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Abstract—We introduce an extension of Strategy logic for the
imperfect-information setting, called SLii, and study its model-
checking problem. As this logic naturally captures multi-player
games with imperfect information, the problem turns out to be
undecidable. We introduce a syntactical class of “hierarchical
instances” for which, intuitively, as one goes down the syntactic
tree of the formula, strategy quantifications are concerned with
finer observations of the model. We prove that model-checking
SLii restricted to hierarchical instances is decidable. This result,
because it allows for complex patterns of existential and uni-
versal quantification on strategies, greatly generalises previous
ones, such as decidability of multi-player games with imperfect
information and hierarchical observations, and decidability of
distributed synthesis for hierarchical systems.

To establish the decidability result, we introduce and study
QCTL∗ii, an extension of QCTL (itself an extension of CTL
with second-order quantification over atomic propositions) by
parameterising its quantifiers with observations. The simple
syntax of QCTL∗ii allows us to provide a conceptually neat
reduction of SLii to QCTL∗ii that separates concerns, allowing
one to forget about strategies and players and focus solely on
second-order quantification. While the model-checking problem
of QCTL∗ii is, in general, undecidable, we identify a syntactic
fragment of hierarchical formulas and prove, using an automata-
theoretic approach, that it is decidable. The decidability result
for SLii follows since the reduction maps hierarchical instances
of SLii to hierarchical formulas of QCTL∗ii.

I. INTRODUCTION

Logics for strategic reasoning are a powerful tool for
expressing correctness properties of multi-player graph-games,
which in turn are natural models for reactive systems and
discrete event systems. In particular, ATL∗ and its related
logics were introduced to capture the realisability/synthesis
problem for open systems with multiple components. These
logics were designed as extensions of branching-time logics
such as CTL∗ that allow one to write alternating properties
directly in the syntax, i.e., statements of the form “there exist
strategies, one for each player in A, such that for all strategies
of the remaining players, the resulting play satisfies ϕ”.
Strategy logic (SL) [1] generalises these by treating strategies
as first-order objects x that can be quantified 〈〈x〉〉 (read “there
exists a strategy x”) and bound to players (a, x) (read “player
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a uses strategy x”). This syntax has flexibility very similar to
first-order logic, and thus allows one to directly express many
solution concepts from game-theory, e.g., the SL formula
〈〈x1〉〉〈〈x2〉〉(a1, x1)(a2, x2)∧i=1,2 [〈〈yi〉〉(ai, yi)goali]→ goali
expresses the existence of a Nash equilibrium in a two-player
game (with individual Boolean objectives).

An essential property of realistic multi-player games is that
players only have a limited view of the state of the system.
This is captured by introducing partial-observability into the
models, i.e., equivalence-relations o (called observations) over
the state space that specify indistinguishable states. In the
formal-methods literature it is typical to associate observations
to players. In this paper, instead, we associate observations to
strategies. Concretely, we introduce an extension SLii of SL
that annotates the strategy quantifier 〈〈x〉〉 by an observation o,
written 〈〈x〉〉o. Thus, both the model and the formulas mention
observations o. This novelty allows one to express, in the logic,
that a player’s observation changes over time.

Our logic SLii is extremely powerful: it is an extension
of SL (which is in the perfect-information setting), and
of the imperfect-information strategic logics ATL∗i,R [2] and
ATL∗sc,i [3]. A canonical specification in multi-player game
of partial observation is that the players, say a1, . . . , an,
can form a coalition and beat the environment player,
say b. This can be expressed in SLii as ΦSYNTH :=
〈〈x1〉〉o1 . . . 〈〈xn〉〉on [[y]]o(a1, x1) . . . (an, xn)(b, y)ϕ, where ϕ
is quantifier- and binding-free. Also, SLii can express more
complicated specifications by alternating quantifiers, binding
the same strategy to different agents and rebinding (these are
inherited from SL), as well as changing observations.

The complexity of SLii is also visible from an algorithmic
point of view. Its satisfiability problem is undecidable (this
is already true of SL), and its model-checking problem is
undecidable (this is already true of ATL∗i,R, in fact, even for the
single formula 〈{a, b}〉Fp in systems with three players [4]).
In fact, similar undecidability occurs in foundational work in
multi-player games of partial observation, and in distributed
synthesis [5], [6]. Since then, the formal-methods community
has spent much effort finding restrictions and variations that
ensure decidability [7]–[15]. The common thread in these
approaches is that the players’ observations (or what they can
deduce from their observations) are hierarchical.

Motivated by the problem of finding decidable extensions
of strategy logic in the imperfect-information setting, we
introduce a syntactic class of “hierarchical instances” of SLii,
i.e., formula/model pairs, and prove that the model-checking978-1-5090-3018-7/17/$31.00 c©2017 IEEE



problem on this class of instances is decidable. Intuitively,
an instance of SLii is hierarchical if, as one goes down
the syntactic tree of the formula, the observations annotating
strategy quantifications can only become finer. Although the
class of hierarchical instances refers not only to the syntax of
the logic but also to the model, the class is syntactical in the
sense that it depends only on the structure of the formula and
the observations in the model. Moreover, it is easy to check
(i.e., in linear time) if an instance is hierarchical or not.

The class of hierarchical instances generalises some existing
approaches and supplies new classes of systems and properties
that can be model-checked. For instance, suppose that there
is a total order � among the players such that a � b implies
player b’s observation is finer than player a’s observation —
such games are said to yield “hierarchical observation” in [15].
In such games it is known that synthesis against CTL∗ specifi-
cations is decidable (in fact, this holds for ω-regular specifica-
tions [8], [15]). This corresponds to hierarchical instances of
SLii in which the observations form a total order in the model
and the formula is of the form ΦSYNTH (mentioned above). On
the other hand, in hierarchical instances of SLii, the ordering
on observations can be a pre partial-order (i.e., not just total),
and one can arbitrarily alternate quantifiers in the formulas. For
instance, hierarchical instances allow one to decide if a game
that yields hierarchical information has a Nash equilibrium.
For example, assuming observations p1, p2, o1, o2 with pi finer
than o2 (for i = 1, 2), and o2 finer than o1, the formula
〈〈x1〉〉o1〈〈x2〉〉o2(a1, x1)(a2, x2)∧i=1,2 [〈〈yi〉〉pi(ai, yi)goali]→
goali expresses that there exists a strategy profile (x1, x2) of
uniform strategies, such that neither player has an incentive
to deviate using a strategy that observes at least as much as
the observations that both players started with. Observe that
this formula is in fact equivalent to the existence of a Nash
equilibrium, i.e., to the same formula in which pi = oi. This
shows we can decide the existence of Nash equilibria in games
that yield hierarchical observation.

As a tool to study SLii we introduce QCTL∗ii, an extension
to the imperfect-information setting of QCTL∗ [16], itself an
extension of CTL∗ by second-order quantifiers over atoms.
This is a low-level logic that does not mention strategies and
into which one can effectively compile instances of SLii. States
of the models of the logic QCTL∗ii have internal structure,
much like the multi-player game structures from [17] and
distributed systems [18]. Model-checking QCTL∗ii is also unde-
cidable (indeed, we show how to reduce from the MSO-theory
of the binary tree extended with the equal-length predicate,
known to be undecidable [19]). We introduce the syntactical
class QCTL∗i,⊆ of hierarchical formulas as those in which
innermost quantifiers observe more than outermost quantifiers,
and prove that model-checking is decidable using an extension
of the automata-theoretic approach for branching-time logics
(our decision to base models of QCTL∗ii on local states greatly
eases the use of automata). Moreover, the compilation of SLii
into QCTL∗ii preserves being hierarchical, thus establishing our
main contribution, i.e., that model checking the hierarchical
instances of SLii is decidable.

Related work. Formal methods for reasoning about reactive
systems with multiple components have been studied mainly
in two theoretical frameworks: a) multi-player graph-games
of partial-observation [6], [8], [15] and b) synthesis in dis-
tributed architectures [5], [7], [9], [11], [20] (the relationship
between these two frameworks is discussed in [15]). All of
these works consider the problem of synthesis, which (for
objectives in temporal logics) can be expressed in SLii using
the formula ΦSYNTH mentioned above. Limited alternation
was studied in [12] that, in the language of SLii, consid-
ers the model-checking problem of formulas of the form
〈〈x1〉〉o1 [[x2]]o2〈〈x3〉〉o3(a1, x1)(a2, x2)(a3, x3)ϕ, where ϕ is an
ω-regular objective. They prove that this is decidable in case
player 3 has perfect observation and player 2 observes at least
as much as player 1.

In contrast to all these works, formulas of SLii can express
much more complex specifications by alternating quantifiers,
sharing strategies, rebinding, and changing observations.

Recently, [15] generalised the classic result of [8]: it weak-
ens the assumption of hierarchical observation to hierarchical
information (which are both static notions), and then, further
to dynamic hierarchical information which allows for the
hierarchy amongst players’ information to change along a play.
However, it only considers the synthesis problem.

We are aware of two papers that (like we do) give simul-
taneous structural constraints on both the formula and the
model that result in decidability: in the context of synthesis
in distributed architecture with process delays, [20] considers
CTL∗ specifications that constrain external variables by the
input variables that may effect them in the architecture; and
in the context of asynchronous perfect-recall, [10] considers a
syntactical restriction on instances for Quantified µ-Calculus
with partial observation (in contrast, we consider the case of
synchronous perfect recall).

The work closest to ours is [21] which introduces a de-
cidable logic CL in which one can encode many distributed
synthesis problems. However, CL is close in spirit to our
QCTL∗i,⊆, and is more appropriate as a tool than as a high-
level specification logic like SLii. Furthermore, by means of
a natural translation we derive that CL is strictly included in
the hierarchical instances of SLii (Section II-E). In particular,
we find that hierarchical instances of SLii can express non-
observable goals, while CL does not. Non-observable goals
arise naturally in problems in distributed synthesis [5].

Finally, our logic SLii is the first generalisation of SL to
include strategies with partial observation and, unlike CL, to
generalise previous logics with partial-observation strategies,
i.e., ATL∗i,R [2] and ATL∗sc,i [3]. A comparison of SLii to SL,
ATL∗i,R, ATL∗sc,i and CL is given in Section II-E.
Plan. The definition of SLii and of hierarchical instances, and
the discussion about Nash equilibria, are in Section II. The
definition of QCTL∗ii, and its hierarchical fragment QCTL∗i,⊆,
are in Section III. The proof that model checking QCTL∗i,⊆ is
decidable, including the required automata preliminaries, are
in Section IV. The translation of SLii into QCTL∗ii, and the
fact that this preserves hierarchy, are in Section V.



II. SL WITH IMPERFECT INFORMATION

In this section we introduce SLii, an extension of SL [1]
to the imperfect-information setting with synchronous perfect-
recall. Our logic presents two original features: first, observa-
tions are not bound to players (as is done in extensions of ATL
by imperfect information [22] or logics for reasoning about
knowledge [23]), and second, we have syntactic observations
in the language, which need to be interpreted.

We follow the presentation of SL in [1], except that we
make some changes that simplify their presentation but do
not change their semantics, and some that allow us to capture
imperfect information. We introduce the syntax and semantics
of SLii, carefully detailing these changes. We first fix some
notation used throughout the paper.

A. Notation

Let Σ be an alphabet. A finite (resp. infinite) word over
Σ is an element of Σ∗ (resp. Σω). Words are written w =
w0w1w2 . . ., i.e., indexing begins with 0. The length of a finite
word w = w0w1 . . . wn is |w| := n + 1, and last(w) := wn
is its last letter. Given a finite (resp. infinite) word w and
0 ≤ i ≤ |w| (resp. i ∈ N), we let wi be the letter at position i
in w, w≤i is the prefix of w that ends at position i and w≥i is
the suffix of w that starts at position i. We write w 4 w′ if w
is a prefix of w′, and w4 is the set of finite prefixes of word
w. Finally, the domain of a mapping f is written dom(f), and
for n ∈ N we let [n] := {i ∈ N : 1 ≤ i ≤ n}. The literature
sometimes refers to “imperfect information” and sometimes to
“partial observation”; we will use the terms interchangeably.

B. Syntax

The syntax of SLii is similar to that of strategy logic SL as
defined in [1]: the only difference is that we annotate strategy
quantifiers 〈〈x〉〉 by observation symbols o. For the rest of the
paper, for convenience we fix a number of parameters for our
logics and models: AP is a finite set of atomic propositions,
Ag is a finite set of agents or players, Var is a finite set
of variables and Obs is a finite set of observation symbols.
When we consider model-checking problems, these data are
implicitly part of the input.

Definition 1 (SLii Syntax). The syntax of SLii is defined by
the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | 〈〈x〉〉oϕ | (a, x)ϕ

where p ∈ AP, x ∈ Var, o ∈ Obs and a ∈ Ag.

We use abbreviations > := p ∨ ¬p, ⊥:= ¬>, ϕ → ϕ′ :=
¬ϕ∨ϕ′, ϕ↔ ϕ′ := ϕ→ ϕ′∧ϕ′ → ϕ for boolean connectives,
Fϕ := >Uϕ, Gϕ := ¬F¬ϕ for temporal operators, and
finally [[x]]oϕ := ¬〈〈x〉〉o¬ϕ.

The notion of free variables and sentences are defined as for
SL. We recall these for completeness: A variable x appears
free in a formula ϕ if it appears out of the scope of a strategy
quantifier, and a player a appears free in ϕ if a temporal
operator (either X or U) appears in ϕ out of the scope of any
binding for player a. We let free(ϕ) be the set of variables

and players that appear free in ϕ. If free(ϕ) is empty, ϕ is a
sentence.

C. Semantics

The models of SLii are like those of SL, i.e., concurrent
game structures, but extended by a finite set of observations
Obs and, for each o ∈ Obs, by an equivalence-relation
O(o) over positions that represents what a player using a
strategy with that observation can see. That is, O(o)-equivalent
positions are indistinguishable to a player using a strategy
associated with observation o.

Definition 2 (CGSii). A concurrent game structure with
imperfect information (or CGSii for short) is a structure
G = (Ac, V, E, `, vι,O) where
• Ac is a finite non-empty set of actions,
• V is a finite non-empty set of positions,
• E : V × AcAg → V is a transition function,
• ` : V → 2AP is a labelling function,
• vι ∈ V is an initial position,
• O : Obs→ V × V is an observation interpretation map-

ping observations to equivalence relations on positions.

We may write ∼o for O(o), and v ∈ G for v ∈ V .
The notions of joint actions, plays, strategies and assign-

ments are similar to those for SL. We will recall these for com-
pleteness. Since the main difference between the semantics of
SL and SLii is in the strategy-quantification case where we
require strategies to be consistent with observations, we define
synchronous perfect recall and o-strategies before defining the
semantics of SLii. Finally, we mention that we make some
(inconsequential) simplifications to the semantics of SL as
proposed in [1]: i) we dispense with partial assignments and
only consider complete assignments, ii) our semantics are w.r.t.
a finite play instead of a position (these simplifications do not
change the expressive power of SL).
Joint actions. In a position v ∈ V , each player a chooses an
action ca ∈ Ac, and the game proceeds to position E(v, c),
where c ∈ AcAg stands for the joint action (ca)a∈Ag. Given a
joint action c = (ca)a∈Ag and a ∈ Ag, we let ca denote ca.
For each position v ∈ V , `(v) is the set of atomic propositions
that hold in v.
Plays and strategies. A finite (resp. infinite) play is a finite
(resp. infinite) word ρ = v0 . . . vn (resp. π = v0v1 . . .) such
that v0 = vι and for all i with 0 ≤ i < |ρ| − 1 (resp. i ≥ 0),
there exists a joint action c such that E(vi, c) = vi+1. We
let Plays be the set of finite plays. A strategy is a function
σ : Plays→ Ac, and the set of all strategies is denoted Str.
Assignments. An assignment is a function χ : Ag∪Var→ Str,
assigning a strategy to each player and variable. For an
assignment χ, player a and strategy σ, χ[a 7→ σ] is the
assignment that maps a to σ and is equal to χ on the rest
of its domain, and χ[x 7→ σ] is defined similarly, where x is
a variable.
Outcomes. For an assignment χ and a finite play ρ, we let
out(χ, ρ) be the only infinite play that starts with ρ and is then
extended by letting players follow the strategies assigned by χ.



Formally, out(χ, ρ) := ρ ·v1v2 . . . where, for all i ≥ 0, vi+1 =
E(vi, c), where v0 = last(ρ) and c = (χ(a)(ρ·v1 . . . vi))a∈Ag.
Synchronous perfect recall. In this work we consider players
with synchronous perfect recall, meaning that each player
remembers the whole history of a play, a classic assumption
in games with imperfect information and logics of knowledge
and time. Each observation relation is thus extended to finite
plays as follows: ρ ∼o ρ′ if |ρ| = |ρ′| and ρi ∼o ρ′i for every
i ∈ {0, . . . , |ρ| − 1}. For o ∈ Obs, an o-strategy is a strategy
σ : V + → Ac such that σ(ρ) = σ(ρ′) whenever ρ ∼o ρ′. The
latter constraint captures the essence of imperfect information,
which is that players can base their strategic choices only on
the information available to them. For o ∈ Obs we let Stro be
the set of all o-strategies.

Definition 3 (SLii Semantics). The semantics G, χ, ρ |= ϕ
is defined inductively, where ϕ is an SLii-formula, G =
(Ac, V, E, `, vι,O) is a CGSii, ρ is a finite play, and χ is
an assignment:

G, χ, ρ |= p if p ∈ `(last(ρ))
G, χ, ρ |= ¬ϕ if G, χ, ρ 6|= ϕ
G, χ, ρ |= ϕ ∨ ϕ′ if G, χ, ρ |= ϕ or G, χ, ρ |= ϕ′

G, χ, ρ |= 〈〈x〉〉oϕ if ∃σ ∈ Stro s.t. G, χ[x 7→ σ], ρ |= ϕ
G, χ, ρ |= (a, x)ϕ if G, χ[a 7→ χ(x)], ρ |= ϕ

and, writing π = out(χ, ρ):

G, χ, ρ |= Xϕ if G, χ, π≤|ρ| |= ϕ
G, χ, ρ |= ϕUϕ′ if ∃ i ≥ 0 s.t. G, χ, π≤|ρ|+i−1 |= ϕ′

and ∀ j s.t. 0 ≤ j < i,
G, χ, π≤|ρ|+j−1 |= ϕ

To explain the temporal operators, we remind the reader
that positions begin at 0 and thus πn is the (n+ 1)-st position
of π. Clearly, the satisfaction of a sentence is independent of
the assignment. For an SLii sentence ϕ we thus let G, ρ |= ϕ
if G, χ, ρ |= ϕ for some assignment χ, and we write G |= ϕ
if G, vι |= ϕ.

D. Model checking and hierarchical instances

Model Checking. We now introduce the main decision prob-
lem of this paper, i.e., the model-checking problem for SLii.
An SLii-instance is a formula/model pair (Φ,G) where Φ ∈
SLii and G is a CGSii. The model-checking problem for SLii
is the decision problem that, given an SLii-instance (Φ,G),
returns ‘yes’ if G |= Φ, and ‘no’ otherwise.

It is well known that deciding the existence of winning
strategies in multi-player games with imperfect information
is undecidable for reachability objectives [17]. Since this
problem is easily reduced to the model-checking problem for
SLii, we get the following result:

Theorem 1. The model-checking problem for SLii is undecid-
able.

Hierarchical instances. We isolate a sub-problem obtained
by restricting attention to hierarchical instances. Intuitively,
an SLii-instance (Φ,G) is hierarchical if, as one goes down

a path in the syntactic tree of Φ, the observations tied to
quantifications become finer.

Definition 4 (Hierarchical instances). An SLii-instance (Φ,G)
is hierarchical if for all subformulas ϕ1, ϕ2 of Φ of the form
ϕ2 = 〈〈x〉〉o2ϕ′2 and ϕ1 = 〈〈y〉〉o1ϕ′1 where ϕ1 is a subformula
of ϕ′2, it holds that O(o1) ⊆ O(o2).

If O(o1) ⊆ O(o2) we say that o1 is finer than o2 in G, and
that o2 is coarser than o1 in G. Intuitively, this means that a
player with observation o1 observes game G no worse than,
i.e., is not less informed, a player with observation o2.

Example 1 (Security levels). We illustrate hierarchical in-
stances in a “security levels” scenario, where higher levels
have access to more data (i.e., can observe more). Assume
that the CGSii G has O(o3) ⊆ O(o2) ⊆ O(o1) (level 3
is the highest security clearance, level 1 is the lowest). Let
ϕ = (a1, x1)(a2, x2)(a3, x3)Gp. The SLii formula Φ :=
〈〈x1〉〉o1 [[x2]]o2〈〈x3〉〉o3ϕ and G together form a hierarchical
instance. It expresses that player a1 (with lowest clearance)
can collude with player a3 (with highest clearance) to ensure
a safety property p, even in the presence of an adversary a2

(with intermediate clearance), as long as the strategy used by
a3 can depend on the strategy used by a2.

On the other hand, formula 〈〈x1〉〉o1〈〈x3〉〉o3 [[x2]]o2ϕ, which
is similar to Φ except that the strategy used by a3 cannot
depend on the adversarial strategy used by a2, does not form
a hierarchical instance with G.

Here is the main contribution of this paper:

Theorem 2. The model-checking problem for SLii restricted
to the class of hierarchical instances is decidable.

This is proved in Section V by reducing it to the model-
checking problem of the hierarchical fragment of a logic
called QCTL∗ii, which we introduce, and prove decidable, in
Section III. We now give an important corollary of Theorem 2.

A Nash equilibrium in a game is a tuple of strategies such
that no player has the incentive to deviate. Assuming that
Ag = {ai : i ∈ [n]} and goals are written in SLii, say goali for
i ∈ [n], the following formula of SLii expresses the existence
of a Nash equilibrium:

ΦNE :=〈〈x1〉〉o1 . . . 〈〈xn〉〉on(a1, x1) . . . (an, xn)ΨNE

where ΨNE :=
∧
i∈[n] [(〈〈yi〉〉oi(ai, yi)goali)→ goali].

A CGSii G is said to yield hierarchical observation [15]
if the “finer-than” relation is a total ordering, i.e., if for all
o, o′ ∈ Obs, either O(o) ⊆ O(o′) or O(o′) ⊆ O(o).

Note that even if G yields hierarchical information, the
instance (ΦNE,G) is not hierarchical (unless O(oi) = O(oj)
for all i, j ∈ [n]). Nonetheless, we can decide if a game that
yields hierarchical observation has a Nash equilibrium:

Corollary 1. The following problem is decidable: given a
CGSii that yields hierarchical observation, whether G |= ΦNE.

Proof. The main idea is to use the fact that in a one-player
game of partial-observation (such a game occurs when all but



one player have fixed their strategies, as in the definition of
Nash equilibrium), the player has a strategy enforcing some
goal iff the player has a uniform strategy enforcing that goal.
Here are the details. Let G = (Ac, V, E, `, vι,O) be a CGSii
that yields hierarchical observation. Suppose the observation
set is Obs. To decide if G |= ΦNE first build a new CGSii
G′ = (Ac, V, E, `, vι,O′) over observations Obs′ := Obs ∪
{op} such that O′(o) = O(o) and O′(op) = {(v, v) : v ∈ V },
and consider the sentence

Φ′ :=〈〈x1〉〉o1 . . . 〈〈xn〉〉on(a1, x1) . . . (an, xn)Ψ′

where Ψ′ :=
∧
i∈[n] [(〈〈yi〉〉op(ai, yi)goali)→ goali].

Then (Φ′,G′) is a hierarchical instance, and by Theorem 2
we can decide G′ |= Φ′. We claim that G′ |= Φ′ iff G |= ΦNE.
To see this, it is enough to establish that:

G′, χ, vι |= 〈〈yi〉〉op(ai, yi)goali ↔ 〈〈yi〉〉oi(ai, yi)goali,

for every i ∈ [n] and every assignment χ such that χ(xi) =
χ(ai) is an oi-uniform strategy.

To this end, fix i and χ. The right-to-left implication is
immediate (since op is finer than oi). For the converse, let
σ be a p-uniform strategy (i.e., perfect-information) such that
G′, χ[yi 7→ σ, ai 7→ σ], vι |= goali. Let π := out(χ[yi 7→
σ, ai 7→ σ], vι). Construct an oi-uniform strategy σ′ that agrees
with σ on prefixes of π. This can be done as follows: if ρ ∼oi
π≤j for some j then define σ′(ρ) = σ(π≤j) (note that this is
well-defined since if there is some such j then it is unique), and
otherwise define σ′(ρ) = a for some fixed action a ∈ Ac.

E. Comparison with other logics

The main difference between SL and ATL-like strategic
logics is that in the latter a strategy is always bound to some
player, while in the former bindings and quantifications are
separated. This separation adds expressive power, e.g., one
can bind the same strategy to different players. Extending ATL
with imperfect-information is done by giving each player an
indistinguishability relation that its strategies must respect [2].
Our extension of SL by imperfect information, instead, assigns
each strategy x an indistinguishability relation o when it is
quantified 〈〈x〉〉o. Thus 〈〈x〉〉oϕ means “there exists a strategy
with observation o such that ϕ holds”. Associating observa-
tions in this way, i.e., to strategies rather than players has two
consequences. First, it is a clean generalisation of SL in the
perfect information setting [1]. Define the perfect-information
fragment of SLii to be the logic SLii assuming that Obs = {o}
and O(o) = {(v, v) : v ∈ G} for every CGSii G; also let
us assimilate such structures with classic perfect-information
concurrent game structures (CGS), which are the models of
SL. Finally, let tr1 : SL→ SLii be the trivial translation that
annotates each strategy quantifier 〈〈x〉〉 with observation o. The
next proposition says that the perfect-information fragment of
SLii is a notational variant of SL.

Proposition 1. For every SL sentence ϕ and every CGS G, it
holds that G |= ϕ iff G |= tr1(ϕ).

Second, SLii subsumes imperfect-information extensions of
ATL∗ that associate observations to players.

We recall that an ATL∗i,R formula1 〈A〉ψ reads as
“there are strategies for players in A such that ψ holds
whatever players in Ag \ A do”. Consider the translation
tr2 : ATL∗i,R → SLii that replaces each subformula of the
form 〈A〉ψ, where A = {a1, . . . , ak} ⊂ Ag is a coalition
of players and Ag \ A = {ak+1, . . . , an}, with formula
〈〈x1〉〉o1 . . . 〈〈xk〉〉ok [[xk+1]]op . . . [[xn]]op(a1, x1) . . . (an, xn)ψ′,
where ψ′ = tr2(ψ). Also, for every CGSii as considered in
the semantics of ATLi, i.e., where each agent is assigned
an equivalence relation on positions (let us refer to such
structures as ATL-CGSii), define the CGSii G′ by interpreting
each oi as the equivalence relation for agent ai in G, and
interpreting op as the identity relation.

Proposition 2. For every ATL∗i,R formula ϕ and ATL-CGSii G,
it holds that G |= ϕ iff G′ |= tr2(ϕ).

Third, SLii also subsumes the imperfect-information exten-
sion of ATL∗ with strategy context (see [3] for the definition
of ATL∗sc with partial observation, which we refer to as
ATL∗sc,i). The only difference between ATL∗sc,i and ATL∗i,R is
the following: in ATL∗i,R, when a subformula of the form 〈A〉ψ
is met, we quantify existentially on strategies for players in
A, and then we consider all possible outcomes obtained by
letting other players behave however they want. Therefore, if
any player in Ag \A had previously been assigned a strategy,
it is forgotten. In ATL∗sc,i on the other hand, these strategies
are stored in a strategy context, which is a partial assignment
χ, defined for the subset of players currently bound to a
strategy. A strategy context allows one to quantify universally
only on strategies of players who are not in A and who are
not already bound to a strategy. It is then easy to define a
translation tr3 : ATL∗sc,i → SLii by adapting translation tr2

from Proposition 2, with the strategy context as parameter. For
an ATL-CGSii G, the CGSii G′ is defined as for Proposition 2.

Proposition 3. For every ATL∗sc,i formula ϕ and ATL-CGSii
G, it holds that G |= ϕ iff G′ |= tr3(ϕ).

Fourth, there is a natural and simple translation of instances
of the model-checking problem of CL [21] into the hierarchical
instances of SLii. Moreover, the image of this translation
consists of instances of SLii with a very restricted form, i.e.,
atoms mentioned in the SLii-formula are observable for all
observations of the CGSii, i.e., players know the truth value of
all atoms in all positions, for any observation they are assigned.

Proposition 4. There is an effective translation that, given
a CL-instance (S, ϕ) produces a hierarchical SLii-instance
(G,Φ) such that

1) S |= ϕ iff G |= Φ,
2) For all atoms p in Φ, observations o ∈ Obs and positions

v, v′ ∈ G, if v ∼o v′ then p ∈ `(v)↔ p ∈ `(v′).

1See [2] for the definition of ATL∗i,R, where subscript i refers to “imperfect
information” and subscript R to “perfect recall”. Also, we consider the so-
called objective semantics for ATL∗i,R.



To do this, one first translates CL into (hierarchical) QCTL∗ii,
the latter is defined in the next section. This step is a simple
reflection of the semantics of CL in that of QCTL∗ii. Then
one translates QCTL∗ii into SLii by a simple adaptation of the
translation of QCTL∗ into ATL∗sc [24].

III. QCTL∗ WITH IMPERFECT INFORMATION

In this section we introduce an imperfect-information exten-
sion of QCTL∗ [16], [25]–[29]. In order to introduce imperfect
information, instead of considering equivalence relations be-
tween states as in concurrent game structures, we will enrich
Kripke structures by giving internal structure to their states,
i.e., we see states as n-tuples of local states. This way of
modelling imperfect information is inspired from Reif’s multi-
player game structures [17] and distributed systems [18], and
we find it very suitable to application of automata techniques,
as discussed in Section III-C.

The syntax of QCTL∗ii is similar to that of QCTL∗, except
that we annotate second-order quantifiers by subsets o ⊆ [n].
The idea is that quantifiers annotated by o can only “observe”
the local states indexed by i ∈ o. We define the tree-semantics
of QCTL∗ii: this means that we interpret formulas on trees that
are the unfoldings of Kripke structures (this will capture the
fact that players in SLii have synchronous perfect recall).

We then define the syntactic class of hierarchical formulas
and prove, using an automata-theoretic approach, that model
checking this class of formulas is decidable.

A. QCTL∗ii Syntax

The syntax of QCTL∗ii is very similar to that of QCTL∗:
the only difference is that we annotate quantifiers by a set of
indices that defines the “observation” of that quantifier.

Definition 5 (QCTL∗ii Syntax). Fix n ∈ N. The syntax of
QCTL∗ii is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Eψ | ∃op. ϕ

ψ := ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP and o ⊆ [n].

Formulas of type ϕ are called state formulas, those of
type ψ are called path formulas, and QCTL∗ii consists of all
the state formulas defined by the grammar. We use standard
abbreviation Aψ := ¬E¬ψ. We also use ∃p. ϕ as a shorthand
for ∃[n]p. ϕ, and we let ∀p. ϕ := ¬∃p.¬ϕ.

Given a QCTL∗ii formula ϕ, we define the set of quantified
propositions AP∃(ϕ) ⊆ AP as the set of atomic propositions
p such that ϕ has a subformula of the form ∃op. ϕ. We also
define the set of free propositions APf (ϕ) ⊆ AP as the set
of atomic propositions that appear out of the scope of any
quantifier of the form ∃op. Observe that AP∃(ϕ) ∩ APf (ϕ)
may not be empty in general, i.e., a proposition may appear
both free and quantified in (different places of) a formula.

B. QCTL∗ii tree-semantics

We define the semantics on structures whose states are
tuples of local states.
Local states. Let {Li}i∈[n] denote n ∈ N disjoint finite sets
of local states. For I ⊆ [n], we let LI :=

∏
i∈I Li if I 6= ∅,

and L∅ := {0} where 0 is a special symbol.
Concrete observations. A set o ⊆ [n] is called a concrete
observation (to distinguish it from observations o in the
definitions of SLii).
Compound Kripke structures. These are like Kripke struc-
tures except that the states are elements of L[n]. A compound
Kripke structure, or CKS, over AP, is a tuple S = (S,R, sι, `)
where S ⊆ L[n] is a set of states, R ⊆ S × S is a left-total2

transition relation, sι ∈ S is an initial state, and ` : S → 2AP

is a labelling function.
A path in S is an infinite sequence of states λ = s0s1 . . .

such that for all i ∈ N, (si, si+1) ∈ R. For s ∈ S, we let
Paths(s) be the set of all paths that start in s. A finite path is
a finite non-empty prefix of a path. We may write s ∈ S for
s ∈ S. Since we will interpret QCTL∗ii on unfoldings of CKS,
we now define infinite trees.
Trees. In many works, trees are defined as prefix-closed sets
of words with the empty word ε as root. Here trees represent
unfoldings of Kripke structures, and we find it more convenient
to see a node u as a sequence of states and the root as the
initial state. Let X be a finite set (typically a set of states).
An X-tree τ is a nonempty set of words τ ⊆ X+ such that:
• there exists r ∈ X , called the root of τ , such that each
u ∈ τ starts with r (r 4 u);

• if u · x ∈ τ and u 6= ε, then u ∈ τ , and
• if u ∈ τ then there exists x ∈ X such that u · x ∈ τ .
The elements of a tree τ are called nodes. If u · x ∈ τ , we

say that u ·x is a child of u. The depth of a node u is |u|. An
X-tree τ is complete if u ∈ τ, x ∈ X implies u ·x ∈ τ . A path
in τ is an infinite sequence of nodes λ = u0u1 . . . such that
for all i ∈ N, ui+1 is a child of ui, and Paths(u) is the set of
paths that start in node u. An AP-labelled X-tree, or (AP, X)-
tree for short, is a pair t = (τ, `), where τ is an X-tree called
the domain of t and ` : τ → 2AP is a labelling. For a labelled
tree t = (τ, `) and an atomic proposition p ∈ AP, we define
the p-projection of t as the labelled tree t ⇓p := (τ, ` ⇓p),
where for each u ∈ τ , ` ⇓p (u) := `(u) \ {p}. For a set of
trees L, we let L⇓p := {t⇓p | t ∈ L}. Finally, two labelled
trees t = (τ, `) and t′ = (τ ′, `′) are equivalent modulo p,
written t ≡p t′, if t⇓p= t′⇓p (in particular, τ = τ ′).
Narrowing. Let X and Y be two finite sets, and let (x, y) ∈
X × Y . The X-narrowing of (x, y) is (x, y)↓X := x. This
definition extends naturally to words over X ×Y (pointwise),
and thus to X × Y -trees.

For J ⊆ I ⊆ [n] and z = (li)i∈I ∈ LI , we also define
z ↓J := z ↓LJ , where z is seen as a pair z = (z1, z2) ∈
LJ ×LI\J . This is well defined because having taken sets Li
to be disjoint, the ordering of local states in z is indifferent.
We also extend this definition to words and trees.

2i.e., for all s ∈ S, there exists s′ such that (s, s′) ∈ R.



Observe that when narrowing a tree, nodes with same
narrowing are merged. In particular, for every LI -tree τ , τ ↓∅
is the only L∅-tree, 0ω .
Quantification and uniformity. In QCTL∗ii the intuitive mean-
ing of ∃op. ϕ in a tree t is that there is some equivalent tree
t′ modulo p such that t′ is o-uniform in p and satisfies ϕ.
Intuitively, a tree is o-uniform in p if it is uniformly labelled
by p, i.e., if every two nodes that are indistinguishable when
projected onto the local states indexed by o ⊆ [n] agree on
their labelling of p.

Definition 6 (o-indistinguishability and o-uniformity in p). Fix
o ⊆ [n] and I ⊆ [n].
• Two tuples x, x′ ∈ LI are o-indistinguishable, written
x ≈o x

′, if x↓I∩ o= x′ ↓I∩ o.
• Two words u = u0 . . . ui and u′ = u′0 . . . u

′
j over

alphabet LI are o-indistinguishable, written u ≈o u
′, if

i = j and for all k ∈ {0, . . . , i} we have uk ≈o u
′
k.

• A tree t is o-uniform in p if for every pair of nodes u, u′ ∈
τ such that u ≈o u

′, we have p ∈ `(u) iff p ∈ `(u′).

Finally, we inductively define the satisfaction relation |=
for the semantics on trees, where t = (τ, `) is a 2AP-labelled
LI -tree, u is a node and λ is a path in τ :

t, u |= p if p ∈ `(u)

t, u |=¬ϕ if t, u 6|= ϕ

t, u |=ϕ ∨ ϕ′ if t, u |= ϕ or t, u |= ϕ′

t, u |=Eψ if ∃λ ∈ Paths(u) s.t. t, λ |= ψ

t, u |=∃op. ϕ if ∃ t′ ≡p t s.t. t′ is o-uniform in p and
t′, u |= ϕ.

t, λ |=ϕ if t, λ0 |= ϕ

t, λ |=¬ψ if t, λ 6|= ψ

t, λ |=ψ ∨ ψ′ if t, λ |= ψ or t, λ |= ψ′

t, λ |=Xψ if t, λ≥1 |= ψ

t, λ |=ψUψ′ if ∃ i ≥ 0 s.t. t, λ≥i |= ψ′ and
∀j s.t. 0 ≤ j < i, t, λ≥j |= ψ

We write t |= ϕ for t, r |= ϕ, where r is the root of t.

Example 2. Consider the following CTL formula:

border(p) := AFp ∧AG(p→ AXAG¬p).

This formula holds in a labelled tree if and only if each
path contains exactly one node labelled with p. Now, consider
the following QCTL∗ii formula:

level(p) := ∃∅p.border(p).

For a blind quantifier, two nodes of a tree are indistinguishable
if and only if they have same depth. Therefore, this formula
holds on a tree iff the p’s label all and only the nodes at
some fixed depth. This formula can thus be used to capture
the equal level predicate on trees. Actually, just as QCTL∗

captures MSO, one can prove that QCTL∗ii with tree semantics
subsumes MSO with equal level [19], [30], [31]. In Theorem 3

we make use of a similar observation to prove that model-
checking QCTL∗ii is undecidable.

Model-checking problem for QCTL∗ii under tree semantics.
For the model-checking problem, we interpret QCTL∗ii on
unfoldings of CKSs.
Tree unfoldings tS(s). Let S = (S,R, sι, `) be a compound
Kripke structure over AP, and let s ∈ S. The tree-unfolding
of S from s is the (AP, S)-tree tS(s) := (τ, `′), where τ is
the set of all finite paths that start in s, and for every u ∈ τ ,
`′(u) := `(last(u)). Given a CKS S, a state s ∈ S and a
QCTL∗ii formula ϕ, we write S, s |= ϕ if tS(s) |= ϕ. Write
S |= ϕ if tS(sι) |= ϕ.

The model-checking problem for QCTL∗ii under tree-
semantics is the following decision problem: given an instance
(ϕ,S) where S is a CKS, and ϕ is a QCTL∗ii formula, return
‘Yes’ if S |= ϕ and ‘No’ otherwise.

C. Discussion of the definition of QCTL∗ii
We now motivate in detail some aspects of QCTL∗ii.

Modelling of imperfect information. We model imperfect
information by means of local states (rather than equivalence
relations) since this greatly facilitates the use of automata
techniques. More precisely, in our decision procedure of
Section IV, we make extensive use of an operation on tree
automata called narrowing, which was introduced in [32] to
deal with imperfect-information in the context of distributed
synthesis for temporal specifications. Given an automaton A
that works on X×Y -trees, where X and Y are two finite sets,
and assuming that we want to model an operation performed
on trees while observing only the X component of each
node, this narrowing operation allows one to build from A
an automaton A′ that works on X-trees, such that A′ accepts
an X-tree if and only if A accepts its widening to X×Y (see
Section IV for details). One can then make this automaton
A′ perform the desired operation, which will by necessity be
performed uniformly with regards to the partial observation,
since the Y component is absent from the input trees.

With our definition of compound Kripke structures, their
unfoldings are trees over the Cartesian product L[n]. To model
a quantification ∃op with observation o ⊆ [n], we can thus
use the narrowing operation to forget about components Li,
for i ∈ [n] \ o. We then use the classic projection of nonde-
terministic tree automata to perform existential quantification
on atomic proposition p. Since the choice of the p-labelling is
made directly on Lo-trees, it is necessarily o-uniform.
Choice of the tree semantics. QCTL∗ is obtained by adding
to CTL∗ second-order quantification on atomic propositions.
Several semantics have been considered. The two most studied
ones are the structure semantics, in which formulas are eval-
uated directly on Kripke structures, and the tree semantics, in
which Kripke structures are first unfolded into infinite trees.
Tree semantics thus allows quantifiers to choose the value
of a quantified atomic proposition in each finite path of the
model, while in structure semantics the choice is only made
in each state. When QCTL∗ is used to express existence



of strategies, existential quantification on atomic propositions
labels the structure with strategic choices; in this kind of
application, structure semantics reflects so-called positional or
memoryless strategies, while tree semantics captures perfect-
recall or memoryfull strategies. Since in this work we are
interested in perfect-recall strategies, we only consider the tree
semantics.

D. Model checking QCTL∗ii
We now prove that the model-checking problem for QCTL∗ii

under tree semantics is undecidable. This comes as no surprise
since, as we will show, QCTL∗ii can express the existence of
winning strategies in imperfect-information games.

Theorem 3. The model-checking problem for QCTL∗ii under
tree-semantics is undecidable.

Proof. Let MSOeq denote the extension of the logic MSO
by a binary predicate symbol eq. Formulas of MSOeq are
interpreted on trees, and the semantics of eq(x, y) is that x
and y have the same depth in the tree. There is a translation
of MSO-formulas to QCTL∗-formulas that preserves satisfac-
tion [16]. This translation can be extended to map MSOeq-
formulas to QCTL∗ii-formulas using the formula level(·) from
Example 2 to help capture the equal-length predicate. Our
result follows since the MSOeq-theory of the binary tree is
undecidable [19].

IV. A DECIDABLE FRAGMENT OF QCTL∗ii : HIERARCHY ON
OBSERVATIONS

The main result of this section is the identification of an
important decidable fragment of QCTL∗ii.

Definition 7 (Hierarchical formulas). A QCTL∗ii formula ϕ is
hierarchical if for all subformulas ϕ1, ϕ2 of the form ϕ1 =
∃o1p1. ϕ

′
1 and ϕ2 = ∃o2p2. ϕ

′
2 where ϕ2 is a subformula of

ϕ′1, we have o1 ⊆ o2.

In other words, a formula is hierarchical if innermost
propositional quantifiers observe at least as much as outermost
ones. We let QCTL∗i,⊆ be the set of hierarchical QCTL∗ii
formulas.

Theorem 4. Model checking QCTL∗i,⊆ under tree semantics
is non-elementary decidable.

Since our decision procedure for the hierarchical fragment
of QCTL∗ii is based on an automata-theoretic approach, we re-
call some definitions and results for alternating tree automata.

A. Alternating parity tree automata

We briefly recall the notion of alternating (parity) tree
automata. Because it is sufficient for our needs and simplifies
definitions, we assume that all input trees are complete trees.
For a set Z, B+(Z) is the set of formulas built from the
elements of Z as atomic propositions using the connectives ∨
and ∧, and with >,⊥∈ B+(Z). An alternating tree automaton
(ATA) on (AP, X)-trees is a structure A = (Q, δ, qι, C)
where Q is a finite set of states, qι ∈ Q is an initial state,

δ : Q × 2AP → B+(X × Q) is a transition function, and
C : Q→ N is a colouring function. To ease reading we shall
write atoms in B+(X × Q) between brackets, such as [x, q].
A nondeterministic tree automaton (NTA) on (AP, X)-trees is
an ATA A = (Q, δ, qι, C) such that for every q ∈ Q and
a ∈ 2AP, δ(q, a) is written in disjunctive normal form and
for every direction x ∈ X each disjunct contains exactly one
element of {x}×Q. Acceptance is defined as usual (see, e.g.,
[33]), and we let L(A) be the set of trees accepted by A.

We recall three classic results on tree automata. The first
one is that nondeterministic tree automata are closed under
projection, and was established by Rabin to deal with second-
order monadic quantification:

Theorem 5 (Projection [34]). Given an NTA N and an atomic
proposition p ∈ AP , one can build an NTA N ⇓p such that
L(N ⇓p) = L(N )⇓p.

Because it will be important to understand the automata
construction for our decision procedure in Section IV, we
briefly recall that the projected automaton N ⇓p is simply
automaton N with the only difference that when it reads
the label of a node, it can choose whether p is there or
not: if δ is the transition function of N , that of N ⇓p is
δ′(q, a) = δ(q, a∪{p})∨δ(q, a\{p}), for any state q and label
a ∈ 2AP. Another way of seeing it is that N ⇓p first guesses
a p-labelling for the input tree, and then simulates N on this
modified input. To prevent N ⇓p from guessing different labels
for a same node in different executions, it is crucial that N be
nondeterministic, which is the reason why we need the next
classic result: the crucial simulation theorem, due to Muller
and Schupp.

Theorem 6 (Simulation [35]). Given an ATA A, one can build
an NTA N such that L(N ) = L(A).

The third result was established by Kupferman and Vardi
to deal with imperfect information aspects in distributed syn-
thesis. To state it we need to define a widening operation on
trees which simply expands the directions in a tree.
Widening [32]. Let X and Y be two finite sets, let t be an
X-tree with root x, and let y ∈ Y . The Y -widening of t with
root (x, y) is the X × Y -tree

τ ↑Yy := {u ∈ (x, y) · (X × Y )∗ | u↓X ∈ τ}.

For an (AP, X)-tree t = (τ, `), we let t ↑Yy := (τ ↑Yy , `′)
where `′(u) := `(u↓X).

Similarly to the narrowing operation, we extend this defini-
tion to tuples of local states by letting, for J ⊆ I ⊆ [n], τ an
LJ -tree and z′ ∈ LI\J ,

τ ↑Iz′ := τ ↑LI\Jz′ ,

and similarly for a labelled LJ -tree t,

t↑Iz′ := t↑LI\Jz′ .

Recall that because the sets of local states Li are disjoint, the
order of local states in a tuple does not matter and we can
identify LI with LJ × LI\J .



The rough idea of the narrowing operation on ATA is that,
if one just observes X , uniform p-labellings on X × Y -trees
can be obtained by choosing the labellings directly on X-trees,
and then lifting them to X × Y .

Theorem 7 (Narrowing [32]). Given an ATA A on X × Y -
trees one can build an ATA A↓X on X-trees such that for all
y ∈ Y , t ∈ L(A↓X) iff t↑X×Yy ∈ L(A).

B. Translating QCTL∗i,⊆ to ATA

In order to prove Theorem 4 we need some more notations
and a technical lemma that contains the automata construction.

For every ϕ ∈ QCTL∗ii, we let

Iϕ :=
⋂

o∈Obs(ϕ)

o ⊆ [n],

where Obs(ϕ) is the set of concrete observations that occur in
ϕ, with the intersection over the empty set defined as [n]. We
also let Lϕ := LIϕ (recall that for I ⊆ [n], LI =

∏
i∈I Li).

Our construction, that transforms a QCTL∗i,⊆ formula ϕ and
a CKS S into an ATA, builds upon the classic construction
from [36], which builds hesitant ATA for CTL∗ formulas.
Since our aim here is to establish decidability and that the
hesitant condition is only used to improve complexity, we
do not consider it. However we need to develop an original
technique to implement quantifiers with imperfect information
thanks to automata narrowing and projection.

The classical approach to model checking via tree automata
is to build an automaton that accepts all tree models of the
input formula, and check whether it accepts the unfolding of
the model [36]. We now explain how we adapt this approach.
Narrowing of non-uniform trees. Quantification on atomic
propositions is classically performed by means of automata
projection (see Theorem 5). But in order to obtain a labelling
that is uniform with regards to the observation of the quantifier,
we need to make use of the narrow operation (see Theorem 7).
Intuitively, to check that a formula ∃op. ϕ holds in a tree t,
we would like to work on its narrowing t′ := t ↓o, guess a
labelling for p on this tree thanks to automata projection, thus
obtaining a tree t′p, take its widening t′′p := t′p ↑[n], obtaining a
tree with an o-uniform labelling for p, and then check that ϕ
holds on t′′p . The problem here is that, while the narrowing τ ↓o
of an unlabelled tree τ is well defined (see Section III-B), that
of a labelled tree t = (τ, `) is undefined: indeed, unless t is
o-uniform in every atomic proposition in AP, there is no way
to define the labelling of τ ↓o without losing information. This
implies that we cannot feed (a narrowing of) the unfolding of
the model to our automata. Still, we need an input tree to be
successively labelled and widened to guess uniform labellings.
Splitting quantified from free propositions. To address this
problem, we remark that since we are interested in model
checking a QCTL∗ii formula ϕ on a CKS S, the automaton
that we build for ϕ can depend on S. It can thus guess paths
in S, and evaluate free occurrences of atomic propositions
in S without reading the input tree. The input tree is thus no
longer used to represent the model. However we use it to carry

labellings for quantified propositions AP∃(ϕ): we provide
the automaton with an input tree whose labelling is initially
empty, and the automaton, through successive narrowing and
projection operations, decorates it with uniform labellings for
quantified atomic propositions.

We remark that this technique allows one to go beyond
CL [21]: by separating between quantified atomic propositions
(that need to be uniform) and free atomic propositions (that
state facts about the model), we manage to remove the
restriction present in CL, that requires that all facts about the
model are known to every strategy/agent (see Proposition 4).

To do this we assume without loss of generality that
propositions that are quantified in ϕ do not appear free in
ϕ, i.e., AP∃(ϕ) ∩ APf (ϕ) = ∅. If necessary, for every
p ∈ AP∃(ϕ) ∩APf (ϕ), we take a fresh atomic proposition p′

and replace all quantified occurrences of p in ϕ with p′. We
obtain an equivalent formula ϕ′ on AP ′ := AP ∪ {p′ | p′ ∈
AP∃(ϕ)∩APf (ϕ)} such that AP∃(ϕ′)∩APf (ϕ′) = ∅. Observe
also that given a formula ϕ such that AP∃(ϕ) ∩APf (ϕ) = ∅,
a CKS S and a state s ∈ S, the truth value of ϕ in S, s does
not depend on the labelling of S for atomic propositions in
AP∃(ϕ), which can thus be forgotten.

As a consequence, henceforth we assume that an instance
(ϕ,S) of the model-checking problem for QCTL∗ii is such that
AP∃(ϕ) ∩ APf (ϕ) = ∅, and S is a CKS over APf (ϕ).
Merging the decorated input tree and the model. To state
the correctness of our construction, we will need to merge the
labels for quantified propositions, carried by the input tree,
with those for free propositions, carried by CKS S. Because,
through successive widenings, the input tree (represented by
t in the definition below) will necessarily be a complete tree,
its domain will always contain the domain of the unfolding of
S (represented by t′ below), hence the following definition.

Definition 8 (Merge). Let t = (τ, `) be a complete (AP, X)-
tree and t′ = (τ ′, `′) an (AP ′, X)-tree, where AP∩AP ′ = ∅.
We define the merge of t and t′ as the (AP ∪ AP ′, X)-tree
t! t′ := (τ ∩ τ ′ = τ ′, `′′), where `′′(u) = `(u) ∪ `′(u).

We now describe our automata construction and establish
the following lemma, which is our main technical contribution.

Lemma 1 (Translation). Let (Φ,S) be an instance of the
model-checking problem for QCTL∗i,⊆. For every subformula
ϕ of Φ and state s of S, one can build an ATA Aϕs on
(AP∃(Φ), Lϕ)-trees such that for every (AP∃(Φ), Lϕ)-tree t
rooted in s↓Iϕ ,

t ∈ L(Aϕs ) iff t↑[n]
y ! tS(s) |= ϕ, where y = s↓[n]\Iϕ .

For an LI -tree t, from now on t↑[n] ! tS(s) stands for
t↑[n]
y ! tS(s), where y = s↓[n]\I : the missing local states in

the root of t are filled with those from s.

Proof sketch of Lemma 1. Let (Φ,S) be an instance of the
model-checking problem for QCTL∗i,⊆. Let AP∃ = AP∃(Φ)
and APf = APf (Φ), and recall that S is labelled over APf .
For each state s ∈ S and each subformula ϕ of Φ (note that all



subformulas of Φ are also hierarchical), we define by induction
on ϕ the ATA Aϕs on (AP∃, Lϕ)-trees.

ϕ = p :
We let Aps be the ATA over L[n]-trees with one unique state

qι, with transition function defined as follows:

δ(qι, a) =



> if
p ∈ APf and p ∈ `S(s)

or
p ∈ AP∃ and p ∈ a

⊥ if
p ∈ APf and p /∈ `S(s)

or
p ∈ AP∃ and p /∈ a

ϕ = ¬ϕ′ :
We obtain Aϕs by dualising Aϕ′

s , a classic operation.

ϕ = ϕ1 ∨ϕ2 :
Because Iϕ = Iϕ1 ∩ Iϕ2 , and each Aϕis works on Lϕi -

trees, we first narrow them so that they work on Lϕ-trees: for
i ∈ {1, 2}, we let Ai := Aϕis ↓Iϕ . We then build Aϕs by taking
the disjoint union of A1 and A2 and adding a new initial
state that nondeterministically chooses which of A1 or A2 to
execute on the input tree, so that L(Aϕs ) = L(A1) ∪ L(A2).

ϕ = Eψ :
The aim is to build an automaton Aϕs that works on Lϕ-

trees and that on input t, checks for the existence of a path
in t↑[n] ! tS(s) that satisfies ψ. Observe that a path in t↑[n]

! tS(s) is a path in tS(s), augmented with the labelling for
atomic propositions in AP∃ carried by t.

To do so, Aϕs guesses a path λ in (S, s). It remembers the
current state in S, which provides the labelling for atomic
propositions in APf , and while it guesses λ it follows its
Lϕ-narrowing in its input tree t (which always exists since
input to tree automata are complete trees), reading the labels
to evaluate propositions in AP∃.

Let max(ψ) = {ϕ1, . . . , ϕn} be the set of maximal state
sub-formulas of ψ. In a first step we see these maximal state
sub-formulas as atomic propositions. The formula ψ can thus
be seen as an LTL formula, and we can build a nondetermin-
istic parity word automaton Wψ = (Qψ,∆ψ, qψι , C

ψ) over
alphabet 2max(ψ) that accepts exactly the models of ψ [37]. 3

We define the ATA A that, given as input a (max(ψ), Lϕ)-tree
t, nondeterministically guesses a path λ in t↑[n] ! tS(s) and
simulates Wψ on it, assuming that the labels it reads while
following λ↓Iϕ in its input correctly represent the truth value
of formulas in max(ψ) along λ. Recall that S = (S,R, sι, `S);
we define A := (Q, δ, qι, C), where
• Q = Qψ × S,
• qι = (qψι , s),
• C(qψ, s′) = Cψ(qψ), and

3Note that, as usual for nondeterministic word automata, we take the
transition function of type ∆ψ : Qψ × 2max(ψ) → 2Q

ψ
.

• for each (qψ, s′) ∈ Q and a ∈ 2max(ψ),

δ((qψ, s′), a) =
∨

q′∈∆ψ(qψ,a)

∨
s′′∈R(s′)

[s′′ ↓Iϕ , (q′, s′′)].

The intuition is that A reads the current label, chooses nonde-
terministically which transition to take in Wψ , chooses a next
state in S and proceeds in the corresponding direction in Xϕ.
Thus, A accepts a max(ψ)-labelled Lϕ-tree t iff there is a
path in t that is the Lϕ-narrowing of some path in tS(s), and
that satisfies ψ, where maximal state formulas are considered
as atomic propositions.

Now from A we build the automaton Aϕs over Lϕ-trees
labelled with “real” atomic propositions in AP∃. In each node
it visits, Aϕs guesses what should be its labelling over max(ψ),
it simulates A accordingly, and checks that the guess it made
is correct. If the path being guessed in tS(s) is currently in
node u ending with state s′, and Aϕs guesses that ϕi holds in
u, it checks this guess by starting a simulation of automaton
Aϕis′ from node v = u↓Iϕ in its input t.

For each s′ ∈ S and each ϕi ∈ max(ψ) we first build
Aϕis′ , and we let Ais′ := Aϕis′ = (Qis′ , δ

i
s′ , q

i
s′ , C

i
s′). We also let

Ais′ = (Qis′ , δ
i
s′ , q

i
s′ , C

i
s′) be its dualisation, and we assume

w.l.o.g. that all the state sets are pairwise disjoint. Observe
that because each ϕi is a maximal state sub-formula, we have
Iϕi = Iϕ, so that we do not need to narrow down automata
Ais′ and Ais′ . We define the ATA

Aϕs = (Q ∪
⋃
i,s′

Qis′ ∪Qis′ , δ
′, qι, C

′),

where the colours of states are left as they were in their original
automaton, and δ is defined as follows. For states in Qis′ (resp.
Qis′ ), δ agrees with δis′ (resp. δis′ ), and for (qψ, s′) ∈ Q and a ∈
2AP∃ we let δ′((qψ, s′), a) be the disjunction over a′ ∈ 2max(ψ)

of (
δ
(
(qψ, s′), a′

)
∧
∧
ϕi∈a′

δis′(q
i
s′ , a) ∧

∧
ϕi /∈a′

δis′(q
i
s′ , a)

)
.

ϕ = ∃op.ϕ′ :
We build automaton Aϕ′

s that works on Lϕ′ -trees; because
ϕ is hierarchical, we have that o ⊆ Iϕ′ and we can narrow
down Aϕ′

s to work on Lo-trees and obtain A1 := Aϕ′

s ↓o. By
Theorem 6 we can nondeterminise it to get A2, which by
Theorem 5 we can project with respect to p, finally obtaining
Aϕs := A2⇓p.

C. Proof of Theorem 4

We can now prove Theorem 4. Let S be a CKS, s ∈ S ,
and ϕ ∈ QCTL∗i,⊆. By Lemma 1 one can build an ATA Aϕs
such that for every labelled Lϕ-tree t rooted in s↓Iϕ , it holds
that t ∈ L(Aϕs ) iff t ↑[n] ! tS(s) |= ϕ. Let τ be the full
Lϕ-tree rooted in s ↓ϕ, and let t = (τ, `∅), where `∅ is the
empty labelling. Clearly, t↑[n] ! tS(s) = tS(s), and because
t is rooted in s ↓ϕ, we have t ∈ L(Aϕs ) iff tS(s) |= ϕ. It
only remains to build a simple deterministic tree automaton



A over Lϕ-trees such that L(A) = {t}, and check for empti-
ness of the alternating tree automaton L(A ∩ Aϕs ). Because
nondeterminisation makes the size of the automaton gain one
exponential for each nested quantifier on propositions, the
procedure is nonelementary, and hardness is inherited from
the model-checking problem for QCTL [16].

V. MODEL-CHECKING HIERARCHICAL INSTANCES OF SLii

In this section we establish that the model-checking problem
for SLii restricted to the class of hierarchical instances is
decidable (Theorem 2).

We build upon the proof in [24] that establishes the decid-
ability of the model-checking problem for ATL∗sc by reduc-
tion to the model-checking problem for QCTL∗. The main
difference is that we reduce to the model-checking problem
for QCTL∗ii instead, using quantifiers on atomic propositions
parameterised with observations that reflect the ones used in
the SLii model-checking instance.

Let (Φ,G) be a hierarchical instance of the SLii model-
checking problem, where G = (Ac, V, E, `, vι,O). We will
first show how to define a CKS SG and a bijection ρ 7→ uρ
between the set of finite plays ρ starting in a given position v
and the set of nodes in tSG (sv).

Then, for every subformula ϕ of Φ and partial function
f : Ag ⇀ Var, we will define a QCTL∗ii formula (ϕ) f (that
will also depend on G) such that the following holds:

Proposition 5. Suppose that free(ϕ) ∩ Ag ⊆ dom(f), and
f(a) = x implies χ(a) = χ(x) for all a ∈ dom(f). Then

G, χ, ρ |= ϕ if and only if tSG (sρ) |= (ϕ) f .

Applying this to the sentence Φ, any assignment χ, and the
empty function ∅, we get that

G, χ, vι |= Φ if and only if tSG (svι) |= (Φ) ∅.

Constructing the CKS SG . We will define SG so that
(indistinguishable) nodes in its tree-unfolding correspond to
(indistinguishable) finite plays in G. The CKS will make use
of atomic propositions APv := {pv | v ∈ V } (that we assume
to be disjoint from AP). The idea is that pv allows the QCTL∗ii
formula (Φ) ∅ to refer to the current position v in G. Later we
will see that (Φ) ∅ will also make use of atomic propositions
APc := {pxc | c ∈ Ac and x ∈ Var} that we assume, again,
are disjoint from AP ∪ APv . This allows the formula to use
pxc to refer to the actions c advised by strategies x.

Suppose Obs = {o1, . . . , on}. For i ∈ [n], define the local
states Li := {[v]oi | v ∈ V } where [v]o is the equivalence class
of v for relation ∼o. Since we need to know the actual position
of the CGSii to define the dynamics, we also let Ln+1 := V .

Define the CKS SG := (S,R, sι, `
′) where

• S := {sv | v ∈ V },
• R := {(sv, sv′) | ∃c ∈ AcAg s.t. E(v, c) = v′} ⊆ S2,
• sι := svι ,
• `′(sv) := `(v) ∪ {pv} ⊆ AP ∪ APv ,

and sv := ([v]o1 , . . . , [v]on , v) ∈
∏
i∈[n+1] Li.

We now show how to connect finite plays in G with nodes
in the tree unfolding of SG . For every finite play ρ = v0 . . . vk,
define the node uρ := sv0 . . . svk in tSG (sv0) (which exists, by
definition of SG and of tree unfoldings). Note that the mapping
ρ 7→ uρ defines a bijection between the set of finite plays and
the set of nodes in tSG (sι).
Constructing the QCTL∗i,⊆ formulas (ϕ) f . We now describe
how to transform an SLii formula ϕ and a partial function f :
Ag ⇀ Var into a QCTL∗ii formula (ϕ) f (that will also depend
on G). Suppose that Ac = {c1, . . . , cl}, and define (ϕ) f by
induction on ϕ. We begin with the simple cases: (p) f := p;
(¬ϕ) f := ¬(ϕ) f ; and (ϕ1 ∨ ϕ2) f := (ϕ1) f ∨ (ϕ2) f .

We continue with the second-order quantifier case:

(〈〈x〉〉oϕ) f := ∃õpxc1 . . . ∃
õpxcl .ϕstr(x) ∧ (ϕ) f

where õi := {j | O(oi) ⊆ O(oj)}, and

ϕstr(x) := AG
∨
c∈Ac

(pxc ∧
∧
c′ 6=c

¬pxc′).

We describe this formula in words. For each possible action
c ∈ Ac, an existential quantification on the atomic proposition
pxc “chooses” for each finite play ρ = v0 . . . vk of G (or,
equivalently, for each node uρ of the tree tSG (sv0)) whether
strategy x plays action c in ρ or not. Formula ϕstr(x) ensures
that in each finite play, exactly one action is chosen for strategy
x, and thus that atomic propositions pxc indeed characterise a
strategy, call it σx.4

Moreover, a quantifier with concrete observation õi receives
information corresponding to observation oi (observe that for
all i ∈ [n], i ∈ õi) as well as information corresponding to
coarser observations. Note that including all coarser obser-
vations does not increase the information accessible to the
quantifier: indeed, one can show that two nodes are {i}-
indistinguishable if and only if they are õi-indistinguishable.
However, this definition of õi allows us to obtain hierarchical
formulas. Since quantification on propositions pxc is done
uniformly with regards to concrete observation õi, it follows
that σx is an oi-strategy.

Here are the remaining cases:

((a, x)ϕ) f := (ϕ) f [a7→x]

(Xϕ1) f := A
(
ψout(f)→ X(ϕ1) f

)
(ϕ1Uϕ2) f := A

(
ψout(f)→ (ϕ1) fU(ϕ2) f

)
where

ψout(f) := G

∧
v∈V

∧
c∈AcAg

pv ∧ ∧
a∈Ag

pf(a)
ca → XpE(v,c)

 .

The formula ψout(f) is used to select the unique path
assuming that every player, say a, follows the strategy σf(a).

This completes the justification of Proposition 5.

4More precisely, if ϕstr(x) holds in node uρ, it ensures that propositions
from APc define a partial strategy, defined on all nodes of the subtree rooted
in uρ. This is enough because SLii can only talk about the future: when
evaluating a formula in a finite play ρ, the definition of strategies on plays
that do not start with ρ is irrelevant.



Preserving hierarchy. To complete the proof we show that
(Φ) ∅ is a hierarchical QCTL∗ii formula. This simply follows
from the fact that Φ is hierarchical in G and that for every two
observations oi and oj in Obs such that O(oi) ⊆ O(oj), by
definition of õk we have that õi ⊆ õj .

This completes the proof of Theorem 2.

VI. OUTLOOK

We introduced SLii, a logic for reasoning about strategic
behaviour in multi-player games with imperfect information.
The syntax mentions observations, and thus allows one to write
formulas that talk about dynamic observations. We isolated the
class of hierarchical formula/model pairs (Φ,G) and proved
that one can decide if G |= Φ. The proof reduces (hierarchical)
instances to (hierarchical) formulas of QCTL∗ii, a low-level
logic that we introduced, and that serves as a natural bridge
between SLii (that talks about players and strategies) and
automata constructions.

We believe that QCTL∗ii is of independent interest and
deserves study in its own right. Indeed, it subsumes MSO
with equal-level predicate, which is undecidable and of which
we know no decidable fragment; yet its syntax and models
make it possible to define a natural fragment (the hierarchical
fragment) that has a simple definition, a decidable model-
checking problem, and is suited for strategic reasoning.

Since one can alternate quantifiers in SLii, our decidability
result goes beyond synthesis. As we showed, we can use it
to decide if a game that yields hierarchical observation has
a Nash equilibrium. A crude but easy analysis of our main
decision procedure shows it is non-elementary.

This naturally leads to a number of avenues for future work:
define and study the expressive power and computational
complexity of fragments of SLii [38]; adapt the notion of
hierarchical instances to allow for situations in which hierar-
chies can change infinitely often along a play [15]; and extend
the logic to include epistemic operators for individual and
common knowledge, as is done in [39], which are important
for reasoning about distributed systems [23].
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