
Generalized DEL-sequents

Guillaume Aucher1, Bastien Maubert2, and François Schwarzentruber3

1 University of Rennes 1 - INRIA, France,
guillaume.aucher@irisa.fr

2 University of Rennes 1, France,
bastien.maubert@irisa.fr

3 ENS Cachan, France,
francois.schwarzentruber@bretagne.ens-cachan.fr

Abstract. Let us consider a sequence of formulas providing partial in-
formation about an initial situation, about a set of events occurring se-
quentially in this situation, and about the resulting situation after the
occurrence of each event. From this whole sequence, we want to infer
more information, either about the initial situation, or about one of the
events, or about the resulting situation after one of the events. Within
the framework of Dynamic Epistemic Logic (DEL), we show that these
different kinds of problems are all reducible to the problem of inferring
what holds in the final situation after the occurrence of all the events. We
then provide a tableau method deciding whether this kind of inference is
valid. We implement it in LotrecScheme and show that these inference
problems are NEXPTIME-complete. We extend our results to the cases
where the accessibility relation is serial and reflexive and illustrate them
with the coordinated attack problem.

1 Introduction

Assume that a sequence of n events has occured in a situation. We have some
information about each event and about the resulting situation after the occur-
rence of each event, in the form of a sequence of formulas φ′

i and φi respectively:

φ0, φ
′
1, φ1, . . . , φ

′
i, φi, . . . , φ

′
n, φn

Our aim is to infer some more information about one of the events or about
one of the resulting situations from the rest of information provided by this
sequence. This defines respectively two different kinds of inference problems.

In the first kind of inference problem, we want to infer more information
about the ith resulting situation. That is, given a formula ψ describing (incom-
pletely) a situation, we want to verify whether or not we can infer that this
property ψ necessarily held at the ith resulting situation:

φ0, φ
′
1, φ1, . . . , φ

′
n, φn i

1
ψ ?

In the second kind of inference problem, we want to infer more information
about the ith event. That is, given a formula ψ′ describing (incompletely) this

event, we want to verify whether or not we can infer that this property ψ′

necessarily held during the occurrence of the ith event:

φ0, φ
′
1, φ1, . . . , φ

′
n, φn i

2
ψ′ ?

Solving these problems is relevant for dynamic diagnosis for instance (see
[10] for an early survey of dynamic diagnosis). In this field, one is interested in
looking for and verifying that plausible diagnoses of a faulty system ‘fit’ a given
history that contains some abnormal behaviours. A diagnosis is a series of faults
together with the time when they occur. Within our setting, this verification
problem amounts to deciding about the satisfiability of a sequence of formulas.

We moreover assume that our situations involve several agents and we are
interested in reasoning about the beliefs and knowledge of these agents. Our for-
mulas φ′

i and φi will therefore express beliefs of several agents about events and
about the resulting situations. For these reasons, we address our two problems
above within the framework of Dynamic Epistemic Logic (DEL for short), since
this logical framework is very well suited to express and reason about the beliefs
of several agents in a dynamic setting.

The paper is organised as follows. In Section 2, we recall the core of dynamic
epistemic logic and define our two kinds of inference problems. We show that
these two kinds of inference problems are actually both reducible to the problem
of inferring what holds in the final situation after the occurrence of all the events
from the rest of the sequence. In Section 3, we provide a terminating, sound and
complete tableau method that decides whether this kind of inference is valid. In
Section 4, we show that our tableau method is optimal, first by proving that it is
in NEXPTIME, and then by proving that our inference problem is NEXPTIME-
hard. We also provide in this section a link to an implementation of our tableau
method in LotrecScheme together with some details about its implementation.
In Section 5, we extend our results to richer semantics where the accessibility
relations are reflexive and serial. In Section 6, we apply our generalized DEL-
sequents to the coordinated attack problem of the distributed system literature.
Finally, in Section 7, we discuss some related work, and then conclude.4

2 Dynamic Epistemic Logic: DEL-sequents

Following the methodology of DEL, we split the exposition of the logical frame-
work into three subsections. We then define our generalized DEL-sequents in
Section 2.4.

2.1 Representation of the initial situation: L-model

In the rest of this paper, Φ is a countably infinite set of propositional letters
called atomic facts which describe static situations, and Agt is a finite set of
agents.

4 Note that all the proofs of this paper are available in a Technical Report at the
following address: http://hal.inria.fr/hal-00716074.

http://hal.inria.fr/hal-00716074

An L-model is a tupleM = (W,R, V) where:

– W is a non-empty set of possible worlds,
– R : Agt → 2W×W is a function assigning to each agent a ∈ Agt an accessi-

bility relation on W ,
– V : Φ→ 2W is a function assigning to each propositional letter of Φ a subset

of W . The function V is called a valuation.

We write w ∈ M for w ∈ W , and (M, w) is called a pointed L-model (w often
represents the actual world). If w, v ∈ W , we write wRav for R(a)(w, v) and
Ra(w) = {v ∈ W | wRav}. Intuitively, wRav means that in world w agent a
considers that world v might be the actual world.

Then, we define the following epistemic language L that can be used to
describe and state properties of L-models:

L : φ ::= p | ¬φ | φ ∧ φ | Baφ

where p ranges over Φ and a over Agt. We define φ ∨ ψ def
= ¬(¬φ ∧ ¬ψ) and

⟨Ba⟩φ
def
= ¬Ba¬φ. The symbol ⊤ is an abbreviation for p ∨ ¬p for a chosen

p ∈ Φ. Let M be an L-model, w ∈ M and φ ∈ L. M, w |= φ is defined
inductively as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬φ iff notM, w |= φ
M, w |= φ ∧ ψ iff M, w |= φ andM, w |= ψ
M, w |= Baφ iff for all v ∈ Ra(w),M, v |= φ

The formula Baφ reads as “agent a believes φ”. Its truth conditions are
defined in such a way that agent a believes φ holds in a possible world when
φ holds in all the worlds agent a considers possible. Dually, the formula ⟨Ba⟩φ
reads as “agent a considers φ is plausible”. Agent a considers that φ is plausible
in a possible world when φ holds in at least one of the worlds agent a considers
possible.

2.2 Representation of the event: L′-model

The propositional letters p′ describing events are called atomic events and range
over an infinite set Φ′. To each atomic event p′, we assign a formula of the
language L, which is called the precondition of p′. This precondition corresponds
to the property that should be true in any world w of an L-model so that the
atomic event p′ can ‘physically’ occur in this world w. To do so we define a
surjection Pre : Φ′ → L that is called the precondition function. We take it
surjective so that we have an atomic event for every possible precondition.

An L′-model is a tupleM′ = (W ′, R′, V ′) where:

– W ′ is a non-empty set of possible events,
– R′ : Agt → 2W

′×W ′
is a function assigning to each agent a ∈ Agt an acces-

sibility relation on W ′,

– V ′ : Φ′ → 2W
′
is a function assigning to each propositional letter of Φ′ a

subset of W ′ such that for all w′ ∈ W ′, there is at most one p′ such that
w′ ∈ V ′(p′) (Exclusivity).

We write w′ ∈ M′ for w′ ∈ W ′, and (M′, w′) is called a pointed L′-model and
w′ represents the actual event of (M′, w′). If w′, u′ ∈ W ′, we write w′R′

au
′ for

R′(a)(w′, u′) and R′
a(w

′) = {u′ ∈ W ′ | w′R′
au

′}. Intuitively, u′ ∈ R′
a(w

′) means
that while the possible event represented by w′ is occurring, agent a considers
possible that the possible event represented by u′ is actually occurring. Our
definition of an L′-model is equivalent to the definition of an action signature in
the logical framework of [6].5

Just as we defined a language L for L-models, we also define a language L′

for L′-models (L′ was already introduced in [8]):

L′ : φ′ ::= p′ | ¬φ′ | φ′ ∧ φ′ | Baφ
′

where p′ ranges over Φ′ and a over Agt. In the sequel, formulas of L′ are always
indexed by the quotation mark ′, unlike formulas of L. The truth conditions
of the language L′ are identical to the ones of the language L. Let M′ be an
L′-model, w′ ∈M′ and φ′ ∈ L′.M′, w′ |= φ′ is defined inductively as follows:

M′, w′ |= p′ iff w′ ∈ V ′(p′)
M′, w′ |= ¬φ′ iff notM′, w′ |= φ′

M′, w′ |= φ′ ∧ ψ′ iff M′, w′ |= φ′ andM′, w′ |= ψ′

M′, w′ |= Baφ
′ iff for all u′ ∈ R′

a(w
′),M′, u′ |= φ′

2.3 Update of the initial situation by the event: product update

The precondition function Pre of the previous section induces a precondition
function for L′-models, which assigns to each possible event w′ of an L′-model
a formula Pre(w′) of L. The precondition function induced by the L′-model
M′ = (W ′, R′, V ′) is defined as follows: Pre(w′) = Pre(p′) if there is p′ such that
M′, w′ |= p′; Pre(w′) = ⊤ otherwise.

We then redefine equivalently in our setting the BMS product update of [7]
as follows. Let (M, w) = (W,R, V,w) be a pointed L-model and let (M′, w′) =
(W ′, R′, V ′, w′) be a pointed L′-model such thatM, w |= Pre(w′). The product
update of (M, w) and (M′, w′) is the pointed L-model (M, w) ⊗ (M′, w′) =
(W⊗, R⊗, V ⊗, (w,w′)) defined as follows:

W⊗ = {(u, u′) ∈W ×W ′ | M, u |= Pre(u′)},
R⊗

a (u, u
′) = {(v, v′) ∈W⊗ | v ∈ Ra(u) and v

′ ∈ R′
a(u

′)},
V ⊗(p) = {(u, u′) ∈W⊗ | M, u |= p}.

5 Let Σ = (W ′, R′, (w′
1, . . . , w

′
n)) be an action signature and let φ1, . . . , φn ∈ L.

The L′-model associated to (Σ,φ1, . . . , φn) is the tuple M ′ = (W ′, R′, V ′) where
the valuation V ′ is defined as follows. We pick q′ ∈ Φ′ such that Pre(q′) = ⊤,
and for all i ∈ {1, . . . , n}, we pick p′i ∈ Φ′ such that Pre(p′i) = φi. Then, for all
i ∈ {1, . . . , n} we set V ′(p′i) = {w′

i}, we also set V ′(q′) = W ′ − {w′
1, . . . , w

′
n}, and

for all p′ ∈ Φ′ − {q′, p′1, . . . , p′n} we set V ′(p′) = ∅.

This product update yields a new L-model (M, w)⊗ (M′, w′) representing how
the new situation which was previously represented by (M, w) is perceived by
the agents after the occurrence of the event represented by (M′, w′).

2.4 Generalized DEL-sequents

In this section we define two different inference relations on formulas of L and
L′ representing an initial situation, a series of events and resulting epistemic
situations. One relation enables to infer information about one of the epistemic
situations, the other about one of the events:

Definition 1. Let φ0, φ1, . . . , φn, ψ ∈ L, φ′
1, . . . , φ

′
n, ψ

′ ∈ L′. We define the
logical consequence relations φ0, φ

′
1, φ1, . . . , φ

′
n, φn k

1
ψ where 0 ≤ k ≤ n, and

φ0, φ
′
1, φ1, . . . , φ

′
n, φn k

2
ψ′ where 1 ≤ k ≤ n, as follows:

φ0, φ
′
1, φ1, . . . , φ

′
n, φn k

1
ψ if

for all pointed L-models (M0, w0) and L′-models (M′
j , w

′
j), if we have for

all i ∈ {0, . . . , n} that (Mi, wi) = (M0, w0) ⊗ (M′
1, w

′
1) ⊗ . . . ⊗ (M′

i, w
′
i) is

defined6 and Mi, wi |= φi, and for all j ∈ {1, . . . , n} that M′
j , w

′
j |= φ′

j, then
Mk, wk |= ψ.

φ0, φ
′
1, φ1, . . . , φ

′
n, φn k

2
ψ′ if

for all pointed L-models (M0, w0) and L′-models (M′
j , w

′
j), if we have for

all i ∈ {0, . . . , n} that (Mi, wi) = (M0, w0) ⊗ (M′
1, w

′
1) ⊗ . . . ⊗ (M′

i, w
′
i) is

defined and Mi, wi |= φi, and for all j ∈ {1, . . . , n} that M′
j , w

′
j |= φ′

j, then
M′

k, w
′
k |= ψ′.

In fact, those two DEL-sequent relations are interdefinable:

Proposition 1. For all φ0, . . . , φn ∈ L, φ′
1, . . . , φ

′
n, ψ

′ ∈ L′ and k ∈ {1, . . . , n},

φ0, φ
′
1, φ1, . . . , φ

′
n, φn k

2
ψ′ iff φ0, . . . , φ

′
k ∧ ¬ψ′,⊤, φ′

k+1, . . . , φn k

1 ¬φk

Moreover, the first relation can always be reduced to the case where infor-
mation is inferred about the last situation:

Proposition 2. For all φ0, . . . , φn ∈ L, φ′
1, . . . , φ

′
n ∈ L′, k < n and ψ ∈ L,

φ0, φ
′
1, φ1, . . . , φ

′
n, φn k

1
ψ iff φ0, . . . , φk ∧ ¬ψ, . . . , φ′

n,⊤ n

1 ¬φn

Considering Propositions 1 and 2, in the rest of the paper we will only provide
a tableau method for the DEL-sequent φ0, φ

′
1, φ1, . . . , φ

′
n, φn n

1
ψ.

In [3], we defined three kinds of logical consequence relations dealing with
a single event, which are special cases of the general relations defined here. Let
φ0, φ1 ∈ L and φ′ ∈ L′. It holds that:

φ0, φ
′ φ1 iff φ0, φ

′,⊤
1

1
φ1 φ′, φ1

3
φ0 iff ⊤, φ′, φ1 0

1
φ0

φ0, φ1
2
φ′ iff φ0,⊤, φ1 1

2
φ′

6 When i = 0 we let (M0, w0)⊗ (M′
1, w

′
1)⊗ . . .⊗ (M′

i, w
′
i) = (M0, w0).

3 Tableau method

We consider 2n + 2 formulas, φ0, . . . , φn, ψ ∈ L and φ′
1, . . . , φ

′
n ∈ L′, and by

P ⊂ Φ′ we denote the finite set of all atomic events appearing in one of the
event formulas φ′

1, . . . , φ
′
n. i ranges over {0, . . . , n} and j ranges over {1, . . . , n}.

We want to address the problem of deciding whether φ0, φ
′
1, φ1, . . . , φ

′
n, φn n

1
ψ

holds. To do so we equivalently decide whether this does not hold, i.e whether
there exist a pointed L-model (M0, w0) and n pointed L′-models (M′

j , w
′
j) such

that for all i, (Mi, wi) = (M0, w0) ⊗ (M′
1, w

′
1) ⊗ . . . ⊗ (M′

i, w
′
i) is defined and

Mi, wi |= φi, for all jM′
j , w

′
j |= φ′

j , andMn, wn |= ¬ψ. In other terms, deciding

whether φ0, φ
′
1, φ1, . . . , φ

′
n, φn n

1
ψ holds reduces to the following problem called

the satisfiability problem:

– Input: φ0, . . . , φn, ψ ∈ L, φ′
1, . . . , φ

′
n ∈ L′ and Pre|P , the restriction of Pre

to the domain P.
– Output: yes iff there exist a pointed L-model (M0, w0) and n pointed L′-

models (M′
j , w

′
j) such that for all j, M′

j , w
′
j |= φ′

j , for all i, (Mi, wi) =
(M0, w0) ⊗ (M′

1, w
′
1) ⊗ . . . ⊗ (M′

i, w
′
i) is defined and Mi, wi |= φi, and

Mn, wn |= ψ.

In the rest of the paper, when the initial pointed model (M0, w0) and the
pointed event models (M′

i, w
′
i) are clear from the context, we shall writeMi for

M0 ⊗M′
1 ⊗ . . .⊗M′

i and wi for (w0, w
′
1, . . . , w

′
i).

3.1 Tableau method description

Let Lab be a countable set of labels designed to represent worlds of the initial
epistemic model. For all integers i, let Labi be a countable set of labels designed
to represent events of the ith event model. We suppose that Lab and Labi for
all i are disjoint.

Our tableau method manipulates terms that we call tableau terms and they
are of the following kind:

– (σ φ) means thatM0, w0 |= φ, where w0 is the world of the initial epistemic
modelM0 represented by σ and φ is a formula of L;

– (σi φ
′) means thatM′

i, w
′
i |= φ′, where w′

i is the event of the i
th event model

M′
i represented by σi, and φ

′ is a formula of L′;
– (σ σ1 . . . σi φ) means thatMi, (w0, w

′
1, . . . , w

′
i) |= φ, where w0 is the world

ofM0 represented by σ, w′
k ∈ M′

k is the event represented by σk, and φ is
a formula of L;

– (σ σ1 . . . σi 0) means that (w0, w
′
1, . . . , w

′
i) is not in Mi, where w0 is the

world ofM0 represented by σ and w′
k ∈M′

k is the event represented by σk;
– (Ra σ σ

′) means that the worlds w and u ofM0 represented respectively by
σ and σ′ are such that wRau;

– (Ri
a σi σ

′
i) means that inM′

i, the events w′ and u′ represented by σi and σ
′
i

are such that w′R′i
au

′;
– ⊥ denotes an inconsistency.

We also use generic labels Σ to simplify notations: Σ can be either σ, σi or
σ σ1 . . . σi. (Ra Σ Σ′) is interpreted in the following way: if Σ = σ, Σ′ = σ′

then (Ra Σ Σ′) denotes (Ra σ σ
′), if Σ = σi, Σ

′ = σ′
i then (Ra Σ Σ′) denotes

(Ri
a σi σ

′
i), and if Σ = σ σ1 . . . σi, Σ

′ = σ′ σ′
1 . . . σ′

i then (Ra Σ Σ′) denotes
(Ra σ σ

′)(R1
a σ1 σ1) . . . (R

i
a σi σi).

A tableau rule is represented by a numerator N above a line and a finite list
of denominators D1, . . . ,Dk below this line, separated by vertical bars:

N
D1 | . . . | Dk

The numerator and the denominators are finite sets of tableau terms.

A tableau for a tuple (φ0, . . . , φn, φ
′
1, . . . , φ

′
n) of formulas is a finite

tree with a set of tableau terms at each node. The root is Γ 0 =
{(σ φ0), (σ σ1 φ1), . . . , (σ σ1 . . . σn φn), (σ1 φ′

1), . . . , (σn φ′
n)}∪

{(σ1 p′+1), . . . , (σn p′+n)}, where p′+1 , . . . , p
′+
n are fresh new atomic events. In-

deed, in our tableau method, when a new event label σi is added to the set Γ
of a node, it is assigned a fresh new atomic event p′+. By fresh we mean that
they do not appear in any event formula φ′ in Γ , and their precondition is also
a fresh new atomic proposition that appears neither in any formula nor in any
precondition of any atomic event p′ of Γ . We denote it by Pre(p′+) = p+. We
abuse notations by writing p′ ∈ Γ whenever p′ occurs in a formula appearing in
a tableau term in Γ . Those additional fresh atomic propositions and events are
used in the tableau method to avoid the problematic case of events being built
with trivial precondition.

A rule with numeratorN is applicable to a node carrying a set Γ if Γ contains
an instance of N . If no rule is applicable, Γ is said to be saturated. We call a
node n an end node if the set of formulas Γ it carries is saturated, or if ⊥∈ Γ .
The tableau is extended as follows:

1. Choose a leaf node n carrying Γ where n is not an end node, and choose a
rule ρ applicable to n.

2. (a) If ρ has only one denominator, add the appropriate instanciation to Γ .

(b) If ρ has k denominators with k > 1, create k successor nodes for n, where
each successor i carries the union of Γ with an appropriate instanciation
of denominator Di.

A branch in a tableau is a path from the root to an end node. A branch is
closed if its end node contains ⊥, otherwise it is open. A tableau is closed if all
its branches are closed, otherwise it is open. We write φ0, φ

′
1, φ1, . . . , φ

′
n, φn

1 ψ
if there is a closed tableau for (φ0, . . . , φn−1, φn ∧ ¬ψ,φ′

1, . . . , φ
′
n).

3.2 Tableau rules

– Common rules for epistemic formulas and event formulas:

(Σ φ ∧ ψ)
(Σ φ) (Σ ψ)

∧
(Σ ¬(φ ∧ ψ))

(Σ ¬φ) | (Σ ¬ψ) ¬∧
(Σ ¬¬φ)
(Σ φ)

¬ (Σ p)(Σ ¬p)
⊥ ⊥

(Σ ⟨Ba⟩φ)
(Ra Σ Σ+)(Σ+ φ)(σ+

1 p′+1) . . . (σ+
i p′+i)

⟨Ba⟩
(Σ Baφ)(Ra Σ Σ′)

(Σ′ φ) | (Σ′ 0)
Ba

where p is in Φ ∪ Φ′, σ+
1 . . . σ+

i are the σ+
k in the fresh generic label Σ+

(none if Σ+ = σ+) and p′+k are fresh new atomic events with Pre(p′+i) = p+i .

– Specific rule for event formulas:

(σi p
′)(σi p

′′)

⊥ Excl

where p′, p′′ are not fresh (p′, p′′ ∈ Γ 0) and p′ ̸= p′′.

– Specific rules for epistemic formulas:

(σ σ1 . . . σi p)

(σ p)
←1

(σ σ1 . . . σi ¬p)
(σ ¬p)

←2

(σ 0)

⊥ Pre0
(σ σ1 . . . σi φ)(σi p

′)

(σ σ1 . . . σi−1 Pre(p′))
Pre1

φ ̸= 0, i > 0

(σ σ1 . . . σi 0)(σi p
′)

(σ σ1 . . . σi−1 ¬Pre(p′)) | (σ σ1 . . . σi−1 0)
Pre2

i > 0

We explain informally the meaning of these rules. The boolean rules, rule
⟨Ba⟩ and rule Ba are classic. Rule Excl enforces the Exclusivity of event models.
It does not apply to the fresh atomic events that we add at the creation of each
event label, because a “meaningful” atomic event may be added to such a label;
however these fresh events are removed from the final constructed models unless
they are the only atomic event in their possible event. Rules ←1 and ←2 reflect
the fact that for a world (w0, w

′
1, . . . , w

′
i) in Mi, by definition of the update

product, Mi, (w0, w
′
1, . . . , w

′
i) |= p if, and only if, M0, w0 |= p. Rule Pre1 says

that if (w0, w
′
1, . . . , w

′
i) is in Mi and M′

i, w
′
i |= p′, then (w0, w

′
1, . . . , w

′
i−1) is

in Mi−1 and Mi−1, (w0, w
′
1, . . . , w

′
i−1) verifies Pre(p′). Rule Pre2 says that if

(w0, w
′
1, . . . , w

′
i) is not in Mi and M′

i, w
′
i |= p′, either (w0, w

′
1, . . . , w

′
i−1) is not

inMi−1, or it is inMi−1 butMi−1, (w0, w
′
1, . . . , w

′
i−1) ̸|= Pre(p′). Finally, Rule

Pre0 is used to forbid the rightmost choice in Rule Pre2 when i = 1. Indeed it
would make no sense to say that the world associated to a label σ must not be
in the initial modelM0 when it has been created to be inM0.

Proposition 3 (Tableau method soundness and completeness). For all
φ0, . . . , φn, ψ ∈ L, for all φ′

1, . . . , φ
′
n ∈ L′, φ0, φ

′
1, φ1, . . . , φ

′
n, φn

1 ψ iff
φ0, φ

′
1, φ1, . . . , φ

′
n, φn n

1
ψ.

4 NEXPTIME-completeness and implementation

The NEXPTIME-completeness of our simple DEL-sequents [3] extends to gen-
eralized DEL-sequents.

Proposition 4. The satisfiability problem is NEXPTIME-complete

An implementation of the tableau method can be found at:

http://www.irisa.fr/prive/fschwarz/lotrecscheme/.

The tableau rules are written in LotrecScheme [16] which is a term rewriting
system designed for implementing tableau methods. The corresponding rules
can be found directly in the software by clicking ‘open’ and ‘generalized DEL-
sequents’.

The implemented rules are similar to those presented in Subsection 3.2. There
are two main differences. The first one is that we tag worlds with ok and ¬ok to
say respectively that the node belongs to the model or not. We use those two tags
for a reason of efficiency. The second difference concerns the pattern-matching
of a condition of a rule: as LotrecScheme does not enable an arbitrary number
of terms to match in a condition, we adapt the method so that the numbers of
terms in all rules are fixed. For instance, let us consider the rule Ba. (Ra Σ Σ′) is
a macro to denote an arbitrary number of terms whereas in the implementation
(Ra Σ Σ′) is not a macro but a term and we have to simulate the way relations
are defined in the product update:

(Ra Σ Σ′)(Ra a b)(Σ :: a ok)

(Ra Σ :: a Σ′ :: b) and

(Ra Σ :: a Σ′ :: b)

(Ra Σ Σ′)(Ra a b)

where a, b, Σ and Σ′ are terms, and where Σ :: a is the concatenation of Σ and
a, and Σ′ :: b is the concatenation of Σ′ and b. Σ and Σ′ are sequences of labels,
and a and b are labels representing worlds of an event model.

5 Extension to other semantics

In this section, we investigate the complexity of the satisfiability problem with
semantics where the accessibility relations are also assumed to be reflexive or
serial (an accessibility relation Ra is reflexive when for all w ∈ W , w ∈ Ra(w),
and serial when for all w ∈W , there is u ∈W such that u ∈ Ra(w)).

(Σ φ)

(Ra Σ Σ)
T

(Σ Baφ)

(Ra Σ Σ+)(Σ+ φ)
D

For reflexivity, we add the rule T above to the tableau method, where Σ can
be σ or σi (reflexivity of product models stems from initial and event models
being reflexive). Rule T is sound and complete with respect to reflexive models.

For seriality, we add the rule D above to the tableau method, where Σ can
be σ, σi or σ σ1 . . . σi. Rule D is sound and complete with respect to serial
models. There is no problem of termination because we add a successor to a
node if, and only if there is a modal formula in it.

http://www.irisa.fr/prive/fschwarz/lotrecscheme/

Proposition 5. The satisfiability problem when the relations are reflexive or
serial is NEXPTIME-complete.

6 Example: coordinated attack problem

In this section, we assume that there are only two agents a and b. We extend our
epistemic language L with the common knowledge operator Ca,bφ. The truth
conditions of the common knowledge operator are defined as follows:

M, w |= Ca,bφ iff for all v ∈ (Ra ∪Rb)
+
(w),M, v |= φ,

where (Ra ∪Rb)
+
is the transitive closure of (Ra ∪Rb).

Intuitively, Ca,bφ is an abbreviation of an infinite conjunction (see [13] for
more details): Ca,bφ = Ea,bφ ∧ E2

a,bφ ∧ E3
a,bφ ∧ . . ., where Ek

a,bφ is defined in-

ductively as follows: E1
a,bφ = Baφ ∧ Bbφ and Ek+1

a,b φ = BaE
kφ ∧ BbE

kφ. The
definitions of DEL-sequents of Definition 1 can easily be adapted to this extended
language with common knowledge.

The coordinated attack problem from the distributed systems folklore can be
described informally as follows. Two generals need to attack their common enemy
simultaneously if they want to win. However, their only way to communicate is
by means of a messenger, and this messenger may be captured at any time
between the two camps. If we assume that the messenger is really lucky and
never gets caught on that particular night, how long will it take for the generals
to coordinate an attack?

We can model this problem within our framework. Assume that general a
has decided to attack at dawn. General a then sends a messenger to general b to
inform him of his decision. The content of the first message sent by general a to
general b is represented by the propositional letter attack standing for ‘general
a has decided to attack at dawn’. This message eventually reaches general b,
but general a does not know it yet. This event is represented by an atomic
event p′1 standing for ‘general b receives the decision of general a to attack
at dawn’. Its precondition is Pre(p′1) = attack. The only information we have
about this event p′1 is that general b knows about its occurrence: Bbp

′
1. As a

result of this event, general b now knows that general a has decided to attack:
Bbattack. However, general a does not know it, so they still cannot coordinate a
simultaneous attack. Therefore, general b sends an acknowledgement to general
a. This message eventually reaches general a. This event is represented by the
atomic event p′2 standing for ‘general a receives the first acknowledgement of
general b’. The precondition of atomic event p′2 is Pre(p′2) = Bbattack. This
time, general b does not know that his message has been delivered. Therefore,
the only information we have about this event p′2 is that general a knows about
its occurrence: Bap

′
2. As a result of this event, general a now knows that general

b knows that general a has decided to attack: BaBbattack. However, there is
still no common knowledge that general a has decided to attack. This informal
reasoning could go on indefinitely. It shows that common knowledge that general
a has decided to attack cannot be attained.

The above informal reasoning can be formalized within our framework in
a natural way. To achieve this aim, we define for all k ∈ N∗ the atomic
event p′k whose precondition is Pre(p′k) = BaBb . . . BaBbattack if k is odd and
Pre(p′k) = BbBaBb . . . BaBbattack if k is even (k − 1 knowledge operators are
nested alternatively in Pre(p′k)). The statement that after any finite number of
messages exchanged, it is impossible to infer that there is common knowledge
that general a has decided to attack is formalized by the fact that, for all k ∈ N∗:

Baattack,Bbp
′
1,⊤, Bap

′
2, . . . , Bap

′
k−1,⊤, Bbp

′
k,⊤ ̸ k

1
Ca,battack if k is odd

Baattack,Bbp
′
1,⊤, Bap

′
2, . . . , Bbp

′
k−1,⊤, Bap

′
k,⊤ ̸ k

1
Ca,battack if k is even

This result is itself due to the fact that for all k ∈ N∗,
Baattack,Bbp

′
1,⊤, Bap

′
2, . . . , Bbp

′
k,⊤ ̸

k

1
Ek+1

a,b attack if k is odd, and

Baattack,Bbp
′
1,⊤, Bap

′
2, . . . , Bap

′
k,⊤ ̸ k

1
Ek+1

a,b attack if k is even.

We illustrate our tableau method by proving this fact for k = 1 in Figure 1.
Remark that E2

a,battack = Ba(Baattack∧Bbattack)∧Bb(Baattack∧Bbattack).
Also, we only show one branch of the full tableau, the one which is open.

..Γ0 = {(σ Baattack), (σ1 Bbp
′
1), (σ1 p′+1), (σ σ1 ¬E2

a,b)}
. .Pre1 and ¬∧

.Γ1 = Γ0 ∪ {(σ p+1)} ∪ {(σ σ1 ⟨Ba⟩¬(Baattack ∧Bbattack))}
. .⟨Ba⟩

.Γ2 = Γ1 ∪ {(Ra σ σ′), (R1
a σ1 σ′

1), (σ
′ σ′

1 ¬(Baattack ∧Bbattack)), (σ
′
1 p′+2)}

. .Pre1, Ba and ¬∧

.Γ3 = Γ2 ∪ {(σ′ p+2)} ∪ {(σ′ attack)} ∪ {(σ′ σ′
1 ⟨Bb⟩¬attack)}

. .⟨Bb⟩

.Γ4 = Γ3 ∪ {(Rb σ
′ σ′′), (R1

b σ′
1 σ′′

1), (σ
′′ σ′′

1 ¬attack)), (σ′′
1 p′+3)}

. .Pre1 and ←1

.Γ5 = Γ4 ∪ {(σ′′ p+3)} ∪ {(σ ¬attack)}

.

.

.

.

.

Fig. 1: Open branch of the tableau proving that Baattack,Bbp
′
1,⊤ ̸ 1

1
E2

a,battack

7 Conclusion

7.1 Related work

In [12], Dupin de Saint-Cyr and Lang define an operator of “extrapolation”. This
operator takes as input a temporal formula, which corresponds to a sequence of

observations under the form of propositional formulas indexed by time stamps,
and yields as output another temporal formula, which corresponds semantically
to the preferred sequences of states which satisfy the input temporal formula. The
authors follow an internal approach. In [9], Booth and Nittka address a similar
problem but with an imperfect external approach (see [1] for more details on the
different modeling approaches). They are interested in inferring what the agent
believed (or will believe) at a given moment, based on a sequence of observations
consisting of responses that the agent has given to a sequence of belief revision
inputs. Both papers deal with situations involving a single agent. Our approach
is different from both approaches, because we do not strive to “extrapolate” new
information from existing observations by resorting to an argument of minimal
change. Instead, we are only interested in inferring some necessary property that
follows from these existing observations.

Some tableau methods have been proposed for DEL, but only for public
announcement logic [4,11] and hybrid public anouncement logic [14]. A termi-
nating tableau method has also been proposed for the full BMS framework in
[14] by encoding the reduction axioms as tableau rules. However, none of these
tableau methods can somehow address the two problems raised in the introduc-
tion, because the BMS language of [6] does not allow for partial and incomplete
descriptions of events: an event model or a formula announced publicly speci-
fies completely how all the agents perceive the occurrence of the corresponding
event. In particular, it is impossible to model the coordinated attack problem.

In [5], a sequent calculus has been developed, yet in an algebraic setting, mak-
ing a systematic comparison difficult. Their sequents m1, . . . , q1, . . . , A1, . . . ,mk,
. . . , ql, . . . , An ⊢ δ are arbitrarily long and consist of different types of for-
mulas which can contain propositions m1, . . . ,mk, events q1, . . . , ql and agents
A1, . . . , An, and which resolve into a single proposition or event δ. A sequent
calculus has also been proposed for public announcement logic [15] which, alike
our tableau terms, refers explicitely to possible worlds and relations.

7.2 Concluding remarks

As we said in the previous subsection, our tableau method can infer necessary
information which was somehow already encoded in the sequence. In fact, our
method allows us to verify in a complexity-optimal way that a piece of informa-
tion about a sequence of events does follow from this sequence. It also allows us
to check that a given epistemic plan (viewed as a sequence of event properties)
yields an epistemic goal. Even if it does not provide an algorithm to synthesize
it ([2] deals more with synthesis), it can still be instrumental in finding out some
of its necessary properties. It can also be used during the design of the epistemic
plan itself to check that we are designing it in the ‘right’ direction.

As the title of this paper suggests, we have generalized our previous work
[3] to arbitrary long sequences of events, and extended it to the case of reflexive
or serial models.7 Also we illustrate our method by encoding the coordinated

7 A tableau rule is missing in [3]. This error is corrected in the paper available on the
HAL archive at http://hal.inria.fr/docs/00/64/64/81/PDF/M4M11.pdf

http://hal.inria.fr/docs/00/64/64/81/PDF/M4M11.pdf

attack problem. However, other generalizations still need to be done, such as
the addition of a common knowledge operator in the language (as illustrated in
Section 6) and the integration of ontic events.

References

1. Guillaume Aucher. An internal version of epistemic logic. Studia Logica, 94(1):1–
22, 2010.

2. Guillaume Aucher. DEL-sequents for regression and epistemic planning. Journal
of Applied Non-Classical Logics, 2012. to appear.

3. Guillaume Aucher, Bastien Maubert, and François Schwarzentruber. Tableau
method and NEXPTIME-completeness of DEL-sequents. Electronic Notes in The-
oretical Computer Science, 278:17–30, 2011.

4. Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima.
Tableaux for public announcement logic. Journal of Logic and Computation,
20(1):55–76, 2010.

5. Alexandru Baltag, Bob Coecke, and Mehrnoosh Sadrzadeh. Algebra and sequent
calculus for epistemic actions. In Proceedings of Workshop on Logic and Commu-
nication in Multi-Agent Systems (LCMAS’04), pages 60–78, 2004.

6. Alexandru Baltag and Larry Moss. Logic for epistemic programs. Synthese,
139(2):165–224, 2004.

7. Alexandru Baltag, Larry Moss, and Slawomir Solecki. The logic of common knowl-
edge, public announcement, and private suspicions. In I. Gilboa, editor, Proceedings
of the 7th conference on theoretical aspects of rationality and knowledge (TARK98),
pages 43–56, 1998.

8. Alexandru Baltag, Larry Moss, and Slawomir Solecki. The logic of public an-
nouncements, common knowledge and private suspicions. Technical report, Indiana
University, 1999.

9. Richard Booth and Alexander Nittka. Reconstructing an agent’s epistemic state
from observations about its beliefs and non-beliefs. J. Log. Comput., 18(5):755–782,
2008.

10. Vittorio Brusoni, Luca Console, Paolo Terenziani, and Daniele Theseider Dupré. A
spectrum of definitions for temporal model-based diagnosis. Artificial Intelligence,
102(1):39–79, 1998.

11. Mathijs de Boer. KE tableaux for public anouncement logic. In Proceedings of
Formal Approaches to Multi-Agent Systems Workshop (FAMAS 07), Durham UK,
2007.

12. Florence Dupin de Saint-Cyr and Jérôme Lang. Belief extrapolation (or how to
reason about observations and unpredicted change). Artif. Intell., 175(2):760–790,
2011.

13. Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning about
knowledge. MIT Press, 1995.

14. Jens Ulrik Hansen. Terminating tableaux for dynamic epistemic logic. Electronic
Notes in Theoretical Computer Science, 262:141–156, 2010.

15. Paolo Maffezioli and Sara Negri. A gentzen-style analysis of public announcement
logic. In Proceedings of the International Workshop on Logic and Philosophy of
Knowledge, Communication and Action, pages 293–313, 2010.

16. François Schwarzentruber. Lotrecscheme. Electronic Notes in Theoretical Com-
puter Science, 278:187–199, 2011.

	Generalized DEL-sequents

