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Abstract
We introduce Probabilistic Strategy Logic, an ex-
tension of Strategy Logic for stochastic systems.
The logic has probabilistic terms that allow it to
express many standard solution concepts, such as
Nash equilibria in randomised strategies, as well as
constraints on probabilities, such as independence.
We study the model-checking problem for agents
with perfect- and imperfect-recall. The former is
undecidable, while the latter is decidable in space
exponential in the system and triple-exponential in
the formula. We identify a natural fragment of the
logic, in which every temporal operator is imme-
diately preceded by a probabilistic operator, and
show that it is decidable in space exponential in the
system and the formula, and double-exponential in
the nesting depth of the probabilistic terms. Tak-
ing a fixed nesting depth, this gives a fragment that
still captures many standard solution concepts, and
is decidable in exponential space.

1 Introduction
There are a number of logical formalisms for expressing
properties of strategic behaviour multi-agent systems, in-
cluding Alternating-time Temporal Logics (ATL/ATL∗) [Alur
et al., 2002], variants such as ATL with strategy con-
texts [Laroussinie and Markey, 2015], Strategy Logic
(SL) [Chatterjee et al., 2010; Mogavero et al., 2014], and ex-
tensions of SL, e.g., allowing imperfect information [Belar-
dinelli et al., 2017; Cermák et al., 2018]. The general trend
of these logics is to capture increasingly sophisticated game-
theoretic concepts, such as winning strategies, Nash equilib-
ria, secure equilibria, in systems where agents have linear-
temporal goals (e.g., safety, achievement, liveness).

In order to capture settings that combine probability and
multiple agents, such logics have been extended, typically, by
adding an operator that allows one to express the probability
that an agent’s goal holds. The main drawback of all existing
strategic logics with probabilistic aspects falls into one of two
camps: either, it is widely believed they cannot express clas-
sic solution concepts such as Nash equilibria, or they can ex-
press some classic solution concepts, but do so via dedicated

operators for each solution concept, and thus are not a gen-
eral purpose logic. In this work we define a logic that does not
suffer these drawbacks. In particular, we define Probabilistic
Strategy Logic (PSL) and study its model-checking problem.

The syntax of PSL is based on SL, but has additional arith-
metic terms that allow one to compare the probabilities of for-
mulas holding. The models of PSL are multi-agent stochastic
transition systems (in contrast, the models of SL are deter-
ministic). These transition systems capture many fundamen-
tal stochastic models in which agents have temporal goals,
such as Markov chains and Markov decision processes with
linear-temporal goals [Courcoubetis and Yannakakis, 1995].

We study the model-checking problem for two classic
types of agents [Fagin et al., 1995]: perfect-recall (who use
memoryful strategies), and imperfect-recall (who use mem-
oryless strategies, also called Markovian strategies or poli-
cies). We observe that the model-checking problem for
perfect-recall agents is undecidable. On the other hand,
we prove that the model-checking problem for imperfect-
recall agents is decidable in EXPSPACE in the system and
3EXPSPACE in the formula. We also define a natural frag-
ment, which we call the vanilla fragment, in which every tem-
poral operator is immediately preceded by a probabilistic op-
erator, and show that its model-checking problem is decidable
in EXPSPACE in the system and the formula and 2EXPSPACE
in the nesting depth of the probabilistic terms (we show that
this depth is equal to 1 for many natural formulas).

To prove these results we reduce to the first-order theory
of real arithmetic, known to be decidable in EXPSPACE [Ben-
Or et al., 1986]. Interestingly, the precise complexity of real
arithmetic is a longstanding open problem [Berman, 1980].
Thus, any improvement in algorithms for real-arithmetic, also
apply to model-checking PSL. On the other hand, we also
prove that real-arithmetic is polynomial-reducible to the com-
plexity of vanilla PSL with no nesting of probabilistic terms
and a single agent using memoryless strategies. Thus, PSL
and real-arithmetic are intimately connected logics.

2 Probabilistic Strategy Logic (PSL)
In this section we define Probabilistic Strategy Logic (PSL).
The syntax is inspired by Strategy Logic (SL) [Mogavero
et al., 2014] and the semantics are finite-state multi-agent
stochastic transition-systems.



2.1 PSL Syntax
Fix finite non-empty sets of atoms AP , agents Ag, and strat-
egy variables V ar. The syntax of PSL is defined by the fol-
lowing grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | τ ≤ τ
τ ::= c | τ−1 | τ − τ | τ + τ | τ × τ | Pβ(ψ)

ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP , x ∈ V ar, c ∈ Q and β : Ag → V ar.
Functions β : Ag → V ar are called bindings; intuitively,

they tell an agent which strategy to use. Formulas ϕ are
called history formulas (they will be interpreted over histo-
ries). Formulas τ are called arithmetic terms, and the ones
of the form Pβ(ψ) are called probabilistic terms. The formu-
las ψ are called path formulas (they will be interpreted over
paths). Every history formula is also a path formula. Note
that every linear-temporal logic (LTL) formula [Pnueli, 1977]
is a path formula (i.e., one that does not mention quantifi-
cation or arithmetic terms). We introduce the usual short-
hands for Boolean and arithmetic operations, e.g., ϕ → ϕ′

is shorthand for ¬ϕ ∨ ϕ′, and Pβ(ψ) = c is shorthand
for (Pβ(ψ) ≤ c) ∧ (c ≤ Pβ(ψ)). Write [n] for the set
{1, 2, · · · , n}, and assume Ag = [n] for some n ∈ N.

Semantics (Intuition) Formulas of PSL are interpreted
over stochastic transition systems whose transitions are de-
termined by the simultaneous actions of agents. A strategy is
a rule that tells an agent, in every situation, what action to do
with what probability. In general, this decision is based on
the history of the evolution of the system (also known as ran-
domised history-dependent strategies in the stochastic games
literature, and similar to behavioural strategies in extensive-
form games in the game-theory literature). In PSL, there are
first-order variables x that vary over agent strategies; they are
quantified in state formulas of the form ∃x.ϕ. The temporal
operators are those of LTL, i.e., the path formula Xψ is read
“ψ holds in the next step”, and ψ1 Uψ2 is read “ψ1 holds until
ψ2 holds”. The meaning of the term Pβ(ψ) is this: if agent
i uses the strategy β(i) (for each i ∈ Ag), then Pβ(ψ) is the
probability that a random path in the system satisfies ψ. Note
that arithmetic terms are polynomials over the constants c and
over the probabilistic terms Pβ(ψ); in particular, there are no
arithmetic variables in our logic.

2.2 PSL Examples
PSL can express central game-theoretic notions about prob-
abilistic agents, e.g., domination (strict, weak, very weak),
ε best-response, ε Nash-equilibria, Pareto optimality, social-
welfare maximising equilbrium, k-resilience and t-immunity,
cf. [Halpern, 2008]. Here, agents’ goals can be given in LTL.
This declarative specification of goals (in contrast to the clas-
sic case of having agents maximise the expected value of a
reward function [Russell and Norvig, 1995]) is in line with
the literature on stochastic games with ω-regular goals [Chat-
terjee and Henzinger, 2012]. Here are some examples.

Suppose there are n agents, and let ψ1, · · · , ψk be LTL
formulas representing agent goals (in general, these can be
arbitrary path formulas of PSL). Let player i receive reward

ci,j ∈ Q if ψj holds on the outcome of the game. Thus, in an
outcome π of the game, player i’s utility is

∑
j:π|=ψj ci,j . A

player’s payoff is defined to be its expected utility.
Notation. Let x = (x1, · · · , xn) be a tuple of n strategy

variables. To express that agent i uses strategy xi we use
bindings. Define the binding β : Ag → V ar by β(i) = xi
for i ∈ Ag. We write β[i 7→ y] to denote the binding that
agrees with β on j 6= i, and that maps i to variable y.

Example 1 (Expected payoff). The arithmetic term Ei,β(x)
defined as

∑
j∈[k] ci,j × Pβ(ψj) is the expected payoff for

agent i given that agent l plays strategy xl.

We now show how to express that a strategy is a best-
response. These are stable in the sense that a player, knowing
the other players’ strategies, has no incentive to switch.

Example 2 (Best response). Define the PSL formula
BRi,β(x) to be ∀y

(
Ei,β[i 7→y] ≤ Ei,β

)
. This formula is read

“for every strategy y, the expected payoff for agent i if she
plays y (and agent j 6= i plays xj) is no larger than the ex-
pected payoff for agent i if she plays xi (and agent j 6= i plays
xj)”. In other words, this expresses that agent i playing xi is
a best-response to the other agents playing xj (for j 6= i).
Note that replacing ≤ Ei,β by ≤ Ei,β + ε (for non-negative
rational ε) defines ε best-response.

If every player is playing a best-response strategy, the strat-
egy profile is called a Nash equilibrium. This is the founda-
tional solution concept in Game Theory.

Example 3 (Nash equilibrium). Define the PSL formula
NEβ(x) to be

∧
i∈[1,n] BRi,β(x). This formula is read “ev-

ery agent i is playing a best response (given that agent j
plays xj)”, i.e., that x is a Nash equilibrium. Moreover,
NEβ(x) ∧

∧
i∈Ag li ≤ Ei,β(x) ≤ ri expresses an equilbrium

where the expected payoff for agent i falls into a given inter-
val [li, ri] [Ummels and Wojtczak, 2011].

Example 4 (Polynomial expressions). The syntax can ex-
press polynomial constraints on probabilities. For instance,
the formula Pβ(ψ1 ∧ψ2) = Pβ(ψ1)× Pβ(ψ2) expresses that
the events ψ1 and ψ2 (under the binding β) are independent.

Example 5 (Social-welfare maximisation). The following
expresses that x is a Nash equilibrium that maximises so-
cial welfare, where β′(i) = x′i for i ∈ Ag: NEβ(x) ∧[
∀x′.NEβ′(x

′)→
∑
i∈[n] Ei,β′(x

′) ≤
∑
i∈[n] Ei,β(x)

]
.

Example 6 (Rational Synthesis). Recent studies of synthesis
for rational agents have proposed asking for the existence
of a strategy for the system (modeled as agent 1), to en-
force a path formula ψ against all of the strategies of the
rational environment (modeled as the agents 2, 3, · · · , n)
that form a Nash equilibrium [Fisman et al., 2010;
Kupferman et al., 2016]. In a stochastic system, one
might ask that the path formula ψ should hold with
probability one. This is expressed by the PSL formula
∃x1.∀x2∀x3 . . . ∀xn.

([∧
i∈[2,n] BRi,β(x)

]
→ Pβ(ψ) = 1

)
.

A variant formula can be written to express that ψ holds with
probability one against some equilibrium.



2.3 PSL Semantics
PSL formulas are interpreted over multi-agent stochastic tran-
sition systems. Here are the definitions.

Distributions For a finite non-empty setX letDist(X) de-
note the set of distributions over X , i.e., functions d : X →
[0, 1] such that

∑
x∈X d(x) = 1. Write x ∈ d for d(x) > 0.

A point distribution is one for which d(x) = 1 for some el-
ement x ∈ X . If di is a distribution over Xi, then, writ-
ing X =

∏
iXi, the product distribution is the distribution

d : X → [0, 1] defined by d(x) =
∏
i di(xi).

Systems A multi-agent stochastic transition system (or sim-
ply system) G is a tuple (Ac, St, T r, Lab) where

− Ac is a finite non-empty set of actions,

− St is a finite non-empty set of states,

− Tr : St×AcAg → Dist(St) is a transition function,

− Lab : St→ 2AP is a labelling function.

We say that G is deterministic (instead of stochastic) if ev-
ery Tr(v, a) is a point distribution. Multi-agent stochastic
transition systems can model games in extensive form, re-
peated one-stage games, Markov chains (no agent), Markov
decision processes (one agent), decentralised Markov deci-
sion processes (multiple agents), and stochastic games (how-
ever, instead of agents being rewarded at states, in our
setting agents are rewarded if given path formulas hold).
Such systems have been used to model multi-agent path-
planning with unreliable actuators, human in the loop UAV
mission planning, autonomous urban driving, randomised
communication- and security-protocols, energy management
systems, etc. [Kwiatkowska et al., 2012; Chen et al., 2013b;
Svorenová and Kwiatkowska, 2016].

Markov Chains A Markov chainM is a tuple (Q, p) where
Q is a set of states and p ∈ Dist(Q × Q) is a distribution.
The values p(s, t) are called transition probabilities of M . A
Markov chain M and a state q ∈ Q induce a canonical prob-
ability space on the set of infinite paths starting in q [Kemeny
and Snell, 1976].

Actions and Paths A joint-action a is an element of AcAg .
A path π is a non-empty sequence v1v2 · · · of states such
that there exists a sequence a1a2 · · · of joint-actions such that
vi+1 ∈ Tr(vi, ai) for every i. We write len(π) for the length
of π, and π≤i for the prefix of π of length i (for i ≤ len(π)).
Finite paths are called histories, and the set of all histories is
denoted Hist. Write last(h) for the last state of a history h.

Strategies A strategy is a function σ : Hist → Dist(Ac).
Let Σ denote the set of all strategies. A strategy profile is a
tuple ρ of strategies, one for each agent. We write ρi for the
strategy of agent i. We overload notation and let ρ also denote
the function Hist→ Dist(AcAg) that maps h to the product
distribution of the ρi(h)’s. I.e., a strategy profile assigns, for
each history h, a distribution over the set of joint-actions.

Probability Space on Outcomes An outcome of a strategy
profile ρ and a history h is a (finite or infinite) path π that
starts with h and is extended by ρ, i.e., i) π1 = h, and ii)
for every k ≥ len(h) there exists ak ∈ ρ(π≤k) such that

πk+1 ∈ Tr(πk, ak). The set of outcomes of a strategy pro-
file ρ and history h is denoted out(ρ, h). A given transition
system G, strategy profile ρ, and history h induce an infinite-
state Markov chain Gρ,h whose states are the histories in
out(ρ, h) and whose transition probabilities p(h′, h′s′) are
defined as

∑
a ρ(h′)(a) × Tr(last(h′), a)(s′). The Markov

chain Gρ,h induces a canonical probability space: its sam-
ple space can be identified with the set of infinite paths in
out(ρ, h), and its measure is denoted µρ,h.

Valuations and Bindings Recall (from the syntax) that a
binding is a function β : Ag → V ar, i.e., it assigns variables
to agents. A valuation is a partial function ν : V ar → Σ,
i.e., it assigns strategies to some variables. If the range of β
is contained in the domain of ν, then composing them (left to
right), we see that ν ◦ β : Ag → Σ is a joint strategy.

Free Variables A variable x is free in a PSL formula if it
has a subformula of the form Pβ(ψ) such that x ∈ β(Ag) but
Pβ(ψ) is not in the scope of ∃x. A history formula with no
free variables is called a sentence.

PSL Semantics
Formulas of PSL are interpreted given a transition system G,
a valuation ν : V ar → Σ whose domain contains the free
variables of the formula, and either a history h (for history
formulas), or an infinite path π and an index i ∈ N (for path
formulas).1

The semantics of history formulas is as follows:

− G, ν, h |= p iff p ∈ Lab(last(h))
− G, ν, h |= ¬ϕ iff G, ν, h 6|= ϕ
− G, ν, h |= ϕ1 ∨ ϕ2 iff

∨
j G, ν, h |= ϕj

− G, ν, h |= ∃x.ϕ iff ∃σ ∈ Σ. G, ν[x 7→ σ], h |= ϕ
− G, ν, h |= τ1 ≤ τ2 iff 2 valν,h(τ1) ≤ valν,h(τ2)

where

− valν,h(c) = c and valν,h(τ−1) = (valν,h(τ))−1

− valν,h(τ ⊕ τ ′) = valν,h(τ)⊕ valν,h(τ ′) for ⊕ ∈ {−,+,×}
− valν,h(Pβ(ψ)) = µν◦β,h({π : G, ν, π, 1 |= ψ}).3

The semantics of the path formulas are defined as follows:

− G, ν, π, i |= ϕ iff G, ν, π≤i |= ϕ
− G, ν, π, i |= ¬ψ iff G, ν, π, i 6|= ψ
− G, ν, π, i |= ψ1 ∨ ψ2 iff

∨
j G, ν, π, i |= ψj

− G, ν, π, i |= Xψ iff G, ν, π, i+ 1 |= ψ
− G, ν, π, i |= ψ1 Uψ2 iff ∃k ≥ i such that G, ν, π, k |=
ψ2 and ∀j ∈ [i, k). G, ν, π, j |= ψ1

The model-checking problem is to decide, given a system
G, a state s ∈ St, and a sentence ϕ, whether or notG, s |= ϕ.

1The standard semantics of SL shifts strategies during the eval-
uation of temporal operators [Mogavero et al., 2014; Bouyer et al.,
2016]. Here instead, inspired by [Berthon et al., 2017], we carry the
accumulated history with us and do not shift strategies.

2To avoid the anomaly of division by zero, we letG, ν, h 6|= τ1 ≤
τ2 if τ1 or τ2 contain a subterm τ−1 for which valν,h(τ) = 0.

3Recall from the definitions that µν◦β,h(·) is the probability
measure on the infinite paths starting with h and consistent with the
joint-strategy ν ◦ β.



2.4 Discussion of the Semantics
Restricted Classes of Strategies A strategy σ is determin-
istic (or pure) if σ(h) is a point distribution for every his-
tory h. A strategy σ is finite-memory if there is a deter-
ministic finite-state machine (St,Q, q0, δ) (over alphabet St)
and output function out : Q × St → Dist(Act) such that
σ(h) = out(δ(q0, h), last(h)) for all h ∈ Hist. Intuitively,
the strategy σ can be implemented with log |Q| bits of mem-
ory. In case |Q| = 1, we call the strategy memoryless. Equiv-
alently, a strategy σ is memoryless if last(h) = last(h′) im-
plies σ(h) = σ(h′). We can safely write a memoryless strat-
egy as a function σ : St→ Dist(Ac) whose domain is St in-
stead of Hist, and a strategy profile of memoryless strategies
as a function ρ : St→ Dist(AcAg). In the definition of PSL
semantics, if we let Σ be the set of memoryless strategies, we
can replace histories h by states s and write, e.g.,G, ν, s |= ϕ.
Also, in the semantics of Pβ(ψ), the induced Markov chain
Gρ,s where ρ = ν ◦ β, can be taken to be finite-state, i.e.,
the state set is St and the transition probability from v to w is∑
a∈AcAg ρ(v)(a)× Tr(v, a)(w).

PSL and Non-probabilistic Strategic Logics Restricting
the semantics of PSL to deterministic transition systems and
deterministic strategies results in (a notational variant of) SL.
Indeed, in this case Pβ(ψ) ∈ {0, 1}, and Pβ(ψ) = 1 iff ψ
holds. This way, PSL subsumes SL, and thus also, e.g., ATL∗.

Expressing Nash Equilibria Since PSL includes compar-
isons between probabilities, it can express the standard mean-
ing of Nash Equilibrium (NE), i.e., that no deviation can in-
crease an agent’s expected payoff, see Example 3. In compar-
ison, ordinary Strategy Logic (SL) [Mogavero et al., 2014]
can express NE for deterministic arenas and pure strategies.
Stochastic Game Logic (SGL) [Baier et al., 2012] is a simi-
lar logic to PSL, except it can only compare probabilities to
constants (see Sec. 4 for a detailed comparison with SGL).

Vanilla PSL We define a syntactic fragment of PSL that we
call vanilla PSL. Intuitively, the restriction is similar to that
put on CTL∗ to obtain CTL; a similar restriction is defined
for a fragment of SL closely related to ATL∗, see [Malvone et
al., 2018]. The syntax of vanilla PSL is the same as that of
PSL except that the path formulas are given by the grammar:
ψ ::= ϕ | Xϕ | ϕUϕ. The relevance of this fragment can
be seen by noting that all the PSL formulas in the Examples
in Section 2.2 are also vanilla PSL formulas assuming that
the goal of agent i (for every i ∈ Ag) is a vanilla PSL path
formula ψi. For instance, safety and reachability goals can
be expressed in vanilla PSL. We will see that our algorithm
for model-checking vanilla PSL (assuming all strategies are
memoryless) has a substantially lower complexity than PSL.

3 Model Checking PSL
PSL with unrestricted strategies is too expressive to be de-
cidable. In fact, this is already true when restricted to a
single agent, deterministic finite-memory strategies, and for-
mulas of the form ∃x.ϕ where ϕ is a formula of the gram-
mar p | ¬ϕ | ϕ ∨ ϕ | Pβ(Fϕ) ./ c for ./∈ {>,=} and
c ∈ Q ∩ [0, 1] (with β(x) = 1); see [Brázdil et al., 2006].

For memoryless strategies, the news is better:

Theorem 1. 1. Model-checking PSL restricted to memo-
ryless strategies is decidable in space exponential in the
system and triple-exponential in the formula.

2. Model-checking vanilla PSL restricted to memoryless
strategies is decidable in space exponential in the system
and the formula and double-exponential in the nesting-
depth of probabilistic terms of the formula.

In particular, for vanilla PSL with a fixed nesting depth of
probabilistic terms, this gives an EXPSPACE algorithm. Note
that in all the examples of Section 2.2 this depth is 1. To prove
Theorem 1, we reduce to model-checking real arithmetic.
Real Arithmetic refers to first-order logic of the structure
R := (R,+,×,≤, 0, 1). This logic is very expressive, e.g., it
is not hard to see that solutions of systems of polynomial in-
equalities with rational coefficients are definable in this logic,
and that one can define the relation =, and the operations
r−r′ and r−1, e.g., r−1 can be represented by a new variable
r′ and the constraint r′ × r = 1 (note that if r = 0 this con-
straint evaluates to false). A formula Φ of real arithmetic,
with free variables in the set X , is interpreted given an evalu-
ation χ : X → R, and satisfaction is denoted R, χ |= Φ.
Theorem 2. [Ben-Or et al., 1986] Model-checking the struc-
ture R of real-arithmetic against first-order logic sentences is
decidable in space logarithmic in the size of the formula and
exponential in the number of quantifiers in the formula.

Translation of PSL to R
Fix a transition system G. Introduce real-valued first-order
variables rx,s,a for every strategy variable x ∈ V ar, state
s ∈ St, and action a ∈ Ac. Intuitively, rx,s,a represents
the probability that strategy x does action a in state s. An
evaluation χ that maps rx,s,a to ν(x)(s)(a) (for every x, s, a)
is said to be compatible with ν. The algorithm inductively
translates a PSL history formula ϕ with free variables x, and
a state t, into a real arithmetic formula Φϕ,t of R with free
variables rx,s,a for x ∈ x, s ∈ St and a ∈ Ac, such that for
every valuation ν and every evaluation χ compatible with it,
we have that

G, ν, t |= ϕ iff R, χ |= Φϕ,t (1)

If ϕ is a sentence then so is Φϕ,t. Thus, to model check
G, t |= ϕ, simply model check R |= Φϕ,t.

Translating the Boolean cases The boolean cases are as
follows: Φp,t := true if p ∈ Lab(t), and false otherwise;
Φϕ1∨ϕ2,t := Φϕ1,t ∨ Φϕ2,t, and Φ¬ϕ,t := ¬Φϕ,t.

Translating the existential case The translation of ∃x.ϕ is
done by quantifying the corresponding real variables rx,s,a,
and expressing that they code a distribution. Formally:

Φ∃x.ϕ,t := (∃rx,s,a)s∈St,a∈Ac [Distx ∧ Φϕ,t]

whereDistx is the conjunction of
∧
s∈St,a∈Ac rx,s,a ≥ 0 and∧

s∈St
∑
a∈Ac rx,s,a = 1.

Translating inequalities For every term τ introduce a vari-
able rτ , and let ST (τ) be all the arithmetic subterms of τ (in-
cluding τ itself), i.e., the subterms treating Pβ(ψ) as atomic.

The translation Φτ1≤τ2,t of τ1 ≤ τ2 is

(∃rτ )τ∈ST (τ1)∪ST (τ2)EQNt(τ1) ∧ EQNt(τ2) ∧ rτ1 ≤ rτ2



where the construction of EQNt(τi) and the meaning of vari-
ables rτ are given below. In particular, the formula EQNt(τi)
has free variables rx,s,a (for all x, s, a) and rτ (for τ ∈
ST (τi)), and satisfies the following property for every val-
uation ν and every evaluation χ compatible with it:

R, χ |= EQNt(τi) iff ∀τ ∈ ST (τi), χ(rτ ) = valν,t(τ) (2)

Observe that (2) implies that (1) holds in case ϕ = τ1 ≤ τ2.
Indeed, let ν be a valuation and χ a compatible evaluation.
Suppose G, ν, t |= τ1 ≤ τ2. Then, by (2), EQNt(τ1) ∧
EQNt(τ2) ∧ rτ1 ≤ rτ2 holds under χ extended with the as-
signments rτ 7→ valν,t(τ), and thus R, χ |= Φτ1≤τ2,t. Con-
versely, suppose R, χ |= Φτ1≤τ2,t and pick the rτ ’s so that
EQNt(τ1) ∧ EQNt(τ2) ∧ rτ1 ≤ rτ2 holds under χ. Thus,
in particular, by (2), rτi = valν,t(τi), and thus rτ1 ≤ rτ2
implies G, ν, t |= τ1 ≤ τ2.

Translating terms. Each subterm τ of ϕ is associated with
a fresh variable rτ , and the formula EQNt(τ) is defined in-
ductively as follows:
− EQNt(c) := rc = c,
− EQNt(τ

−1) := EQNt(τ) ∧ rτ−1 = (rτ )−1, and
− EQNt(τ ⊕ τ ′) := EQNt(τ) ∧ EQNt(τ

′) ∧ rτ⊕τ ′ =
rτ ⊕ rτ ′ where ⊕ ∈ {−,+,×}.

It is not hard to see that (2) holds for these cases.
It remains to show how to construct EQNt(Pβ(ψ)). To do

this, we use an automata-theoretic approach as follows.
As in the automata contruction for CTL∗ [Kupferman et

al., 2000] we view ψ as an LTL formula over atoms max(ψ),
the set of maximal history-subformulas of ψ, and we con-
struct a deterministic Rabin word automaton Aψ (say with
state set Qψ) that accepts exactly the set of words w ∈
(2max(ψ))ω such that w |= ψ. Note, in particular, that this
step translates the temporal operators.

We recall how to compute the probability that an LTL
formula ψ holds in the Markov chain Gν◦β,t [Vardi, 1985;
Courcoubetis and Yannakakis, 1995]. This amounts to solv-
ing a system of equations over the product Markov chain
Gν◦β,t × Aψ with variables rs,q representing the probability
that a path generated from s in the Markov chain is accepted
by the automaton Aψ starting in state q. Note, however, that
in our case, the transition probabilities of the chainGν◦β,t are
not given explicitly (as numbers), but implicitly as variables
rx,s,a. It is not hard to see that these equations can be encoded
in real-arithmetic (cf. [Baier et al., 2012]), i.e., given a state
t of G, β and Aψ , one can define a formula φtβ,Aψ over vari-
ables rx,s,a and the variable rt,qι (here qι is the initial state of
the automaton Aψ), such that we have: for every valuation ν
and every evaluation χ compatible with it,

R, χ |= φtβ,Aψ iff χ(rt,qι) = valν,t(Pβ(ψ)) (3)

We have space for the briefest outline. The formula φtβ,Aψ
will have the form

(∃rϕ′,s)s∈Stϕ′∈max(ψ)(Max∧(∃rv,v′)v,v′∈St×Qψ (Prod ∧ Rabin))

where the fresh variables rϕ′,s are constrained by Max so that
rϕ′,s > 0 iff ϕ′ holds in state s, and the fresh variables rv,v′ ,
for states v, v′ of the product Markov chain Gν◦β,t × Aψ ,

are constrained by Prod to be the transition probabilities in
the product Markov chain Gν◦β,t × Aψ , and variable rt,qι is
constrained by Rabin to be the probability that a random path
in the product chain is accepted by the automaton Aψ .

Finally, we can define EQNt(Pβ(ψ)) to be

∃rt,qι(φtβ,Aψ ∧ rPβ(ψ) = rt,qι).

Observe that (3) implies that (2) holds in case τi = Pβ(ψ).

Computational Complexity
Not surprisingly, the cost of translating Pβ(ψ) dominates the
other steps in the translation of a PSL formula. The size
of Pβ(ψ) is exponential in G, and double-exponential in ψ;
and the number of quantifiers it uses is polynomial in G and
double-exponential in ψ.

Thus, for a PSL formula ϕ, a worst-case blowup occurs if
there is a linearly deep nesting of such probabilistic terms in
ϕ. In this case, the size of Φϕ,s is at most exponential in G
and double-exponential in ϕ, and the number of quantifiers is
polynomial in G and double-exponential in ϕ.

For vanilla PSL, each ψ has constant size, and so the size
of Φϕ,s is polynomial in ϕ, exponential in G and the nesting
depth d of the probabilistic terms; and the number of quanti-
fiers is polynomial in G and ϕ, and exponential in d.

Theorem 1 then follows from Theorem 2.

Extensions
PSL and the proof of the model-checking problem (for mem-
oryless strategies) are highly extensible.

(1) Our algorithm immediately gives better complexity for
other fragments of PSL, e.g., the fragment of PSL whose path
formulas are ψ ::= ϕ | Xϕ | ϕUϕ | GFϕ, is an extension
of vanilla PSL that allows one to express some fairness prop-
erties. This has the same complexity as the vanilla fragment.

(2) We can add variables for deterministic strate-
gies, and extend the translation of ∃y.ϕ for such
y by (∃ry,w,a)w∈St,a∈Ac [Disty ∧ Pointy ∧ Φϕ,β,s] where
Pointy is the formula ∧w ∨a ry,w,a = 1. This allows one
to express, e.g., the notion of pure-strategy ε-equilibrium.

(3) We can treat agents with partial observation, i.e., agent
i has an indistinguishability relation ≡i over states and the
∃z.ϕ case is given by

(∃ry,w,a)w∈St,a∈Ac [Disty ∧ Unify ∧ Φϕ,β,s] ,

where Unify is ∧w ∧v:v≡iw ∧a (ry,w,a = ry,v,a). For com-
parison, strategy logic under imperfect information is studied
in [Berthon et al., 2017; Belardinelli et al., 2017], and proba-
bilistic extensions/variants of ATL∗ are studied in [Huang and
Luo, 2013; Schnoor, 2013].

A Lower Bound
We have shown that one can model check, in EXPSPACE, the
fragment of vanilla PSL in which the nesting depth d of prob-
abilistic terms is bounded. As discussed in the introduction,
we now show that there is a polynomial reduction from real-
arithmetic to this fragment.
Theorem 3. There is a polynomial reduction from model-
checking R to that of vanilla PSL restricted to a single agent,
memoryless strategies, and a bounded nesting of probabilistic
terms.



Proof. We show how to translate a given real-arithmetic sen-
tence ϕ in linear-time to a deterministic system G, a state s0
of G, and a vanilla PSL formula ϕ̂ with no nesting of proba-
bilistic terms, such that R |= ϕ iff G, s |= ϕ̂.

Assume, wlog, that variable names in ϕ are not reused,
and let X be the variables occuring in ϕ. Let V ar := X ,
AP := {x1, x2 : x ∈ X}. Define the deterministic sys-
tem G = (Ac, St, T r, Lab), in which |Ag| = 1, where
Ac := {⊥} ∪ AP ; St := {s0} ∪ AP ; Tr is given by
s0

xi−→ xi, s0
⊥−→ s0, and xi

a−→ xi, for every a, x, i; and
Lab(s0) = ∅, and Lab(xi) = {xi} for every x, i. Let βx
be the assignment of the strategy x to the agent. Construct
φ̂ from φ by: replacing every occurence of a term x by the
term enc(x) := (Pβx(Xx1))−1 − (Pβx(Xx2))−1; then re-
placing every inequality ϕ := τ1 ≤ τ2 with the formula
ϕ ∧

∧
x∈free(ϕ)

∧
i=1,2 Pβx(Xxi) 6= 0.

For every subformula ϕ of φ, the corresponding trans-
lated subformula ϕ̂ has the following property: for every
evaluation χ there exists a valuation ν such that R, χ |=
ϕ iff G, ν, start |= ϕ̂. The proof is a straightforward induc-
tion that uses the fact that every real number r can be writ-
ten as (r1)−1 − (r2)−1 for r1, r2 ∈ (0, 12 ). Then, a strategy
that, for example, assigns the probability ri to the action xi
(i = 1, 2) and the probability 1−(r1)−1−(r2)−1 to the action
⊥, has the property that enc(x) = r.

4 Related Work
Probabilistic Strategic Logics Early probabilistic exten-
sions of ATL are PATL/PATL∗ [Chen and Lu, 2007]. They
use operators of the form 〈〈A〉〉Pr(ψ) ./ c read “agents in A
have strategies such that for all strategies of agents not in A,
the probability that the path formula ψ holds is ./ c”, where
./ ∈ {<,=, >} and c ∈ [0, 1] is rational. Just as SL sub-
sumes ATL/ATL∗, so PSL subsumes PATL/PATL∗. To see
this, note that 〈〈A〉〉Pr(ψ) ./ c is equivalent to the PSL for-
mula (allowing shorthands) (∃xi)i∈A(∀xj)j 6∈APrβ(ψ) ./ c.
Another variant of probabilistic ATL, ATL with probabilis-
tic success, is studied in [Bulling and Jamroga, 2009]. The
logics rPATL/rPATL∗ [Chen et al., 2013a; Kwiatkowska et
al., 2018] extend PATL/PATL∗ with operators that can en-
force an expected reward ./ c. The main differences with
PSL are: (i) rPATL∗ can express cumulative rewards given
by the transition system, while PSL can only express rewards
for path formulas holding; (ii) unlike PSL, rPATL∗ is not de-
signed to express solution concepts. Model-checking rPATL∗

is 2EXPTIME-complete.

Closely Related Works rPATL+NE [Kwiatkowska et al.,
2019] extends rPATL with an equilibrium operator express-
ing that there exists a subgame perfect Nash equilibrium be-
tween the coalitions A and Ag \ A under which the sum
of the (probability or reward) objectives for the coalitions
is ./ c. The main differences with PSL are: (i) rPATL+NE
(like rPATL before it) can express more complex rewards
than PSL, (ii) PSL can express other complex concepts from
game-theory. SGL (Stochastic Game Logic) [Baier et al.,
2012] is like ATL with strategy contexts, and uses a proba-
bilistic operator P./c(D,φ1,···, φk), where D is a Rabin word

automaton over the alphabet [k], and each φi is an SGL for-
mula, which expresses that the probability is ./ c that a path
π, when viewed as the sequence whose jth element consist
of the indices i ∈ [k] such that φi holds in the suffix π≥i,
is accepted by D. Model-checking SGL is undecidable in
general; and restricted to memoryless strategies it is decid-
able via a translation to real-arithmetic (an analysis of their
algorithm yields a 2EXPSPACE upper bound). Our proof of
Theorem 1 is based on this translation, and differs from it
in two ways: we compile path formulas into automata over
truth values of subformulas; and we translate inequalities be-
tween arithmetic terms. The main differences with PSL are:
(i) there are no terms in SGL that compare probabilities of
path formulas, and thus, one cannot, in general, express any
of the examples of PSL formulas in Section 2.2, including
Nash equilibrium (intuitively, the common fragment of SGL
and PSL is the fragment of PSL in which the terms τ ≤ τ
are replaced by Pβ(ψ) ≤ c); (ii) SGL uses automata instead
of LTL to represent path formulas; if we had used automata
instead of LTL our model-checking algorithm would work in
2EXPSPACE (instead of 3EXPSPACE), but we chose not to do
so because automata are not as readable as formulas.
Overall PSL stands out for two reasons: (i) it is not sub-
sumed by any of the logics mentioned (and it subsumes as-
pects of each of them), and (ii) its syntax is, we believe, sim-
pler and more natural than those of the logics mentioned.

5 Conclusion
Strategy Logic (SL) can elegantly express important solu-
tion concepts in game-theory, e.g., Nash Equilibria, domi-
nant strategies, subgame-perfect equilibria [Mogavero et al.,
2014]. Although extended in a number of useful ways,
e.g., imperfect information [Berthon et al., 2017; Belardinelli
et al., 2017] and counting strategies [Aminof et al., 2018;
Malvone et al., 2018], until now it has only been investigated
in the restricted setting of pure strategies and determinisitic
systems. This is unfortunate, as game-theory and MAS often
involve randomised strategies and stochastic systems. We fill
this gap by introducing PSL, a probabilistic extension of SL.

The importance of PSL is further highlighted by a combi-
nation of three facts, as we have shown: it has a natural syn-
tax which mimics first-order logic; it is expressive; and it is
highly extensible. Thus, PSL takes an important step to bring
us closer to the ideal of having a natural, expressive, and de-
cidable logic for strategic reasoning in multi-agent systems.

There are a number of non-trivial open problems regarding
the exact complexity of model-checking PSL and its frag-
ments. Also, the decidability of model-checking the quali-
tative fragment of PSL (with no restriction on the strategies)
is open, i.e., the qualitative fragment restricts terms τ to be
of the form 0 | 1 | Pβ(ψ), and thus one can express, e.g.,
Pβ(ψ) = 1, but not Pβ(ψ) = 0.5.
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M. Kwiatkowska. Quantitative verification and strategy
synthesis for stochastic games. EJC, 30:15–30, 2016.

[Ummels and Wojtczak, 2011] M. Ummels and D. Wo-
jtczak. The complexity of nash equilibria in stochastic
multiplayer games. LMCS, 7(3), 2011.

[Vardi, 1985] M.Y. Vardi. Automatic verification of proba-
bilistic concurrent finite-state programs. In FOCS, 1985.


	Introduction
	Probabilistic Strategy Logic (PSL)
	PSL Syntax
	PSL Examples
	PSL Semantics
	PSL Semantics

	Discussion of the Semantics

	Model Checking PSL
	Translation of PSL to R
	Computational Complexity
	Extensions
	A Lower Bound


	Related Work
	Conclusion

