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Abstract

We consider turn-based game arenas for which we explore a notion of uniform strategies, which
are strategies submitted to uniformity constraints. Such constraints aim at capturing properties of
strategies that are not µ-calculus definable as they involve bundles of plays. Typical examples are
knowledge-based strategies in imperfect-information games, and the so-called “uniform strategies”
for the game semantics of Dependence Logic. We propose a formal language to specify uniform
strategies and demonstrate the relevance of the concept by capturing various issues arising from
the literature.

1 Introduction

Properties of strategies in, say, extensive (finite or infinite) games are central objects to describe, e.g.
when a given strategy is winning. The standard approach starts from a winning condition on plays
and winning strategies are those whose induced plays are all winning. By seeing strategies as trees,
being winning is therefore measured “vertically” in the tree. We investigate properties that are rather
“horizontal”, as they correlate different branches of the tree. This kind of properties on strategies are
not µ-calculus definable in general, and yet, they fulfill a true need in game theory, as we illustrate in
the present paper.

We develop a mathematical setting which provides a way to define bundles of plays and to describe
properties of individuals in the bundle. More concretely, the bundles we consider are equivalence classes
of finite and infinite plays, but our setting might also be extended to deal with more general binary
relations.

This setting involves a language with an epistemic temporal logic flavor (as ETL[11]), but the
bundles of plays need not arise from the epistemic accessibility relation of any player of the game.
Additionally, the language possesses an original Koperator, which allows to quantify over equivalence
classes of infinite plays, and the usefulness of which is illustrated.

The need for describing properties of higher-order has already been investigated for example in [6]
with the notion of hyperproperties, which are properties of sets of system traces. But, as opposed to
what we expose here, hyperproperties deal with fixed sets of traces, and moreover, to our knowledge,
no logic has ever been developed.

We have chosen to tell our story in a simple framework where games are described by arenas in
which all information is put inside the positions, and not on the edges. However, the entire theory
can be adapted to more sophisticated models, e.g. with labels on edges, concurrent games, . . .

As announced earlier, we illustrate the suitability of our notion by borrowing many frameworks
from the literature. These are imperfect-information games with their observation-based and knowledge-
based strategies, games with opacity conditions, the non-interference properties of computing systems,
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diagnosability of discrete-event systems (with a proposal for a formal definition of prognosis), and fi-
nally the imperfect-information semantics of Dependence Logic. Proofs of Section 3 are omitted due
to lack of space, but they are quite simple. There are even more instances of uniform strategies in
the literature, but the numerous examples we give here are already convincing enough to justify the
relevance of the notion.

The paper is organized as follows: we start by introducing the game models in Section 2, and the
formal notion of uniform strategies. Section 3 is dedicated to the illustrations. In Section 4 we address
various expressiveness results. In Section 5 we expose some computational aspects, and we discuss
future work in Section 6.

2 Definitions

Let G be a multi-player turn-based game arena given as a structure (V1, . . . , VN , E, v0, P rop, `) where
Vk (k = 1, . . . , N) is the set of positions of Player k, V :=

⋃
k=1,...,N Vk is the set of all positions,

E ⊆ V × V , and v0 ∈ V is the initial position. For v, v′ ∈ V , vEv′ denotes (v, v′) ∈ E. Prop is a
countable set of atomic propositions, and we decorate the standard game structure with a valuation
` : V → 2Prop. We define Playsω ⊆ v0V

ω to be the set of infinite plays, i.e. the set of infinite sequences
of positions π that start in v0 and follow the edges of the arena. Similarly, Plays∗ ⊆ v0V

∗ is the set
of finite plays ρ. For an infinite play π = v0v1 . . . and i ∈ N, π[i] := vi, and π[0, i] := π[0] . . . π[i]. If
ρ = v0v1 . . . vn is a finite play, last(ρ) := vn is its last position and |ρ| = n+ 1 is its length. A strategy
for Player k is a partial function σ : Plays∗ → V that defines which position to choose in each finite
play ρ in which it is Player k’s turn to play (i.e. last(ρ) ∈ Vk). Outcome(σ) ⊆ Playsω is the set of
infinite plays in which Player k follows σ.

The specification language we use to define uniformity constraints is quite close, both in syntax and
semantics, to linear temporal logic with knowledge [11], except the semantics of both our “knowledge-
like” operators are based on equivalence relations on plays that do not necessarily derive from the
observational power of a player.

The syntax of the language L is the following :

L : ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | #ϕ | ϕ U ψ | Kϕ | Kϕ

where p is in Prop. As usual we will use the following notations : true := p ∨ ¬p, false := ¬true,
Fϕ := true U ϕ, Gϕ := ¬F¬ϕ, and ϕWψ := ϕ U ψ ∨Gϕ. In addition we will use the two following
notations : 〈K〉ϕ := ¬K¬ϕ and 〈 K〉ϕ := ¬ K¬ϕ.

We use K instead of the usual knowledge operator K to emphasize that though it has a strong
epistemic flavour, notably in various application instances we present here, it need not be interpreted
in terms of knowledge in general, but merely as a way to state properties of bundles of plays.

The interpretation of our language requires an arena G, enriched with an equivalence relation over
the set of finite plays ^ ⊆ Plays2

∗ and an equivalence relation over the set of infinite plays _⊆ Plays2
ω.

It seems natural to relate ^ and _, which can be done in several standard ways (we refer to
[14]). For example, _ can be obtained as the limit extension ^lim of ^: π ^lim π′ if there exist two
increasing sequences (ρi)i∈N and (ρ′i)i∈N of prefixes of π and π′ respectively such that for all i ∈ N,
ρi ^ ρ′i. Alternatively, if ^ can be defined on suffixes of finite plays λ, i.e. finite plays starting in
a position v 6= v0, (which is the case in all our examples), _ can also be obtained as the piecewise
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extension ^ω of ^: π ^ω π′ if there exist two decompositions π = λ1λ2λ3 . . . and π′ = λ′1λ
′
2λ
′
3 . . .

such that λi ^ λ′i for all i = 1, 2, 3, . . . Whether the two definitions coincide depends on the properties
of ^. We can state the following lemmata (which are easy to prove).

Lemma 1 If ^ is a congruence, that is λ1 ^ λ′1 and λ2 ^ λ′2 implies λ1λ2 ^ λ′1λ
′
2, then ^ω ⊆^lim.

Lemma 2 If ^ is left cancelable, that is λ1 ^ λ′1 and λ1λ2 ^ λ′1λ
′
2 implies λ2 ^ λ′2, then ^ω ⊇

^lim.

Notice that epistemic equivalences (accessibility relations in S5) which satisfy the “Uniform No
Miracle” assumption of [19] yield congruences over finite histories, thus there may be a canonical way
of deriving their extension to infinite histories, if they are also left cancelable. Actually, this is the
case for the relevant examples we consider in Section 3. Nevertheless, we want to adopt a general
setting where the relation between ^ and _ need not be given explicitly.

Given an arena G, and two equivalence relations ^ and _ on finite and infinite plays respectively,
we interpret our specification language L on triples (Π, π, i), where Π ⊆ Playsω, π ∈ Π and i ∈ N.
The semantics is given by induction over the structure of the formulas.

Π, π, i |= p iff p ∈ `(π[i])
Π, π, i |= ¬ϕ iff Π, π, i 6|= ϕ
Π, π, i |= ϕ ∧ ψ iff Π, π, i |= ϕ and Π, π, i |= ψ
Π, π, i |= #ϕ iff Π, π, i+ 1 |= ϕ
Π, π, i |= ϕ U ψ iff there is j ≥ i such that Π, π, j |= ψ and for all i ≤ k < j, Π, π, k |= ϕ
Π, π, i |= Kϕ iff for all π′ ∈ Π, j ∈ N such that π[0, i] ^ π′[0, j], Π, π′, j |= ϕ
Π, π, i |= Kϕ iff for all π′ ∈ Π, j ∈ N such that π _ π′ and π[0, i] ^ π′[0, j], Π, π′, j |= ϕ

The LTL part is classic. Kϕ is true at some point of a play if ϕ is true in every equivalent finite
play, which is also the classic semantics of epistemic temporal logics. The Koperator is more original:
alike K we consider finite plays that are equivalent to the current one, but the set of finite plays we
consider is restricted to prefixes of infinite plays equivalent to the current infinite play. It enables to
filter ^-equivalent plays on the basis of properties of the whole infinite current play. For example, if
^ (and _) defines a player’s observational power, Kexpresses what her present knowledge would be
if she were able to look arbitrarily far away in the future of the current play.

Definition 1 A uniformity constraint is a formula ϕ ∈ L. We sometimes write such a constraint
µ = (^,_,ϕ) in order to make explicit the two equivalences ^ and _ used in the semantics.

Now we define two notions of uniform strategies, which differ only in the universe the K and the
Koperators quantify over: Outcome(σ) or Playsω (with the latter, equivalent plays not induced by

the strategy also count). As we shall see in the examples of the next section, making a nuance is
worthwhile.

Definition 2 Let G be an arena and µ = (^,_,ϕ) be a uniformity constraint. A strategy σ for a
Player k is

• µ-strictly uniform if for all π ∈ Outcome(σ), Outcome(σ), π, 0 |= ϕ.

• µ-fully uniform if for all π ∈ Outcome(σ), Playsω, π, 0 |= ϕ.
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Remark that the parameter _ (resp. ^) plays no role in Definition 2 if ϕ does not contain any
K(resp. K) operator, hence it is a mere LTL formula. Notice that in this latter case, some standard

ω-regular (winning) conditions can be expressed over plays. The extension to a more powerful logic,
such as the full propositional µ-calculus, in order to capture all ω-regular properties is a priori possible.
However, for the examples considered in Section 3 this full power is not needed.

3 Frameworks from the literature

They are several instances of frameworks where the notion of uniform strategies occurs. This is what
this section aims at showing.

In the following, we will talk about synchronicity when the equivalence ^ preserves the length,
and asynchronicity otherwise, but in general we make no assumption on ^.

3.1 Observation-based and knowledge-based strategies

Games with imperfect information, in the most general sense, are games in which some of the players
do not know exactly what is the current position of the game. This can occur in real games, e.g.
poker since one does not know what cards her opponents have in hands, but also in situations arising
from computer science, like for example a program that observes or controls a system by means
of a sub-part of its variables, the interface, while other variables remain hidden. In games with
imperfect information, the player’s ability to remember what happened so far along a play is a key
point to achieve a winning strategy. This is not the case, e.g. for perfect-information parity games,
where memoryless strategies are sufficient. It is therefore relevant under an imperfect information
assumption to distinguish the perfect recall setting, as opposed to the imperfect recall one, when the
player remembers the whole history of the observation she had of a play, no matter how long it is.

While games with imperfect information and perfect recall have been studied intensively [16, 5], the
case of imperfect recall has received much less attention since paradoxes concerning the interpretation
of such games were raised [15]. Nonetheless, relevant problems may be modeled with imperfect recall:
typically, particular computing resources have very limited memory and cannot remember arbitrarily
long histories.

In this presentation, we restrict to the classic synchronous perfect recall setting; however the result
would easily adapt to different settings, e.g. if the observational equivalence relation were asynchronous,
with imperfect recall. . .

In two-player imperfect-information games as studied for example in [16, 5, 3], Player 1 only
partially observes the positions of the game, such that some positions are indistinguishable to her,
while Player 2 has perfect information (the asymmetry is due to the focus being on the existence of
strategies for Player 1). Arenas are labelled directed graphs, and in each round, if the position is a
node v, Player 1 chooses an label/action a, and Player 2 chooses a next position v′ reachable from v
through an a-labelled edge.

We equivalently define this framework in a manner that fits our setting by putting Player 1’s
actions inside the positions. We have two kinds of positions, of the form v and of the form (v, a). In
a position v, when she chooses an action a, Player 1 actually moves to position (v, a), then Player 2
moves from (v, a) to some v′. So an imperfect-information game arena is a structure Gimp = (G,∼)
where G = (V1, V2, E, v0, P rop, `) is a two-player game arena with positions in V1 of the form v and
positions in V2 of the form (v, a). For a position (v, a) ∈ V2, Pos(v, a) = v and Act(v, a) = a.
E ⊆ V1 × V2 ∪ V2 × V1, vE(v′, a) implies v = v′, v0 ∈ V1, Prop = {p1} ∪ {pa | ∃v, (v, a) ∈ V2} and
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`(v) = {p1} for v ∈ V1, `(v, a) = {pa} for (v, a) ∈ V2. Finally, ∼ ⊆ V 2
1 is an observational equivalence

relation on positions, that relates indistinguishable positions for Player 1, and it extends to finite
plays as the least relation ∼ such that ρv ∼ ρ′v′ whenever ρ ∼ ρ′ and v ∼ v′, and ρ(v, a) ∼ ρ′(v′, a′)
whenever ρ ∼ ρ′, v ∼ v′ and a = a′.

We add the classic requirement that the same actions must be available in indistinguishable posi-
tions: for all v, v′ ∈ V1, if v ∼ v′ then vE(v, a) if, and only if, v′E(v′, a). In other words, a player can
distinguish positions where she has different options.

A strategy for Player 1 is a mapping σ : v0(V2V1)∗ → V2 such that for all finite play of the form
ρv, vEσ(ρv). Those strategies are required to be observation based, i.e. Player 1 must play the same
way in ∼-equivalent finite plays. Strategies for Player 1 can also be knowledge based, which is more
restrictive. The knowledge or information set of Player 1 after a finite play is the set of positions that
she considers possible according to the observation she has. Formally, let ρ ∈ Plays∗ be a finite play
with last(ρ) ∈ V1. The knowledge or information set of Player 1 after ρ is I(ρ) := {last(ρ′) | ρ′ ∈
Plays∗, ρ ∼ ρ′}.

Definition 3 A strategy σ for Player 1 is observation-based (resp. knowledge-based) if for all ρ, ρ′ ∈
v(V2V1)∗, ρ ∼ ρ′ (resp. I(ρ) = I(ρ′)) implies Act(σ(ρ)) = Act(σ(ρ′)).

We can characterize observation-based strategies and knowledge-based strategies as uniform strate-
gies. In order to capture the knowledge-based property, we define ' as the smallest reflexive relation
such that for all ρ, ρ′ ∈ Plays∗ with last(ρ), last(ρ′) ∈ V1, I(ρ) = I(ρ′) implies ρ ' ρ′. We define the
formula

SameAct := G(p1 →
∨

pa∈Prop
K#pa)

which expresses that whenever it is Player 1’s turn to play, there is an action a that is played in all
equivalent finite play.

Theorem 3
A strategy σ for Player 1 is observation-based if, and only if, it is (∼,∼ω, SameAct)-strictly uniform.
A strategy σ for Player 1 is knowledge-based if, and only if, it is (','ω, SameAct)-strictly uniform.

Actually, here the relation on infinite plays is irrelevant, since operator Kis not used; we have
arbitrarily chosen to use ∼ω and 'ω.

3.2 Games with epistemic condition

Uniform strategies enable to express winning conditions that have epistemic features, the relevance of
which is exemplified by the games with opacity condition studied in [13]. In that case, K can represent
a players’ knowledge, or distributed knowledge between a group of players, or common knowledge,
depending on the winning condition one wants to define.

Games with opacity conditions are based on two-player imperfect-information arenas with a partic-
ular winning condition, called the opacity condition, which relies on the knowledge of the player with
imperfect information. In such games, some positions are “secret” as they reveal a critical information
that the imperfect-information player wants to know (in the epistemic sense).

More formally, let Ginf = (G,∼) be an imperfect-information arena as described in Section 3.1,
with a distinguished set of positions S ⊆ V1 that denotes the secret. Let G = (V1, V2, E, v0, {pS}, `)
be the arena with `−1({pS}) = S (positions labeled by pS are exactly positions v ∈ S). The opacity
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winning condition is as follows. An infinite play is winning for Player 1 if there exists a finite prefix
ρ of this play whose information set is contained in S, i.e. I(ρ) ⊆ S, otherwise Player 2 wins. Again,
strategies for Player 1 are required to be observation-based. It can easily be shown that:

Theorem 4 A strategy σ for Player 1 is winning if, and only if, σ is (∼,∼ω,FKpS)-strictly uniform.
A strategy σ for Player 2 is winning if, and only if, σ is (∼,∼ω,G¬KpS)-fully uniform.

In Theorem 4, we make use of the “full” uniformity property because we are interested in the point
of view of Player 1 who might consider possible some plays that are not induced by the strategy of
Player 2.

3.3 Non-interference

Non-interference, as introduced by [10], is a property evaluated on labelled transition systems which
handle Boolean variables. Such systems are tuples (S, I,O, δ, s0, out) where S is the set of states,
I = H ] L is a set of Boolean input variables partitioned into high security variables H and low
security variables L, O is the set of Boolean output variables, δ : S×2I → S is the transition function
that maps each pair of state and input variables valuation1 to a next state, s0 is the initial state, and
out : S → 2O is the output function that represents a mapping of states onto valuations of the Boolean
output variables. We extend the transition function δ to S × (2I)∗ → S as expected: δ(s, ε) = s and
δ(s, ua) = δ(δ(s, u), a).

We consider the definition of non-interference on infinite input sequences used in [7]. We define the
L-equivalence, ∼L over (2I)∗ by u ∼L u′ whenever u and u′ have the same length and they coincide
on the values of the input variables, i.e. for all 1 ≤ i ≤ length(u), for all l ∈ L, l ∈ u(i) ⇔ l ∈ u′(i).
Notice that since ∼L is a congruence and is left cancelable, by Lemmata 1 and 2, ∼limL and ∼ωL
coincide, and we shall write this relation ≈L. Given an infinite sequence of inputs w ∈ (2I)ω, we
abuse notation by writing out(w) for the infinite sequence of output variables valuations encountered
in the states along the execution of the system on input w. A system (S, I,O, δ, s0, out) verifies the
non-interference property if for any two infinite sequences of inputs w,w′ ∈ (2I)ω, w ≈L w′ implies
out(w) = out(w′). In other words, the valuations of high security variables have no consequence on
the observation of the system.

A first natural problem is to decide the non-interference property of a system. A second more
general problem is a control problem: we want to decide whether there is a way of restricting the
set of input valuations along the executions, or equivalently to control the environment, so that the
system is non-interfering. By constraining the applied restriction to be trivial, the former problem is
a particular case of the latter. We can encode the control problem in our setting.

Let Sys = (S, I,O, δ, s0, out) be an instance of the problem, and write Σ for 2I with typical
elements a, b, . . . Without loss of generality, we can assume that Sys is complete: every input valuation
yields a transition. We define a two-player game arena that simulates the system, in which Player 1
fixes the environment, i.e. a subset of the possible inputs in the current state, and Player 2 chooses a
particular input among those. More formally, let GSys = (V1, V2, E, v0, P rop, `), with V1 = (Σ]{ε})×S
and V2 = S × 2Σ. A position (a, s) ∈ V1 denotes a situation where the system reaches state s by an
a-transition, and (s,A) ∈ V2 denotes a situation where in state s, the set of possible inputs is A. The
set of edges E of the arena is the smallest set such that (a, s)E(s,A) for all s ∈ S, a ∈ Σ and A ⊆ Σ,

1we classically confuse valuations over a set B of Boolean variables with elements of 2B .
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and (s,A)E(a, δ(s, a)) whenever s ∈ S and a ∈ A. The initial position of the arena is v0 = (ε, s0), and
by letting Prop = {po | o ∈ 2O}, we set `(a, s) = `(s,A) = {out(s)}.

By writing ι for the canonical projection from V1 ∪ V2 onto 2I (that is ι(ε, s0) = ι(s,A) = ε and
ι(a, s) = a) and by extending ι to finite plays as expected, we let ρ ≡L ρ′ hold whenever ι(ρ) ∼L ι(ρ′).
Again, ≡L is both a congruence and left cancelable, hence ≡ωL and ≡limL coincide. We now define the
formula

SameOuput := G
∧

po∈Prop
(po → Kpo)

which captures the property that the valuations of output variables along ≡ωL-equivalent executions
of the system coincide, and we can establish the following.

Theorem 5 There is a one-to-one correspondence between (≡L,≡ωL, SameOutput)-strictly uniform
strategies of Player 1 and the controllers which ensure the non-interference property of the system.

In particular, the trivial strategy of Player 1, where from any position (a, s) she chooses to move
to (s,Σ), is (≡L,≡ωL, SameOutput)-strictly uniform if, and only if, the system has the non-interference
property.

Notice that in order to make this control problem more realistic, one would seek a maximal
permissive strategy/controller so that environments as “large” as possible are computed, but this is
out of the scope of the paper.

3.4 Diagnosis and Prognosis

Diagnosis has been intensively studied, in particular by the discrete-event systems community (see
for example [17, 21, 4]). Informally, in this setting, a discrete-event system is diagnosable if any
occurrence of a faulty event during an execution is eventually detected. More formally, diagnosability
is a property of discrete-event systems which are structures of the form Sys = (S,Σ,Σo,∆, s0, F ),
with S the set of states, Σ the set of events, Σ0 ⊆ Σ the observable events, ∆ ⊆ S × Σ × S the
transition relation, s0 the initial state and F ⊆ S the faulty states; we assume that once a faulty state
is reached, only faulty states can be reached (the fault is persistent). We can rephrase this problem
in our setting, with a single player simulating the system. Notice that since there is only one player,
a strategy defines a unique infinite play.

Let GSys = (V,E, v0, P rop, `), with V = (Σ ] {ε}) × S, (a, s)E(b, s′) whenever (s, b, s′) ∈ ∆,
v0 = (ε, s0), Prop = {f} and `(a, s) = {f} if s ∈ F , ∅ otherwise. We write ρ ≡Σo ρ

′ whenever the
sequences of observable events underlying ρ and ρ′ are the same (these sequences are obtained from
the sequences of positions in the play: for each position of the form (a, s), keep its letter a and delete
it if a 6∈ Σo).

Theorem 6 Sys is diagnosable if, and only if, every strategy in GSys is (≡Σo ,≡ωΣo
,Ff → FKf)-fully

uniform.

Prognosis is a companion of diagnosis, but focuses on the ability to predict that a fault will occur.
Prognosability-like properties can be defined in our setting. As an example, we aim at saying that a
system is prognosable whenever the fact that a fault occurs in a system is known at least one step in
advance. By using our framework, we can propose the following definition.

Definition 4 A system Sys is prognosable if every strategy in GSys is (≡Σo ,≡ωΣo
, (¬f)W(¬f∧K#f))-

fully uniform.

7



3.5 Dependence Logic

Dependence Logic is a flourishing topic introduced recently by Väänänen [18]. It extends first order
logic by adding atomic dependence formulas dep(t1, . . . , tn), which express functional dependence of
the term tn on the terms t1, . . . , tn−1. Evaluating a dependence between terms on a single assignment
of the free variables is meaningless: in order to tell whether t depends on t′, one must vary the values
of t′ and see how the values of t are affected. This is why a formula of Dependence Logic is evaluated
on a first-order modelM and a set of assignments for the free variables, called a team. If t is a term,
M a model and s an assignment for the free variables in t, JtKMs ∈M is the interpretation of t in the
model M with the assignment s.

For this logic, a game semantics is given in [18] that is said to be a game with imperfect information.
However the game arena is of perfect information: it is called game with imperfect information because
an additional “uniformity requirement” is imposed on strategies.

Let φ be a sentence (formula with no free variable) of Dependence Logic, and letM be a first order
model. GM(φ) is a two player game between Player 1 and Player 2; positions are of the form (ϕ, n, s, i),
where ϕ is a subformula of φ, n is the position in φ of the first symbol of ϕ, s is an assignment whose
domain contains the free variables of ϕ, and i ∈ {1, 2}. The index n is used to decide, given two
positions containing the same dependence atom, whether they are the same syntactic subformulas of
φ or not. For a subformula ϕ, len(ϕ) is the number of symbols in ϕ. The game starts in position
(φ, 1, ∅, 2) and the rules are as follows:

position (t1 = t2, n, s, i): if Jt1KMs = Jt2KMs , Player i wins, otherwise the opponent wins.
position (Rt1 . . . tm, n, s, i): if JRKMJt1KMs . . . JtmKMs , Player i wins, otherwise the opponent wins.
position (dep(t1, . . . , tm), n, s, i): Player i wins.
position (¬ϕ, n, s, i): move to the position (ϕ, n+ 1, s, i∗), where i∗ is the opponent of i.
position (ϕ ∨ ψ, n, s, i): i chooses between position (ϕ, n, s, i) and (ψ, n+ 1 + len(ϕ), s, i).
position (∃xϕ, n, s, i): i chooses a value a ∈M and moves to (ϕ, n+ 2, s(a/x), i)

A strategy σ for Player 1 is uniform in the sense of [18] if, for every two finite plays ρ, ρ′ ∈
Outcome(σ) such that last(ρ) = (dep(t1, . . . , tm), n, s, 1) and last(ρ′) = (dep(t1, . . . , tm), n, s′, 1) con-
tain the same (syntactically speaking) atomic dependence subformula, if s and s′ agree on t1, . . . , tm−1,
they also agree on tm. This reflects the idea of dependence atoms: the values of the terms t1, . . . , tm−1

determine the value of tm. A sentence φ of Dependence Logic is true in a model M if Player 1 has a
winning uniform strategy in GM(φ).

We characterize uniform strategies in the sense of [18] as uniform strategies in our sense. The game
described above easily fits in our setting (we add loops on terminal positions so as to obtain infinite
plays). Let φ be a sentence of Dependence Logic, and M be a finite model. For each object a ∈ M
of the domain we use one atomic proposition pa, and we also use the proposition d to mark positions
that contain dependence atoms. So Prop = {pa | a ∈M} ] {d}, and the valuation ` is as follows :

`(dep(t1, . . . , tm), n, s, i) =

{
{pa, d} if i = 1, with a = JtmKMs
∅ otherwise

`( , n, s, i) = ∅

We define the equivalence relation ' on finite plays as the smallest reflexive relation such that if
there is ϕ = dep(t1, . . . , tm) and n s.t last(ρ) = (ϕ, n, s, 1), last(ρ′) = (ϕ, n, s′, 1), and JtiKMs = JtiKMs′
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for i = 1, . . . , n− 1, then ρ ' ρ′. Now we define the formula

AgreeOnLast := G(d→
∨
a∈M

Kpa)

which expresses that whenever the current position contains a dependence atom dep(t1, . . . , tm), it
agrees with all equivalent finite plays on some value a for tm. Since equivalent plays are those ending
in a position that has the same dependence atom and agrees on the first m − 1 terms, it is easy to
prove:

Theorem 7 A strategy σ for Player 1 is uniform if, and only if, it is (','ω, AgreeOnLast)-strictly
uniform.

3.6 Dependence logic and games with imperfect information

As we said, the semantics game for Dependence Logic presented in the previous section is said to
be a game with imperfect information. We do not agree, because the difference between games with
perfect information and games with imperfect information (at least in the perfect recall setting, it
is not as clear otherwise, see [15]) lies in the fact that in the latter, some finite plays are related
(indistinguishable), and players must behave the same way in these related situations. Concerning the
semantics game for Dependence Logic, the difference with perfect-information games is that some plays
are related, those ending in positions bound to the same atomic dependence formula dep(t1, . . . , tn)
with valuations agreeing on t1, . . . , tn−1, and the valuations in these positions must agree on tn. So
it is not that players should behave the same way in indistinguishable situations, but rather that the
players should have behaved in such a way that the valuations for tn are the same in indistinguishable
situations.

But it is true that there is a similarity between these two constraints on allowed strategies, as
shown by looking at the formulas of the uniformity constraints capturing observation-based strategies
(SameAct) and uniform strategies in the sense of Dependence Logic (AgreeOnLast):

SameAct = G(p1 →
∨

pa∈Prop
K#pa) and AgreeOnLast = G(d→

∨
a∈M

Kpa)

In the first case, the same thing must happen in equivalent situations, whereas in the second case,
the same thing must hold in equivalent situations.

Neither semantics games for Dependence Logic are games with imperfect information in the clas-
sical sense, nor games with imperfect information can be easily described using the uniform strategy
notion of [18], but both can be characterized in a very similar way with our notion of uniform strategies.

4 Expressiveness

By looking at its semantics, the language L clearly has at least the expressive power of ETL [11] for
a single agent with relation ^ over finite histories. In the following, we write LK for the syntactic
fragment of L without operator K.

Already, the language LK may lead to specify sets of uniform strategies that do not form a regular
tree-language, hence they are not µ-calculus definable. Indeed, for example the property that nodes
at the same depth of a labelled-tree share the same label cannot be regular (by a simple Pumping
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Lemma argument). As already mentioned in [1], this is what requires, with an appropriate relation
^, the LK-formula FKpS of Theorem 4, expressing that a strategy of Player 1 is winning in a game
with opacity condition.

Note that regular property checking techniques may be used to verify observational determinism
[2, 12]. This approach amounts to evaluate a polyadic µ-calculus formula over the self-product of
the system. These results are consistent with our observation that L can express non regular tree-
language properties. In fact, observational determinism turns out to be a particular hyperproperty,
in the sense of [6], that is a property of sets of traces. Observational determinism is a 2-safety
hyperproperty, and as established by [6], checking a k-safety hyperproperty (k ∈ IN) can be reduced to
checking a safety property on a product of k copies of the structure. However, the opacity-guarantee
property expressed in our language (see Section 3.2), although being a safety hyperproperty, is not a
k-safety hyperproperty for any k: indeed, for arbitrary arenas, using k copies of the arena may not be
sufficient to guarantee that all reachable information sets (of size possibly greater than the fixed k)
are not contained in the secret. As a result, techniques using a polyadic µ-calculus on the product of
k copies of the structure do not provide a complete method.

Beyond the fact that operator K yields non-regular properties of strategies, a gain in expressiveness
is reached by using the operator K, quantifying over a _-equivalence class (of infinite plays). This
gain is strict as exemplified by the instances of Figure 1: two arenas G and G′ are considered, and we
distinguish the plays π and π′: π = v0v1(v2)ω, π′ = v′0v

′
1(v′2)ω. It can be shown by induction over the

structure of the formulas that the logic LK cannot separate plays π and π′, whereas Kp holds only in
π′.

v0

^v1

v2

G

p

p

v′0

^v′1

v′2 6^

G′

p

pp

P lays(G), v0v1(v2)ω, 0 6|=(^,^ω) Kp and Plays(G′), v′0v′1(v′2)ω, 0 |=(^,^ω) Kp.

Figure 1
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5 Some computational aspects

In this section we will be interested in two problems: the uniform strategy checking problem and the
uniform strategy existence problem.

Definition 5 The strictly (resp. fully) uniform strategy problem is, given a game G and a uniformity
constraint µ = (^,_,ϕ) , to decide whether there exists a strategy σ that is µ-strictly (resp. fully)
uniform.

Definition 6 The strict (resp. full) uniformity problem is to decide whether a given strategy σ is
µ-strictly (resp. fully) uniform.

Theorem 8 The uniform strategy problem is undecidable.

We prove this result by reduction of the Post Correspondence Problem (PCP). Let Σ be an alphabet
with at least two letters, and let (α1, β1) . . . (αN , βN ) be a nonempty sequence of ordered couples of
words over Σ. We define the game G = (V1, V2, E, v0, P rop, `) as follows:

V2 = {v0, vf}, V1 = {vα, vβ} ∪ {αi[j] | 1 ≤ i ≤ N, 0 ≤ j < |αi|} ∪ {βi[j] | 1 ≤ i ≤ N, 0 ≤ j < |βi|},
v0E = {vα, vβ}, vαE = {αi[0] | 1 ≤ i ≤ N}, vβE = {βi[0] | 1 ≤ i ≤ N}, αi[j]E = {αi[j + 1]}
for 1 ≤ i ≤ N and 0 ≤ j < |αi| − 1, βi[j]E = {βi[j + 1]} for 1 ≤ i ≤ N and 0 ≤ j < |βi| − 1,
αi[|αi| − 1]E = {αj [0] | 1 ≤ j ≤ N} ∪ {vf} and βi[|βi| − 1]E = {{βj [0] | 1 ≤ j ≤ N} ∪ {vf}} for
1 ≤ i ≤ N and finally vfE = {vf}. The game starts in v0, and Player 2 chooses whether we are
going to read the αi’s or the βi’s. Next Player 1 chooses the sequence of indexes she proposes as a
solution to the PCP. If the first index chosen is i in position vα (resp. vβ), there is no choice but to

read all the letters of αi (resp. βi). When arrived in αi[|αi| − 1] (resp. βi[|βi| − 1]), Player 1 chooses
the next index, say j, and moves to αj [0] (resp. βj [0]) or decides to go to the final sink position vf .
Positions are decorated with propositions in Prop = {px | x ∈ Σ} ∪ {pf}. `(v0) = `(vα) = `(vβ) = ∅,
`(αi[j]) = {pαi[j]}, `(βi[j]) = {pβi[j]} and `(vf ) = {pf}.

We define two different equivalence relations on plays, '1 and '2. For '2 we first define an
“observation” function, that is the sequence of indexes chosen by Player 1 in the play.

Obs(v0) = ε and Obs(ρv) =

{
Obs(ρ)i if v ∈ {αi[0], βi[0]} for some i

Obs(ρ) otherwise
.

Now, ρ '1 ρ
′ if |ρ| = |ρ′|, ρ '2 ρ

′ if Obs(ρ) = Obs(ρ′), and we let

GoodWord := Fpf ∧G
∧

{px|x∈Σ}

px → Kpx

Lemma 9 The PCP has a solution if, and only if, Player 1 has a ('1,'ω2 , GoodWord)-fully uniform
strategy.

Proof To prove this lemma, first notice that for any strategy σ for Player 1 there are only two plays
in Outcome(σ): one for each choice of Player 2 in the initial position. Notice also that each finite
(resp. infinite) play ρ (resp. π) defines a word in Σ∗, w(ρ) (resp. w(π)).

Suppose that there exists a ('1,'ω2 , GoodWord)-fully uniform strategy σ for Player 1. Let π ∈
Outcome(σ) be the play induced by σ that defines the longest word w(π). Let i1 . . . iN = Obs(π).

11



Because Playsω, π, 0 |= Fpf , we have that N < 0. Depending on the choice made by Player 2 in π,
w(π) = αi1 . . . αiN or w(π) = βi1 . . . βiN . Without loss of generality assume that w(π) = αi1 . . . αiN .
Let π′ ∈ Playsω be the play in which Player 2 makes the other choice than in π, i.e. she chooses vβ, and
in which Player 1 chooses the same sequence of indices i1 . . . iN , so that we have w(π′) = βi1 . . . βiN .
We write l = |w(π)| and l′ = |w(π′)|. By assumption l ≥ l′. We prove that w(π) = w(π′), which
concludes. Let 0 ≤ i < l. We have that Playsω, π, i + 2 |= pw(π)[i] (the first two positions of every
play, v0vα or v0vβ, do not correspond to any letter). Because Playsω, π, 0 |= G

∧
{px|x∈Σ}

px → Kpx and

Playsω, π, i + 2 |= px, we have that Playsω, π, i + 2 |= Kpx. Clearly Obs(π) = Obs(π′), so π 'ω2 π′,
and π[0, i + 2] ' π′[0, i + 2], so Playsω, π

′, i + 2 |= px, hence w(π′)[i] = x. So for i = 0 . . . l − 1 we
have that w(π)[i] = w(π′)[i]. This implies that l′ ≥ l, and since l ≥ l′ we have that l = l′, hence
αi1 . . . αiN = βi1 . . . βiN .

Now suppose that i1 . . . iN is a solution to the problem. We define the strategy σ for Player 1 (we
only define it for relevant finite plays, i.e. those that follow the strategy):

σ(ρv) =



αi1 [0] if v = vα

βi1 [0] if v = vβ

αi[j + 1] if v = αi[j] with j < |αi| − 1

βi[j + 1] if v = βi[j] with j < |βi| − 1

αik+1
[0] if v = αi[|αi| − 1], Obs(ρv) = i1 . . . ik and k < N

βik+1
[0] if v = βi[|βi| − 1], Obs(ρv) = i1 . . . ik and k < N

vf if v = αi[|αi| − 1] and Obs(ρv) = i1 . . . iN

vf if v = βi[|βi| − 1] and Obs(ρv) = i1 . . . iN

We prove that σ is ('1,'ω2 , GoodWord)-fully uniform. Let π ∈ Outcome(σ). N < ω, so Playsω, π, 0 |=
Fpf . Now let i ≥ 0 and suppose that there exists x ∈ Σ such that Playsω, π, i |= px. Neces-
sarily i ≥ 2 and x = w(π)[i − 2]. Let π′, j such that π 'ω2 π′ and π, i '1 π′, j. By definition
of σ, we have Obs(π) = i1 . . . iN , hence w(π) = αi1 . . . αiN or w(π) = βi1 . . . βiN . Since π 'ω2 π′,
Obs(π′) = Obs(π) = i1 . . . iN , so w(π′) = αi1 . . . αiN or w(π′) = βi1 . . . βiN . Since i1 . . . iN is a solution
to the PCP, we have αi1 . . . αiN = βi1 . . . βiN , so w(π) = w(π′). And because π, i '1 π

′, j, we have i = j.
Playsω, π

′, i |= pw(π′[i]) and w(π)[i] = w(π′)[i], so Playsω, π
′, i |= px. So Playsω, π, 0 |= GoodWord.

Now we expose a positive result concerning the uniformity problem, and relate a subclass of our
framework to Epistemic Temporal Logic. The subclass of the framework is defined by some further
assumptions on the strategies used, the equivalence relations and the language.

First, we consider that strategies can be represented by finite I/O automaton, as done in eg.[8].
Such an automaton representing a strategy for Player k takes positions of the play as inputs, and when
it is Player k’s turn to play, it outputs the next position the player should choose. This assumption
is basically that the strategies considered require only finite memory, represented by the states of the
automaton.

Next, we consider that equivalence relations ^ are observation-based, synchronous with perfect-
recall. We mean that for every game G and relation ^, there exists a set of observations O (corre-
sponding or not to one of the player’s observational power) and a mapping Obs : V → O such that
for all ρ, ρ′ ∈ Plays∗, ρ ^ ρ′ if, and only if, |ρ| = |ρ′| and for all 0 ≤ i < |ρ|, Obs(ρ[i]) = Obs(ρ′[i]).

Finally we restrict the language used to LK, and we consider only strict uniformity.
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In these conditions, we have the following result:

Theorem 10 Considering strategies with finite memory, observation-based synchronous perfect-recall
equivalence relations, and the sub-language LK, the strict uniformity problem is in PSPACE.

The proof is done by reduction to the framework of Linear Time Logic of Knowledge (LTLK)
described in [20, 9].

An interpreted environment for one agent is a tuple E = (S, I,∆, O, `, F ) where S is a set of states,
I ⊆ S is a set of initial states, ∆ ⊆ S2 is a transition relation, O : S → O is an observation function,
where O is a set of observations, ` : S → 2Prop is a labelling function, and F ⊆ S is a Büchi acceptance
condition.

Let G be a game, Aσ an I/O automaton for a strategy σ, ^ an equivalence relation and ϕ a
LK-formula. It is not difficult, by means of an appropriate synchronous product of the game arena
with Aσ, to obtain a transition system S = (S, I,∆) whose set of traces is Out(σ). Then, since ^ is
observation-based we can define the observation function O, the labelling function ` is defined like in
the original game, and we take the trivial acceptance condition F = S. This defines the interpreted
environment EGσ constructible in polynomial time. And the syntax and semantics of LTLK formulas
being the same as for LK, the result follows from the result proved in [9] that the model-checking
problem for LTLK with one agent and synchronous perfect-recall is in PSPACE.

6 Discussion

Our notion of uniform strategies is a very general notion the relevance of which is demonstrated by
the many examples from the literature that can be captured and which provides a clean mathematical
setting to work on. Still, the present proposal deserves further study in many directions. For example,
we should investigate whether the hypothesis on the binary relations between plays can be relaxed, just
as epistemic accessibility relations need not be equivalences in general. Even if we stick to equivalences,
those not satisfying the Uniform No Miracle property of [19] are not necessarily congruences, which
may complicate the way to extend it to infinite plays.

Also, results on expressiveness, and answers on decidability and computational complexity ques-
tions are burning topics. In its full generality, the setting should lead to numerous undecidability
results because it enables to navigate both on the vertical and horizontal dimensions of the trees. A
preliminary comparison between our language and Second Order Logic over trees should throw light
on these issues.

Note that we could also allow several Ki operators associated to several relations ^i between
plays; this would enable us to represent, e.g. the different players’ knowledge. Theorem 10 stating
that the uniformity problem under certain assumptions is in PSPACE would no longer hold, but the
same reduction gives a non-elementary upper bound [20], and if relations are based only on the last
position of plays instead of having perfect-recall, then the problem falls back in PSPACE [9].

Finally, uniform strategies are defined via a language. At the moment, the language is based on
LTL, but it can be extended to the propositional µ-calculus with the K and Koperators. Whichever
temporal logic is chosen, it would be interesting to have a language-independent definition of uniform
strategies, and to establish the completeness of a given language, like the one we propose, with regard
to this hypothetical semantic-based definition.
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