Ψ are equivalent over the class of all concurrent game structures, in particular they are
equivalent over CMov and thus Ψ′ is equivalent to Φ over CMov :

Φ ≡CMov Ψ
′. (1)

On the other hand, since |Mov | > 1 we have by Theorem 5.7 that property P over CMov cannot
be expressed in the epistemic µ-calculus over CMov . Since the ATLi formula Φ captures property P
over all concurrent game structures, and in particular over CMov , we obtain that Φ does not have a
translation in epistemic µ-calculus over CMov , which contradicts Equation (1). □

We remark that in [9], the proof that ATLi with perfect recall is not subsumed by AEMCi without
memory relies on the fact that the one-step strategic operator and the knowledge operators are

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:26 C. Dima, B. Maubert and S. Pinchinat

memoryless, and it does not adapt to AEMCi with the perfect recall semantics we propose here. It
thus seems that a different proof technique was required to establish Corollary 6.4, and we provided
one using epistemic µ-calculus as intermediary logic and jumping automata as a useful tool to
establish the impossibility to express a simple ATLi formula in this logic.

Robustness to semantic variants.The simplicity of the formulawe consider for the inexpressivity
proof of Theorem 5.7, as well as the shape of the family of game arenas we consider, also make
our result quite robust to variants in the semantics of ATLi. Indeed, there exist in the literature
various semantics for the strategic operator of ATLi. In the basic one that we considered so far,
⟨⟨A⟩⟩φ holds if there exists a strategy profile forA such that φ holds in all outcomes from the current
position [2]. In the de dicto semantics, there must be one such strategy profile from each position
indistinguishable to the current one for one of the agents in A, and in the de re semantics the
same strategy profile must work from each such indistinguishable position (see [26] for a detailed
discussion on the matter). In all these semantics, it is usually considered that when a new strategy
quantifier is met, all agents forget the past, as well as their previous strategies. Instead, the recent
no forgetting semantics considers that agents never forget the past [10]. ATL with strategy context
goes further by allowing agents to keep their previously assigned strategies when evaluating a
strategy quantifier in which they are not involved [29, 30].

Observe that in the proof of Corollary 6.4, the ATLi formula that we prove not to be expressible
in AEMCi, Φ = ⟨⟨Eve⟩⟩FW , does not have nested strategy quantifiers, hence its meaning is the same
in the classic semantics, no forgetting or strategy context. In addition, in all game arenas considered
in the proof of Theorem 5.7 the initial state does not have any other indistinguishable state for Eve.
The meaning of Φ on these CGSi is thus also independent from the choice of the basic, de dicto
or de re semantics. It follows that for neither of these semantics does Φ have a translation in the
epistemic µ-calculus with synchronous perfect recall, as such a translation would be equivalent to
Φ on the restricted class of games considered in the proof of Theorem 5.7.

Corollary 6.5. Corollary 6.4 holds for the basic, de dicto and de re semantics of ATLi with
synchronous perfect recall, with or without no forgetting or strategy context.

Corollaries 6.4 and 6.5 for the case of perfect recall, together with the result from [9] for the
case of memoryless agents, settle in the negative the question of whether ATL with imperfect
information admits expansion laws as in the perfect information setting.

7 CONCLUSION AND PERSPECTIVES
We have developed a general setting based on transition systems equipped with path relations,
which, for particular relations, captures models of agency with time and knowledge.

Inspired by the seminal expressive completeness result of Janin and Walukiewicz [27], which
states an equal expressivity of the bisimulation-invariant fragment of MSO and of the classic
µ-calculus, we have proposed adapted extensions of MSO and of the µ-calculus to the setting
of transition systems with path relations: MSO with path relation and the jumping µ-calculus,
respectively. The path relation is a parameter which gives rise to as many different logics, and,
consequently, to as many different expressive completeness problems; Our results reveal that the
answer to the expressive completeness problem is unsurprisingly sensitive to the choice of the
path relation: whereas the answer to the expressive completeness problem is identically positive
for the whole class of recognisable path relations (Theorem 3.6), it does not hold on the larger class
of regular path relations (Theorem 3.7).
Noticeably, the latter Theorem 3.7 arises from the use of the synchronous perfect recall path

relation – a typical knowledge semantics in models of agency extensively studied in the literature.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:27

We believe that it is worth studying the class of regular path relations to identify which features
of the synchronous perfect recall relation causes the expressive completeness result to fail. For
example, one may seek for a general argument that would extend Theorem 3.7 to some subclass of
regular path relations.

Regarding our methodology to attain Theorem 3.7, it is worth noticing the role played by jumping
tree automata introduced in [35], and which we proved here to be a counterpart of the jumping
µ-calculus. They are essential in most of our secondary results, such as Proposition 4.4 on the
complexity of the satisfiability problem for the jumping µ-calculus, and Proposition 4.5 on the
succinctness of the jumping µ-calculus with regards to the µ-calculus. More importantly, they are
central in the non-trivial proof of Theorem 5.7, which entails our main result, Theorem 3.7 and
other consequences discussed in the previous section.
Noticeable are also our answers to the definability in the jumping µ-calculus of two-player

reachability and parity games with imperfect information and synchronous perfect recall where
Eve wins, in the spirit of [16] for the µ-calculus and perfect information games. We have established
that whereas games of imperfect information with reachability or parity condition are definable as
soon as winning conditions are observable and actions are remembered (Theorem 5.2), this is not
the case anymore when observability of winning conditions is relaxed (Theorem 5.7).
We have also shown in Section 6.2 how Theorem 5.7 implies that, unlike ATL with perfect

information, ATL with imperfect information does not admit expansion laws. This closes a natural
question related to the axiomatisability of ATL with imperfect information, that received attention
for the last few years.
It is important to remark that, as shown in the proof of Corollary 6.1, the jumping µ-calculus

with synchronous perfect recall semantics is expressive enough to capture non-regular properties
of strategies, such as being uniform. The crucial flaw of this logic, that makes it unfit for strategic
reasoning in the imperfect information setting, is its inability to capture second-order quantification
over strategies, as opposed to MSO with path relation or logics for strategic reasoning such as
ATLi. The evidence that the (jumping) µ-calculus falls short in the framework of transition systems
with path relations calls for the quest for an appropriate candidate that would play the role classic
µ-calculus plays in the perfect-information setting, i.e., capture the bisimulation-invariant fragment
of MSO with path relation. In particular, would this candidate be attained by an enrichment of the
jumping µ-calculus with some kind of quantification over uniform strategies?

ACKNOWLEDGMENTS
This work has received funding from the ANR for the project EQINOCS ANR-11-BS02-004 and
from the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement EPS 313360).

REFERENCES
[1] R. Alur, P. Černý, and S. Chaudhuri. 2007. Model checking on trees with path equivalences. In TACAS’07. Springer,

664–678.
[2] R. Alur, Th. A. Henzinger, and O. Kupferman. 2002. Alternating-time temporal logic. J. ACM 49, 5 (2002), 672–713.
[3] J. Berstel. 1979. Transductions and context-free languages. Vol. 4. Teubner Stuttgart. https://doi.org/10.1007/

978-3-663-09367-1
[4] D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, and T. A. Henzinger. 2010. Strategy construction for parity games

with imperfect information. Inf. Comput. 208, 10 (2010), 1206–1220.
[5] D. Berwanger and L. Doyen. 2008. On the Power of Imperfect Information. In FSTTCS. 73–82.
[6] D. Berwanger and L. Kaiser. 2010. Information Tracking in Games on Graphs. Journal of Logic, Language and

Information 19, 4 (2010), 395–412.
[7] B. Bollig and M. Leucker. 2006. Message-passing automata are expressively equivalent to EMSO logic. Theor. Comput.

Sci. 358, 2-3 (2006), 150–172. https://doi.org/10.1016/j.tcs.2006.01.014

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1007/978-3-663-09367-1
https://doi.org/10.1007/978-3-663-09367-1
https://doi.org/10.1016/j.tcs.2006.01.014

1:28 C. Dima, B. Maubert and S. Pinchinat

[8] N. Bulling, J. Dix, and W. Jamroga. 2010. Model checking logics of strategic ability: Complexity. In Specification and
Verification of Multi-Agent Systems, M. Dastani, K. V. Hindriks, and J.-J. C. Meyer (Eds.). Springer, 125–160.

[9] N. Bulling and W. Jamroga. 2011. Alternating Epistemic Mu-Calculus. In Proceedings of IJCAI’2011. IJCAI/AAAI,
109–114.

[10] Nils Bulling, Wojciech Jamroga, and Matei Popovici. 2014. ATL* With Truly Perfect Recall: Expressivity and Validities.
In ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Including
Prestigious Applications of Intelligent Systems (PAIS 2014). 177–182. https://doi.org/10.3233/978-1-61499-419-0-177

[11] D. Caucal. 2003. On infinite transition graphs having a decidable monadic theory. Theor. Comput. Sci. 290, 1 (2003),
79–115. https://doi.org/10.1016/S0304-3975(01)00089-5

[12] K. Chatterjee and L. Doyen. 2010. The complexity of partial-observation parity games. In LPAR 17. Springer, 1–14.
[13] Krishnendu Chatterjee and Laurent Doyen. 2014. Partial-Observation Stochastic Games: How to Win when Belief

Fails. ACM Trans. Comput. Log. 15, 2 (2014), 16. https://doi.org/10.1145/2579821
[14] B. Courcelle and I. Durand. 2012. Automata for the verification of monadic second-order graph properties. J. Applied

Logic 10, 4 (2012), 368–409. https://doi.org/10.1016/j.jal.2011.07.001
[15] B. Courcelle and J. Engelfriet. 2012. Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach.

Cambridge University Press. http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
[16] A. Dawar and E. Grädel. 2008. The Descriptive Complexity of Parity Games. InComputer Science Logic, 22nd International

Workshop, CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings (Lecture
Notes in Computer Science), M. Kaminski and S. Martini (Eds.), Vol. 5213. Springer, 354–368. https://doi.org/10.1007/
978-3-540-87531-4_26

[17] Catalin Dima, Bastien Maubert, and Sophie Pinchinat. 2015. Relating Paths in Transition Systems: The Fall of the
Modal Mu-Calculus. In Mathematical Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015,
Milan, Italy, August 24-28, 2015, Proceedings, Part I. 179–191. https://doi.org/10.1007/978-3-662-48057-1_14

[18] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. 1997. How much memory is needed to win infinite games?. In
LICS. IEEE, 99–110. https://doi.org/10.1109/LICS.1997.614939

[19] C. C. Elgot and M. O. Rabin. 1966. Decidability and Undecidability of Extensions of Second (First) Order Theory of
(Generalized) Successor. J. Symb. Log. 31, 2 (1966), 169–181. https://doi.org/10.2307/2269808

[20] E. A. Emerson and C. S. Jutla. 1999. The Complexity of Tree Automata and Logics of Programs. SIAM J. Comput. 29, 1
(1999), 132–158. https://doi.org/10.1137/S0097539793304741

[21] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. 2004. Reasoning about knowledge. The MIT Press.
[22] M. J. Fischer and R. E. Ladner. 1979. Propositional dynamic logic of regular programs. Journal of computer and system

sciences 18, 2 (1979), 194–211.
[23] E. Grädel, W. Thomas, and Th. Wilke. 2002. Automata, Logics, and Infinite Games, volume 2500 of LNCS. Springer

Verlag.
[24] J. Y. Halpern, R. van der Meyden, and M. Y. Vardi. 2004. Complete Axiomatizations for Reasoning about Knowledge

and Time. SIAM J. Comput. 33, 3 (2004), 674–703.
[25] J. Y. Halpern and M. Y. Vardi. 1989. The complexity of reasoning about knowledge and time. 1. Lower bounds. J. Comp.

Sys. Sci. 38, 1 (1989), 195–237. https://doi.org/10.1145/12130.12161
[26] W. Jamroga and Th. Ågotnes. 2007. Constructive knowledge: what agents can achieve under imperfect information.

Journal of Applied Non-Classical Logics 17, 4 (2007), 423–475.
[27] D. Janin and I. Walukiewicz. 1996. On the expressive completeness of the propositional mu-calculus with respect to

monadic second order logic. In Proceedings of CONCUR’96. Springer, 263–277.
[28] D. Kozen. 1983. Results on the propositional µ-calculus. Theoretical computer science 27, 3 (1983), 333–354.
[29] François Laroussinie and Nicolas Markey. 2015. Augmenting ATL with strategy contexts. Inf. Comput. 245 (2015),

98–123. https://doi.org/10.1016/j.ic.2014.12.020
[30] François Laroussinie, Nicolas Markey, and Arnaud Sangnier. 2015. ATLsc with partial observation. In Proceedings Sixth

International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2015, Genoa, Italy, 21-22nd
September 2015. 43–57. https://doi.org/10.4204/EPTCS.193.4

[31] Hans Läuchli and Christian Savioz. 1987. Monadic second order definable relations on the binary tree. The Journal of
Symbolic Logic 52, 01 (1987), 219–226.

[32] A. Lomuscio and Fr. Raimondi. 2006. MCMAS: A Model Checker for Multi-agent Systems. In Proceedings of TACAS’2006
(LNCS), Vol. 3920. 450–454.

[33] O. Matz, N. Schweikardt, and W. Thomas. 2002. The Monadic Quantifier Alternation Hierarchy over Grids and Graphs.
Inf. Comput. 179, 2 (2002), 356–383. https://doi.org/10.1006/inco.2002.2955

[34] B. Maubert. 2014. Logical foundations of games with imperfect information: uniform strategies. Ph.D. Dissertation.
Université de Rennes 1. http://www.theses.fr/en/2014REN1S001

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.3233/978-1-61499-419-0-177
https://doi.org/10.1016/S0304-3975(01)00089-5
https://doi.org/10.1145/2579821
https://doi.org/10.1016/j.jal.2011.07.001
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
https://doi.org/10.1007/978-3-540-87531-4_26
https://doi.org/10.1007/978-3-540-87531-4_26
https://doi.org/10.1007/978-3-662-48057-1_14
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.2307/2269808
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1145/12130.12161
https://doi.org/10.1016/j.ic.2014.12.020
https://doi.org/10.4204/EPTCS.193.4
https://doi.org/10.1006/inco.2002.2955
http://www.theses.fr/en/2014REN1S001

Relating paths in transition systems: the fall of the modal mu-calculus 1:29

[35] B. Maubert and S. Pinchinat. 2013. Jumping Automata for Uniform Strategies. In Proceedings of FSTTCS’13. 287–298.
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.287

[36] R. Milner. 1983. Calculi for synchrony and asynchrony. Theor. Comp. Sci. 25, 3 (1983), 267–310.
[37] D. E. Muller and P. E. Schupp. 1995. Simulating alternating tree automata by nondeterministic automata: New results

and new proofs of the theorems of Rabin, McNaughton and Safra. Theoretical Computer Science 141, 1–2 (17 April
1995), 69–107.

[38] D. Park. 1981. Concurrency and Automata on Infinite Sequences. In Proc. 5th GI Conf. on Th. Comp. Sci., LNCS 104.
Springer-Verlag, 167–183.

[39] B. Puchala. 2010. Asynchronous Omega-Regular Games with Partial Information. In Proceedings of MFCS’2010. 592–603.
[40] M. O. Rabin. 1969. Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141

(1969), 1–35.
[41] Jean-François Raskin, Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. 2007. Algorithms for Omega-

Regular Games with Imperfect Information. LMCS 3, 3 (2007), 287–302. https://doi.org/10.2168/LMCS-3(3:4)2007
[42] John H. Reif. 1984. The complexity of two-player games of incomplete information. Journal of computer and system

sciences 29, 2 (1984), 274–301. https://doi.org/10.1016/0022-0000(84)90034-5
[43] F. Reiter. 2014. Distributed Graph Automata. CoRR abs/1404.6503 (2014). http://arxiv.org/abs/1404.6503
[44] Nikolay V. Shilov. 1997. Program Schemata vs. Automata for Decidability of Program Logics. Theor. Comput. Sci. 175, 1

(1997), 15–27. https://doi.org/10.1016/S0304-3975(96)00168-5
[45] N. V. Shilov and N. O. Garanina. 2002. Combining Knowledge and Fixpoints. Technical Report Preprint n.98,

http://www.iis.nsk.su/files/preprints/098.pdf. A.P. Ershov Institute of Informatics Systems, Novosibirsk.
[46] Nikolay V Shilov, Natalya Olegovna Garanina, and K-M Choe. 2006. Update and abstraction in model checking of

knowledge and branching time. Fundamenta Informaticae 72, 1-3 (2006), 347–361.
[47] Nikolay V. Shilov, S. O. Shilova, and A. Yu. Bernshtein. 2016. Program schemata technique for propositional program

logics: A 30-year history. Programming and Computer Software 42, 4 (2016), 239–256. https://doi.org/10.1134/
S036176881604006X

[48] W. Thomas. 1992. Infinite Trees and Automaton-Definable Relations over omega-Words. Theor. Comput. Sci. 103, 1
(1992), 143–159.

[49] W. Thomas. 1997. Languages, Automata, and Logic. In Handbook of Formal Languages, G. Rozenberg and A. Salomaa
(Eds.). Vol. 3, Beyond Words. Springer Verlag, 389–455.

[50] Johan Van Benthem. 1984. Correspondence theory. In Handbook of philosophical logic. Springer, 167–247.
[51] R. van der Meyden and N. Shilov. 1999. Model Checking Knowledge and Time in Systems with Perfect Recall (Extended

Abstract). In Proceedings of FSTTCS’99 (LNCS), Vol. 1738. 432–445.
[52] M. Y. Vardi. 1998. Reasoning about The Past with Two-Way Automata. In Proceedings of ICALP’98, Vol. 1443. 628–641.
[53] I. Walukiewicz. 2002. Monadic second-order logic on tree-like structures. Theor. Comput. Sci. 275, 1-2 (2002), 311–346.

https://doi.org/10.1016/S0304-3975(01)00185-2
[54] Wieslaw Zielonka. 1998. Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees.

Theor. Comput. Sci. 200, 1-2 (1998), 135–183.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.4230/LIPIcs.FSTTCS.2013.287
https://doi.org/10.2168/LMCS-3(3:4)2007
https://doi.org/10.1016/0022-0000(84)90034-5
http://arxiv.org/abs/1404.6503
https://doi.org/10.1016/S0304-3975(96)00168-5
https://doi.org/10.1134/S036176881604006X
https://doi.org/10.1134/S036176881604006X
https://doi.org/10.1016/S0304-3975(01)00185-2

1:30 C. Dima, B. Maubert and S. Pinchinat

A PROOF OF LEMMA 5.5
Lemma 5.5. Let π ∗ ∈ Out(G∗,σ ∗). For every finite prefix ρ∗ of π ∗ such that last(ρ∗) = (Xi , ρav)

for some 0 ≤ i ≤ k , some partial play ρ, action a and position v , it holds that C∗(ρ∗) = C(ρ) and ρav
follows σ .

Proof. Assume that Lemma 5.5 does not hold. There exists a longest finite prefix ρ∗ of π ∗ such
that last(ρ∗) = (Xi , ρav) for some 0 ≤ i ≤ k , some partial play ρ, action a and position v , and such
that C∗(ρ∗) = C(ρ) and ρav follows σ . We build a strictly longer prefix of π ∗ that also verifies the
above property, thus obtaining a contradiction.

From (Xi , ρav) there is no choice for either player for the next k − i + 1 moves, so that

ρ∗1 := ρ
∗ · (φi , ρav) . . . (φk , ρav)(

∨
0≤i≤k

(i ∧
∨
a∈A

À a Xi), ρav)

is also necessarily a prefix of π ∗. Then, by definition of σ ∗, Verifier chooses i = C(v), so that

ρ∗2 := ρ
∗
1 · (

∨
a∈A

À a Xi , ρav), where i = C(v),

is also a prefix of π ∗. Again by definition of σ ∗,

ρ∗3 := ρ
∗
2 · (À b Xi , ρav), where b = σ (ρav),

is a prefix of π ∗. Then, there exists ρ ′ such that ρ ′ ∼ ρav and

ρ∗4 := ρ
∗
3 · (b Xi , ρ

′)

is a prefix of π ∗, and there also exists v ′ ∈ bGi
(last(ρ ′)) such that

ρ∗5 := ρ
∗
4 · (Xi , ρ

′bv ′)

is a prefix of π ∗.
We show that ρ∗5 is a good candidate, and our proof by contradiction is done. First, it is clear

that ρ∗5 is strictly longer than ρ∗. Then, by definition of C∗ (recall that C∗ only considers colours
of positions of the form (Xi , ρ)), we have that C∗(ρ∗5) = C∗(ρ∗) · i . By assumption, C∗(ρ∗) = C(ρ),
and since i = C(v), we have C∗(ρ∗5) = C(ρav). Then, because ρav ∼ ρ ′, and because colours are
observable, we obtain that C∗(ρ∗5) = C(ρ ′). It remains to prove that ρ ′bv ′ follows σ .
From the fact that ∼ is synchronous perfect recall and that actions are visible, one can easily

show that if a partial play follows a uniform strategy, then every equivalent play also does, as
all their strict prefixes of same length are equivalent and followed by the same action. Therefore,
since ρ ′ ∼ ρav and ρav follows σ , also does ρ ′. Next, we have that b = σ (ρav), and again, because
ρ ′ ∼ ρav and σ is uniform, σ (ρ ′) = σ (ρav) = b, so that ρ ′bv ′ also follows σ , which concludes. □

B PROOF OF LEMMA 5.6
Lemma 5.6. Let ρ and ρ ′ be two partial plays in Gi such that ρ ∼ ρ ′. For every two partial plays ρ∗

and ρ∗′ that end respectively in (Xi , ρ) and (X j , ρ
′), it holds that C∗(ρ∗) = C∗(ρ∗′).

Proof. By induction on the common length n of ρ and ρ ′.
Base case: There is only one partial play of length 1: ρ = ρ ′ = vι . Also, in G∗, the initial position

is (WinParityAk ,vι), and every play π ∗ starts as follows:

π ∗ = (WinParityAk ,vι)(φ1,vι) . . . (φk ,vι)(
∨

0≤i≤k (i ∧
∨

a∈A À a Xi),vι)(
∨

a∈A À a Xi ,vι)·
(À a Xi ,vι)(a Xi ,vι)(Xi ,vιav) · π

∗′

where 0 ≤ i ≤ k , a ∈ A, v ∈ aGi
(vι) and π ∗′ is a play in (G∗, (φi ,vιav)). In particular, recall that the

only partial play equivalent to vι is itself.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:31

Now one can observe that there are no ρ∗ and ρ∗′ that end in (Xi ,vι) and (X j ,vι) such that
Lemma 5.6 holds for |ρ | = 1.
Inductive case: Let ρ = ρ1av and ρ ′ = ρ ′1a

′v ′. Because ρ ∼ ρ ′, we have that ρ1 ∼ ρ ′1, a = a′

and ov = ov ′ . Suppose that there are ρ∗ and ρ∗′ that end respectively in (Xi , ρ) and (X j , ρ
′). They

are of the form

ρ∗ = ρ∗1 · (
∨

a∈A À a Xi , ρ2)(À a Xi , ρ2)(a Xi , ρ1)(Xi , ρ1 · av), and
ρ∗′ = ρ∗′1 · (

∨
a∈A À a X j , ρ

′
2)(À a X j , ρ

′
2)(a X j , ρ

′
1)(X j , ρ

′
1 · av

′),

where ρ2 ∼ ρ1 and ρ ′2 ∼ ρ
′
1. Also, recall that we have assumed Verifier to always pick the right

parity (otherwise she loses immediately), so that i = C(last(ρ2)) and j = C(last(ρ ′2)). Because colours
are observable and ρ2 ∼ ρ1 ∼ ρ ′1 ∼ ρ

′
2, we have that i = j. Now, either C∗(ρ∗1) = ϵ = C∗(ρ∗

′
1), and

therefore C∗(ρ∗) = i = C∗(ρ∗′), which concludes, or ρ∗1 and ρ∗
′
1 have prefixes that end in (Xk , ρ2)

and (Xl , ρ
′
2), respectively. By induction hypothesis, as ρ2 ∼ ρ ′2, we have that C

∗(ρ∗1) = C
∗(ρ∗′1) and

therefore C∗(ρ∗) = C∗(ρ∗′). □

C PROOF OF LEMMA 5.10
Lemma 5.10.
(1) For all q ∈ Q and k , 2N + 1, (G0,v

q
k) - (Gi ,v

q
k), and

(2) for all q ∈ Q and k , 2N + 2, (G0,v
q
k) - (Gj ,v

q
k).

Proof. For convenience, for v,v ′ ∈ V and k ∈ {0, i, j}, we shall write v →k v
′ if (v,v ′) ∈ Ek .

We start with Point 1 of Lemma 5.10. The rough idea is that the trees t0 = (τ ,m0) and ti = (τ ,mi)

are the same, except for the labelings of the subtree [τ]y2N +1 . So as long as the games remain out of
this subtree, a move from a position (x ,q,α) in G0 can be simulated by the same move in Gi , and
vice versa. Problems arise when, in one of the acceptance games, a move jumps to a node in [τ]y2N +1 .
This is dealt with by noticing that [t0]y2N +1 = [ti]yj , and [ti]y2N +1 = [t0]yi . Therefore, if a move in G0
jumps to a node in [τ]y2N +1 , this is simulated in Gi by jumping to the corresponding node in [τ]yj .
More precisely, if G0 jumps to some node y2N +1 ·w , wherew ∈ {0, 1}∗, this is simulated in Gi by
jumping to node yj ·w . This is possible, because in these games with only one observation, all plays
(or nodes) that contain the same sequence of actions are related. For a node x , let us define a(x) as
the sequence of actions taken by Eve from the root to x , and observe that for all 1 ≤ i ≤ 2N + 2,
for all w ∈ {0, 1}N · {0}∗, a(yi · w) = a0a0aw [1]aw [2] . . . alast(w). Therefore, if a node is related to
y2N +1 ·w , it is also related to yj ·w . Similarly, if a move in Gi jumps to a node in [τ]y2N +1 , this is
simulated in G0 by jumping to the corresponding node in [τ]yi .

Let us define the binary relation Z ⊆ V0 ×Vi as the smallest relation such that, for all q ∈ Q and
all α ∈ B+(Dir ×Q):
• ∀k , 2N + 1, ∀x ∈ [τ]yk , (x ,q,α)Z (x ,q,α),
• ∀w ∈ {0, 1}∗, (y2N +1 ·w,q,α)Z (yj ·w,q,α), and
• ∀w ∈ {0, 1}∗, (yi ·w,q,α)Z (y2N +1 ·w,q,α).

First, for allq ∈ Q andk , 2N+1, we have by definition ofZ that (yk ,q,δ (q, ℓ
yk
0))Z (yk ,q,δ (q, ℓ

yk
i)),

i.e., vqkZv
q
k (recall that ℓ yk0 = ℓ

yk
i). To prove that (G0,v

q
k) - (Gi ,v

q
k), it remains to prove that Z is a

bisimulation between G0 and Gi , which we do now.
Take (v,v ′) ∈ Z . By definition of Z , there are x ,x ′,q and α such that v = (x ,q,α) and v ′ =
(x ′,q,α). Also, x and x ′ are on the same level in the tree τ , either on the level of the nodes
{yk | 1 ≤ k ≤ 2N + 2} or below.
Harmony on atomic propositions (Point 1 of Definition 2.5): by definition of the colours in

acceptance games, it holds that C0(v) = C(q) = Ci (v ′). Also, because v and v ′ contain the same

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:32 C. Dima, B. Maubert and S. Pinchinat

formula α , we have that v ∈ V1 iff v ′ ∈ V1, and idem for V2. Therefore v and v ′ agree on all atomic
propositions in AP = {V1,V2} ∪ N.

Zig (Point 2 of Definition 2.5): Take u ∈ V such that v →0 u. We need to find some u ′ ∈ V such
that v ′→i u

′ and uZu ′. According to the possible moves in the semantic games (see Section 4), the
move v →0 u is of one of the three following kinds:
(1) split α without moving in the tree nor changing state,
(2) go down to a child of x in a state q′, or
(3) jump to a node y such that xÀy in a state q′.
Case 1: We haveu = (x ,q, β), where β is some subformula ofα . By definition of acceptance games,

this splitting is also possible in Gi : (x ′,q,α) →i (x
′,q, β). Writing u ′ := (x ′,q, β), this becomes

v ′→i u
′. Because we have (x ,q,α)Z (x ′,q,α), by definition of Z we have (x ,q,α)Z (x ′,q,α) for all

α ′, and in particular (x ,q, β)Z (x ′,q, β), i.e., uZu ′.
Case 2: In this case, we have α = 3q′ or α = □q′, and u = (y,q′,δ (q′, ℓ y0)) for some child y of x ;

write β := δ (q′, ℓ y0) and y := x · c (where c ∈ {0, 1}).
First, observe that by definition of Z , x and x ′ are on the same level in the tree (|x | = |x ′ |),

and therefore if x · c exists in τ , so does x ′ · c . It follows, by definition of acceptance games, that
v ′ →i (x

′ · c,q′,δ (q′, ℓ x
′ ·c

i)) exists in Gi ; write y ′ := x ′ · c , β ′ := δ (q′, ℓ y
′

i) and u
′ := (x ′ · c,q′, β ′).

We prove that uZu ′.
We distinguish three possibilities again, according to the definition of Z and the fact that
(x ,q,α)Z (x ′,q,α).
• x = x ′ (and therefore, also y = y ′). By definition of Z , we have that x < [τ]y2N +1 , and thus
y < [τ]y2N +1 . This implies that ℓ y0 = ℓ

y
i . Therefore β = β

′, and u = u ′, which, by definition of
Z , entails that uZu ′.
• x = y2N +1 ·w for somew . Because vZv ′, by definition of Z we have that x ′ = yj ·w (and thus
y ′ = yj ·w · c). It holds that ℓ

y2N +1 ·w ·c
0 = ℓ

yj ·w ·c
i , i.e., ℓ y0 = ℓ

y′

i , hence β = β ′. We thus have
u = (y2N +1 ·w · c,q

′, β) and u ′ = (yj ·w · c,q′, β), and by definition of Z we obtain that uZu ′.
• x = yi · w for some w . Because vZv ′, by definition of Z we have that x ′ = y2N +1 · w (and
thus y ′ = y2N +1 ·w · c). Again, it holds that ℓ

yi ·w ·c
0 = ℓ

y2N +1 ·w ·c
i , i.e., ℓ y0 = ℓ

y′

i , and therefore
β = β ′. We thus have u = (yi ·w · c,q′, β) and u ′ = (y2N +1 ·w · c,q′, β), and by definition of
Z we obtain that uZu ′.

Case 3: We have that α = Àq′ or α = Àq′ for some q′, u = (y,q′, β) for some y such that xÀy
and β = δ (q′, ℓ y0). By definition of Z we have that x and x ′ contain the same sequence of actions
(a(x) = a(x ′)), and because Eve does not observe anything, the nodes related by À to x are the
same as those related to x ′ (they are all the nodes y that contain the same action sequence as x
and x ′). We therefore have a(y) = a(x) = a(x ′). We distinguish two cases: the case where the jump
v →0 u is not towards a node in [τ]y2N +1 , and the case where it is. In the latter case, it is simulated
in Gi by a jump to the corresponding node in [τ]yj .
• y ∈ [τ]yk for some k , 2N + 1: since a(x ′) = a(y), we have that x ′Ày, and thus the move
v ′ →i (y,q

′,δ (q′, ℓ
y
i)) =: u

′ exists in Gi . Now, because ℓ
y
0 = ℓ

y
i , we have that u = u ′, and

finally uZu ′.
• y ∈ [τ]y2N +1 : take w ∈ {0, 1}∗ such that y = y2N +1 · w . The move v →0 u = (y2N +1 ·

w,q′,δ (q′, ℓ
y2N +1 ·w
0)) is simulated in Gi by the move v ′→i (yj ·w,q

′,δ (q′, ℓ
yj ·w
i)). To show

that this move exists in Gi , it is enough to show that x ′Àyj · w , i.e., a(x ′) = a(yj · w). By
definition of Z , we already know that a(x) = a(x ′), and because xÀy and y = y2N +1 ·w , we
know that a(x) = a(y2N +1 ·w). So a(x ′) = a(y2N +1 ·w), and clearly a(y2N +1 ·w) = a(yj ·w),
so we indeed have that x ′Àyj ·w .

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Relating paths in transition systems: the fall of the modal mu-calculus 1:33

Let y ′ := yj ·w and u ′ := (y ′,q′,δ (q′, ℓ y
′

i)). Because ℓ
y2N +1 ·w
0 = ℓ

yj ·w
i , we have δ (q′, ℓ y

′

i) =

δ (q′, ℓ
y
0) = β . We thus have u = (y2N +1 · w,q′, β), u ′ = (yj · w,q′, β) and therefore, by

definition of Z , we get that uZu ′.
Zag (Point 3 of Definition 2.5): the proof is almost symmetrical to the one for Zig. The only

difference is in the second subcase of Case 3: a move in Gi that jumps to a node of the formy2N +1 ·w ,
wherew ∈ {0, 1}∗, is simulated in G0 by a jump to the node yi ·w . We make use of the third point
in the definition of Z to show that the two resulting positions are in the relation.

So Z is a bisimulation between G0 and Gi , which concludes the proof of Point 1 in Lemma 5.10.

We turn to the proof of Point 2 in Lemma 5.10. The only difference with Point 1 is that, while t0
and ti differ on the labeling of [τ]y2N +1 , t0 and tj differ on the labeling of [τ]y2N +2 . So here, the only
moves that cannot be simulated by the same one in the other game are those that jump in [τ]y2N +2 .

We define the following binary relation Z ′ ⊆ V 0 ×V j , very similar to Z , as the smallest relation
such that, for all q ∈ Q and all α ∈ B+(Dir ×Q):
• ∀k , 2N + 2, ∀x ∈ [τ]yk , (x ,q,α)Z ′(x ,q,α),
• ∀w ∈ {0, 1}∗, (y2N +2 ·w,q,α)Z ′(yi ·w,q,α), and
• ∀w ∈ {0, 1}∗, (yj ·w,q,α)Z ′(y2N +2 ·w,q,α).

The rest of the proof is just the same as for Point 1. □

Received April 2017; revised November 2017; accepted June 2018

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2017.

	Abstract
	1 Introduction
	2 Preliminary notions
	3 Expressive Completeness Issues
	3.1 Monadic second order logic with path relation
	3.2 The jumping -calculus
	3.3 Expressive Completeness

	4 Tree automata for the jumping -calculus
	4.1 Two-player games
	4.2 Jumping tree automata and the jumping -calculus
	4.3 The case of recognisable relations

	5 Games and the jumping -calculus
	5.1 Two-player games with imperfect information and synchronous perfect recall
	5.2 Observable winning conditions: definability in the jumping -calculus
	5.3 Non-observable winning conditions: undefinability in the jumping -calculus

	6 Impact
	6.1 Projection of jumping tree automata
	6.2 ATL with imperfect information

	7 Conclusion and perspectives
	Acknowledgments
	References
	A Proof of Lemma 5.5
	B Proof of Lemma 5.6
	C Proof of Lemma 5.10

