
The Complexity of Model Checking Knowledge and Time

Laura Bozzelli , Bastien Maubert and Aniello Murano
Università degli Studi di Napoli “Federico II”, Italy

lr.bozzelli@gmail.com, bastien.maubert@gmail.com, murano@na.infn.it

Abstract

We establish the precise complexity of the model
checking problem for the main logics of knowledge
and time. While this problem was known to be
non-elementary for agents with perfect recall, with
a number of exponentials that increases with the al-
ternation of knowledge operators, the precise com-
plexity of the problem when the maximum alterna-
tion is fixed has been an open problem for twenty
years. We close it by establishing improved up-
per bounds for CTL* with knowledge, and provid-
ing matching lower bounds that also apply for epis-
temic extensions of LTL and CTL.

1 Introduction
A central aspect of multi-agent systems is that agents only
have partial knowledge about the system [Parikh and Ra-
manujam, 1985]. Epistemic logics are a standard framework
to reason about what agents know about the world and each
others’ knowledge. In order to talk about behaviours of on-
going multi-agent systems, epistemic logics have been com-
bined with temporal logics such as LTL [Pnueli, 1977], CTL
and CTL∗ [Emerson and Halpern, 1986]. The resulting epis-
temic temporal logics can express properties of the evolution
of agents’ knowledge over time. These logics have been ap-
plied to the modelling and analysis of, e.g., distributed proto-
cols [Ladner and Reif, 1986; Fagin et al., 2004], information
flow and cryptographic protocols [van der Meyden and Su,
2004; Halpern and O’Neill, 2005] and knowledge-based pro-
grams [van der Meyden and Vardi, 1998].

The satisfiability problem for this family of logics has been
thoroughly studied in [Halpern and Vardi, 1986; Halpern and
Vardi, 1989], which categorise epistemic temporal logics ac-
cording to a number of criteria: (1) is the system synchronous
or asynchronous; (2) does it have a unique initial state known
to all agents; (3) do agents have bounded memory or perfect
recall; (4) can agents learn; (5) is the temporal part of the
language linear or branching; (6) can the epistemic part of
the language talk about the knowledge of several agents; and
(7) can it talk about common knowledge. By considering all
the possible combinations, the authors identify 96 logics and
study their satisfiability/validity problem. Sound and com-

plete axiomatization for those of these logics that admit one
are also provided in [Halpern et al., 2004].

While the picture is clear for satisfiability and axiomatiza-
tion of these logics, it is not entirely the case for the model-
checking problem, which is arguably at least as important for
the verification of multi-agent systems as satisfiability or ax-
iomatization (see for instance [Dechesne and Wang, 2010]).

For agents with bounded memory the situation is well un-
derstood. In particular, for the asynchronous setting, adding
knowledge operators and even common-knowledge opera-
tors to LTL, CTL or CTL∗ does not increase the complex-
ity of model checking: it is PSPACE-complete for extensions
of LTL and CTL∗ [Kong and Lomuscio, 2017] and PTIME-
complete for extensions of CTL [Raimondi, 2006]. For the
synchronous setting, the situation is similar, but for exten-
sions of CTL, the problem becomes PSPACE-complete [En-
gelhardt et al., 2007; Huang and van der Meyden, 2010].

For agents with perfect recall, the problem is undecidable
when common knowledge is part of the language [van der
Meyden and Shilov, 1999]. For the extensions of LTL, CTL
and CTL∗ with knowledge but no common knowledge opera-
tors, denoted respectively LTLK, CTLK and CTLK∗, model
checking is instead decidable but non-elementary [van der
Meyden and Shilov, 1999; Alur et al., 2007; Dima, 2009;
Aucher, 2014; Bozzelli et al., 2015]. It was noted that the
non-elementary blow-up depends on the alternation depth
of formulas, the maximal number of alternations between
knowledge operators for different agents: each additional al-
ternation forces to maintain in the model-checking procedure
an additional layer of information about what agents know.
For a fixed alternation depth k ≥ 1, in the synchronous
setting model checking is known to be in k-EXPSPACE for
LTLK [van der Meyden and Shilov, 1999]. For both the syn-
chronous and asynchronous semantics, it is known to be in
(k − 1)-EXPSPACE for CTLK [Alur et al., 2007], and in k-
EXPTIME for CTLK∗ [Aucher, 2014; Bozzelli et al., 2015].
However it is not known whether these bounds are tight.

We show that they are tight only for CTLK: we prove
that model-checking for LTLK, CTLK and CTLK∗ is actually
(k − 1)-EXPSPACE-complete for alternation depth at most
k, both for synchronous and asynchronous semantics. The
upper bounds for synchronous and asynchronous CTLK∗ and
LTLK are new, and the lower bounds are new for all six logics.
We summarise the main results in Table 1. We point out that



LTL CTL CTL∗

bm, asyn, K/CK PSPACE-c PTIME-c PSPACE-c
bm, syn, K/CK PSPACE-c PSPACE-c PSPACE-c

pr, syn/asyn, CK undecidable undecidable undecidable
pr, syn/asyn, K (k − 1)-EXPSPACE-c (k − 1)-EXPSPACE-c (k − 1)-EXPSPACE-c

Table 1: Known and new results (in grey; for CTL, the upper bounds were known). “bm” and “pr” stand for “bounded memory” and
“perfect recall”, “syn” and “asyn” for “synchronous” and “asynchronous”, and “CK” indicates extensions with both knowledge and common
knowledge operators, while “K” indicates the absence of common knowledge. Finally k ≥ 1 is the maximal alternation depth of formulas.

our PSPACE-completeness result for the fragment of LTLK
with alternation depth one generalises that for synchronous
LTLK with one agent proved in [Engelhardt et al., 2007].

Note that the complexity of model checking is often stud-
ied for models that are given by an explicit description of their
states and transitions, which is what we consider in this work.
More recently some works started to study the complexity of
model checking multi-agent systems for succinct representa-
tions [Lomuscio and Raimondi, 2006; Huang et al., 2015].

2 Preliminaries
Let N be the set of natural numbers. For all n, k ∈ N, define
Tower(n, 0) = n and Tower(n, k + 1) = 2Tower(n,k).

Let w be a finite or infinite word over some finite alphabet
Σ. We denote by |w| the length of w (we set |w| = ∞ if w
is infinite). For all 0 ≤ i, j < |w|, with i ≤ j, wi is the i-th
letter of w, w≤i is the prefix of w that ends at position i, w≥i
is the suffix that starts at position i, and w[i,j] = wi . . . wj .
For words w and w′, we write w 4 w′ if w is a prefix of w′.

2.1 Epistemic Temporal Logics
We recall the logic CTLK∗ and its fragments LTLK and
CTLK, which respectively correspond to extensions of CTL∗,
LTL and CTL with knowledge operators.

Let us fix a countably infinite set of atomic propositions
AP and a finite set of agents Ag . The sets of history formulas
ϕ and path formulas ψ are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ | Kaϕ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where p ∈ AP and a ∈ Ag , X and U are the standard next
and until temporal operators of LTL, E is the existential path
quantifier of CTL∗, and Ka is the knowledge operator for
agent a from epistemic logics. Formula Kaϕ reads as “agent
a knows that ϕ is true”. As usual we define Aψ := ¬E¬ψ.
The language of CTLK∗ consists of the history formulas. We
let Sub(ϕ) be the set of subformulas in ϕ, and we define the
size of a formula ϕ as |ϕ| = |Sub(ϕ)|. We call alternation
depth of a formula ϕ, written ad(ϕ), the maximum number of
alternations between knowledge operators for different agents
in the formula. For instance, ad(p) = 0, ad(Kap) = 1,
ad(Ka¬Kap) = 1 and ad(KbKaq ∨Kap) = 2.
Fragments of CTLK∗ We consider the usual syntactic frag-
ments LTLK and CTLK of CTLK∗. LTLK consists of for-
mulas of the form Aψ or ¬Aψ where path quantifiers in ψ
are immediately preceded by knowledge modalities. CTLK
is obtained by requiring that the temporal modalities X and

U are immediately preceded by a path quantifier . For every
k ∈ N, we define LTLKk, CTLKk and CTLK∗k the restric-
tions of LTLK, CTLK and CTLK∗, respectively, to formulas
of alternation depth at most k.
Semantics CTLK∗ formulas are interpreted over Kripke
structures equipped with one indistinguishability relation ∼a
for each agent a.
Definition 1 (Models). A Kripke structure (KS) is a structure
M = (AP, S,R, V, {∼a}a∈Ag , s

ι), where AP ⊂ AP is a
finite subset of atomic propositions, S is a set of states, R ⊆
S × S is a left-total transition relation, V : S → 2AP is a
valuation function, ∼a ⊆ S × S is an equivalence relation,
for each a ∈ Ag , and sι ⊆ S is an initial state.

The size |M | of M is the number of states in M . A path
is an infinite sequence of states π = s0s1 . . . such that for
all i ≥ 0, siRsi+1, and a history τ is a non-empty prefix of a
path. We denote by Hist(s) (resp., Path(s)) the set of histories
(resp., paths) that start in s. Unless specified otherwise, all
histories and paths are assumed to start in the initial state sι.
For I ⊆ S, we write R(I) = {s′ | ∃s ∈ I s.t. sRs′} for the
set of successors of states in I . Finally, for a ∈ Ag and s ∈ S,
we let [s]a be the equivalence class of s for relation ∼a. For
a history τ , lst(τ) is the last state of τ .

We consider the classic synchronous and asynchronous
perfect recall semantics of knowledge modalities, where
agents remember all of the past. While in synchronous sys-
tems, agents always observe when a transition takes place,
in asynchronous ones agents cannot tell that a transition oc-
curred if their observation of the state remains unchanged.
Definition 2. Two histories τ and τ ′ are indistinguishable for
an agent a with synchronous perfect recall (SPR for short),
written τ ≈s

a τ
′, if they are point-wise indistinguishable to a,

i.e. |τ | = |τ ′| and τi ≈a τ ′i for each i < |τ |.
To define asynchronous perfect recall, we first define the

sequence of observations that an agent has along a history,
in which sequences of successive identical observations col-
lapse to a single observation. Formally, for an agent a,
we let Obsa(s) = [s]a, Obsa(τ · s) = Obsa(τ) · [s]a if
[s]a 6= lst(Obsa(τ)), and Obsa(τ) otherwise.
Definition 3. Two histories τ and τ ′ are indistinguishable for
an agent a with asynchronous perfect recall (APR for short),
written τ ≈as

a τ ′, if Obsa(τ) = Obsa(τ ′).
Definition 4 (Semantics). Fix a model M . The SPR (resp.,
APR) semantics of a history formula ϕ on a history τ and a
path formula ψ on a path π and a point in time n ∈ N is
defined by induction as follows (Boolean cases are omitted):



τ |= p if p ∈ V (lst(τ))
τ |= Eψ if ∃π s.t. τ 4 π and π, |τ | − 1 |= ψ
τ |= Kaϕ if ∀τ ′ ∈ Hist(sι) such that τ ′ ≈s

a τ
(resp., τ ′ ≈as

a τ), τ ′ |= ϕ
π, n |= ϕ if π≤n |= ϕ
π, n |= Xψ if π, (n+ 1) |= ψ
π, n |= ψ1Uψ2 if ∃m ≥ n s.t. π,m |= ψ2 and

∀k s.t. n ≤ k < m, π, k |= ψ1

A model M with initial state sι satisfies a CTLK∗ formula
ϕ under the SPR (resp., APR) semantics, written M |=sy ϕ
(resp., M |=as ϕ), if sι |= ϕ under the SPR (resp., APR)
semantics. The model-checking problem for the SPR (resp.,
APR) semantics, of which we study the complexity, is check-
ing for a finite model M and a formula ϕ, whether M |=sy ϕ
(resp., M |=as ϕ). In this work we prove the following result.
Theorem 1. For every k ∈ N, the model-checking prob-
lem for LTLKk+1, CTLKk+1 and CTLK∗k+1 is k-EXPSPACE-
complete, both for SPR and APR semantics.

In the rest of this work, every time a definition or result
holds for both semantics, we write ≈a instead of ≈s

a or ≈as
a .

3 Powerset Construction
In this section we recall a classic powerset construction for al-
gorithmic questions related to imperfect information. It was
first used by Reif in [Reif, 1984] to eliminate imperfect in-
formation from two-player games, and in [van der Meyden,
1998; van der Meyden and Shilov, 1999; Alur et al., 2007]
to model check variants of LTLK and CTLK. We show that it
also can be used to model check CTLK∗.

3.1 Information Sets and Updates
An information set captures the set of states that an agent con-
siders possible at a given moment. The following definition
is common to synchronous and asynchronous perfect recall.
Definition 5. Given a model M with state set S, an informa-
tion set I ⊆ S is a set of states. Given a history τ and an
agent a, the information set of a at τ is defined as

Ia(τ) = {s | ∃τ ′ ∈ Hist(sι) s.t. τ ≈a τ ′ and s = lst(τ ′)}.
We will write Isy

a when referring to the synchronous se-
mantics, and Ias

a for the asynchronous one.
We now define two different update functions, one for the

synchronous and one for the asynchronous case. The role of
these functions is to compute the new information set of an
agent after a transition, given her former information set and
the new state. We start with the synchronous case.
Definition 6. The synchronous update of an information set
Ia for agent a with a new state s is

Upsy(Ia, s) = R(Ia) ∩ [s]a

This definition says that the set of states that agent a con-
siders possible after taking a transition that arrives in state
s consists of all states that are successors of states she pre-
viously considered possible, and that are compatible with

what she observes of the new state. For asynchronous per-
fect recall, the update is slightly more involved, as the agent
may consider that arbitrarily many steps occurred that did not
change his observation. We call invisible step (for some agent
a) a transition between two states s and s′ such that s ∼a s′,
and given a set of states I , we let Reachai (I) ⊇ I be the set of
states reachable from I via steps invisible for a. We can now
define the update as follows:
Definition 7. The asynchronous update of an information set
Ia for agent a with a new state s is

Upas(Ia, s) =

{
Ia if Ia ⊆ [s]a,

Reachai (R(Ia) ∩ [s]a) otherwise.

This definition is an adaptation to our setting of the one
in [Puchala, 2010], which considers two-player games. The
following result follows directly by applying the definitions:
Lemma 2. For every history τ ·s, Isy

a (τ ·s) = Upsy(Isy
a (τ), s)

and Ias
a (τ · s) = Upas(Ias

a (τ), s).

3.2 Powerset Construction
Given a model M we define a powerset model M̂ of expo-
nential size in which formulas of alternation depth 1 can be
evaluated positionally. States of M̂ contain, in addition to
the current state in M , the current information set of each
agent. This construction can be instantiated either for the syn-
chronous or asynchronous semantics by choosing the appro-
priate update function for information sets. In the following
we will often omit to specify which semantics is considered,
because the construction and reasoning work for both.
Definition 8. Given M = (AP, S,R, V, {∼a}a∈Ag , s

ι), we
define M̂ = (AP, Ŝ, R̂, V̂ , {∼̂a}a∈Ag , ŝ

ι), where
• Ŝ = S × (2S)Ag

• (s, 〈Ia〉a∈Ag)R̂(s′, 〈I ′a〉a∈Ag) if sRs′ and for each a ∈
Ag , I ′a = Up(Ia, s

′)

• V̂ (s, 〈Ia〉a∈Ag) = V (s)
• for b ∈ Ag , (s, 〈Ia〉a∈Ag)∼̂b(s′, 〈I ′a〉a∈Ag) if s′ ∈ Ib

and Ib = I ′b
• ŝ ι = (sι, 〈{sι}〉a∈Ag)

Note that |M̂ | = |M |2|Ag||M |. Because the update of in-
formation sets with a new state is deterministic, every history
τ in M defines a unique history τ̂ of length |τ | in M̂ , that
starts in ŝ ι and follows transitions in τ . The next lemma fol-
lows by definition of M̂ , τ̂ and application of Lemma 2.
Lemma 3. For every history τ ,

lst(τ̂) = (lst(τ), 〈Ia(τ)〉a∈Ag)

We now describe how formulas of alternation depth one
can be evaluated positionally in the powerset model M̂ .

Definition 9. Given a powerset model M̂ , a state ŝ ∈ Ŝ and
a path π̂, the alternative semantics of a CTLK∗1 formula is
defined inductively as follows (we omit Boolean cases):

ŝ |=I p if p ∈ V̂ (ŝ)

ŝ |=I Eψ if for some π̂ ∈ Path(ŝ), π̂ |=I ψ

ŝ |=I Kaϕ if for all ŝ′ s.t. ŝ′ ∼̂a ŝ, ŝ′ |=I ϕ



π̂ |=I ϕ if π̂0 |=I ϕ

π̂ |=I Xψ if π̂≥1 |=I ψ

π̂ |=I ψ1Uψ2 if ∃i ≥ 0 such that π̂≥i |=I ψ2 and
∀j such that 0 ≤ j < i, π̂≥j |=I ψ1

We cannot evaluate nested knowledge operators for different
agents because we have only one “level” of knowledge in the
states of M̂ . However we can evaluate nested knowledge op-
erators for a same agent because indistinguishability relations
between states ∼a, and thus also relations ≈a between histo-
ries, are equivalence relations: if τ ≈a τ ′, then agent a knows
the same things in τ and in τ ′.
Proposition 4. For every history formula ϕ ∈ CTLK∗1, each
model M and history τ , τ |= ϕ iff lst(τ̂) |=I ϕ.

4 Upper Bounds
In this section we establish the upper bounds in Theorem 1.
All the reasoning in this section is independent of the chosen
semantics, synchronous or asynchronous perfect recall. We
first show how to solve the case of alternation depth one in
PSPACE, and then how to eliminate one level of alternation at
the cost of an exponential blowup in the size of the model.

4.1 Alternation Depth One
Our PSPACE model-checking procedure contains three main
ingredients. The first one is the on-the-fly construction and
resolution of Büchi automata for LTL formulas [Vardi and
Wolper, 1994]. We combine it with an on-the-fly construction
of the powerset model, already used in [Alur et al., 2007] for
a variant of CTLK, which allows us to evaluate LTLK formu-
las of alternation depth one positionally. Finally, we use the
meta-algorithm by Emerson and Lei [Emerson and Lei, 1987]
to extend this procedure from LTLK to CTLK∗.

In the main model-checking procedure, formulas of the
form Eψ are dealt with by guessing a path in the powerset
model and evaluating ψ on it. However for our algorithm to
terminate, we need to bound the length of paths that need to
be searched, and we need this bound to be at most exponen-
tial so that we can count up to it in polynomial space. We now
prove that this can be done.

An infinite word w is ultimately periodic if there exist
i, j ∈ N such that w = w≤i−1w

∗
[i,j]. Letting i and j be

the smallest such values, we call i the start index of π, and
j − i+ 1 is called its period.
Lemma 5. Let ψ be a CTLK∗ path formula of alternation
depth at most 1, let M be a model, M̂ the powerset model,
and ŝ a state in M̂ . If ŝ |= Eψ, then there exists a path π̂
starting in ŝ such that π̂ |=I ψ and π̂ is ultimately periodic
with start index and period less than |M |2|Ag||M |+|ψ|.

Proof sketch. We turn ψ into an LTL formula ψ′ by evaluat-
ing and marking its maximal history subformulas in the pow-
erset model M̂ . We then build a nondeterministic Büchi word
automaton Aψ′ that accepts exactly the models of ψ′ and has
at most 2|ψ

′| states [Vardi and Wolper, 1994]. By taking the
product of Aψ with M̂ , we obtain an automaton A

M̂ ′,ψ′ over

the states of M̂ ′ that has size at most |M |2|Ag||M |+|ψ′| and

accepts precisely paths in M̂ ′ that satisfy ψ′. By definition
of the Büchi acceptance condition, if there is such a path π̂′,
there is an ultimately periodic one of start index and period
less than the size of A

M̂ ′,ψ′ , i.e. |M |2|Ag||M |+|ψ|.

Proposition 6. Model checking CTLK∗1 is in PSPACE.
Proof sketch. We adapt Emerson and Lei’s algorithm which
shows how to turn a polynomial-space model-checking pro-
cedure for LTL into one for CTL∗ that also runs in polynomial
space [Emerson and Lei, 1987]. The interesting case is for
formulas of the form Eψ. The proof of Lemma 5 provides a
model-checking procedure for such formulas, but building the
full automaton Aψ and powerset model M̂ takes exponential
space. We tackle this by building them both on the fly. The
marking procedure of maximal history subformulas in states
of M̂ is replaced with recursive calls to the model-checking
procedure for CTLK∗1, and by Lemma 5 we can implement in
polynomial space a counter that indicates when the nondeter-
ministic search of a satisfying path can be stopped.

4.2 Reducing Alternation
We show how to use the powerset construction to eliminate
one level of alternation of knowledge operators.
Proposition 7. Given a CTLK∗ formula Φ of alternation
depth k + 1 and a model M , one can build a model M ′ of
size at most |M |2|Ag||M | and a CTLK∗ formula Φ′ of alter-
nation depth k and size |Φ′| ≤ |Φ| such that

M |= Φ iff M ′ |= Φ′.

The construction of M ′ is as follows. First, build the pow-
erset model M̂ as in Definition 9. In this model, history
formulas of alternation depth one can be evaluated position-
ally, as stated in Proposition 4. Let Sub1(Φ) be the set of
such formulas in Sub(Φ). For each formula ϕ in Sub1(Φ)

and each state ŝ of M̂ , evaluate whether ŝ |=I ϕ (since |=I

is the memoryless semantics of CTLK∗, this can be done in
PSPACE [Kong and Lomuscio, 2017]), and mark state ŝ with
the fresh atomic proposition pϕ if ŝ |=I ϕ. We abuse notation
and still call M̂ the model obtained after this marking proce-
dure (and similarly, ŝ, τ̂ and π̂ refer to states, histories and
paths in the marked model). Also, for every subformula ϕ of
Φ, define ϕ̂ by replacing each ϕ′ in Sub1(ϕ) with atom pϕ′ .

Unlike in Proposition 4, where we use the alternative mem-
oryless semantics to evaluate positionally formulas of alterna-
tion depth one, this time we interpret ϕ̂ on M̂ with the perfect-
recall semantics. One can prove the following lemma:
Lemma 8. For every history subformula ϕ and every history
τ in M , it holds that τ |= ϕ iff τ̂ |= ϕ̂.

Using Proposition 7 for the inductive case and Proposi-
tion 6 for the base case, we prove by induction on k that:
Theorem 9. For k ∈ N, model checking of CTLK∗k+1 for
both the SPR and APR semantics is in k-EXPSPACE.

5 Lower Bounds
In this section, we establish the following result which pro-
vides lower bounds for model checking against CTLK∗,
matching the upper bounds of Theorem 9.



Theorem 10. For k ∈ N, model checking of CTLK∗k+1 for
both the SPR and APR semantics is k-EXPSPACE-hard even
if the formula is assumed to be a fixed LTLKk+1

⋂
CTLKk+1

formula and the number of agents is 2.
Theorem 10 is proved by a polynomial-time reduction from

a suitable domino-tiling problem [Boas, 1997]. An instance
I of such a problem is a tuple I = (C,∆, n, din, dacc),
where C is a finite set of colours, ∆ ⊆ C4 is a set of
tuples (cdown, cleft, cup, cright) of four colours, called domino-
types, n > 0 is a natural number encoded in unary, and
din, dacc ∈ ∆ are domino-types. Given k ∈ N, a k-grid of
I is a mapping f : [0, `] × [0,Tower(n, k) − 1] → ∆ for
some ` ∈ N. Intuitively, a k-grid is a finite grid, where each
row consists of Tower(n, k) cells, and each cell contains a
domino type. A k-tiling of I is a k-grid f satisfying:
Initialisation and Acceptance: f(0, 0) = din and f(`, j) =

dacc for some j ∈ [0,Tower(n, k)− 1];
Row adjacency: two adjacent cells in a row have the same

color on the shared edge: for all (i, j) ∈ [0, `] ×
[0,Tower(n, k)− 2], [f(i, j)]right = [f(i, j + 1)]left

Column adjacency: two adjacent cells in a column have the
same color on the shared edge: for all (i, j) ∈ [0, ` −
1]× [0,Tower(n, k)− 1], [f(i, j)]up = [f(i+ 1, j)]down.

Given k ∈ N, the problem of checking the existence of a
k-tiling for I is k-EXPSPACE-complete [Boas, 1997]. Hence,
Theorem 10 directly follows from the following proposition.
Proposition 11. Let k ≥ 0. There is a fixed formula ϕk of
LTLKk+1

⋂
CTLKk+1 s.t. one can build, in time polynomial

in the size of I, a Kripke structure MI,k with two agents so
that I has a k-tiling iff MI,k |=sy ϕk (resp., MI,k |=as ϕk).
Proof of Proposition 11 for the synchronous setting We
first provide a proof of Proposition 11 for the synchronous
setting. At the end of this section, we explain the easy adap-
tation for the asynchronous case. Fix k ≥ 0. We assume that
k ≥ 1 (the proof for the case k = 0 being simpler).

First, we define a suitable encoding of the k-grids by infi-
nite words over the set of propositions AP := Main ∪ Tags,
where Main := ∆∪{$1, . . . , $k, $, acc,⊥, 0, 1} and Tags :=

{#1,#2, col, good} ∪
⋃h=k
h=1{(h,=), (h, inc), (inc, h)}. The

propositions in Main are used to encode the k-grids, while the
propositions in Tags, whose meaning will be explained later,
are used to mark in a suitable way the codes of k-grids.

In the encoding of a cell of a k-grid, we keep track of the
content of the cell together with a suitable encoding of the cell
number which is a natural number in [0,Tower(n, k) − 1].
Thus, for all 1 ≤ h ≤ k, we define the notions of h-block
and well-formed h-block, where for h < k, well-formed h-
blocks are finite words over {$1, . . . , $h, 0, 1} encoding inte-
gers in [0,Tower(n, h) − 1], while well-formed k-blocks are
finite words over ∆ ∪ {$1, . . . , $k, 0, 1} encoding the cells
of k-grids. In particular, for h > 1, a well-formed h-block
encoding a natural number m ∈ [0,Tower(n, h) − 1] is a
sequence of Tower(n, h − 1) (h − 1)-blocks, where the ith
(h − 1)-block encodes both the value and (recursively) the
position of the ith-bit in the binary representation of m.

The set of (well-formed) h-blocks is defined by induction
on h as follows. A 0-block is a bit b ∈ {0, 1}. The content of b
is b itself, and b is initial (resp., final) if b = 0 (resp., b = 1).

For 1 ≤ h ≤ k, an h-block is a finite word bl of the form
$hτsb0 . . . sb`$h such that (i) ` > 0, and ` = n− 1 if h = 1,
(ii) τ ∈ {0, 1} if h < k, and τ ∈ ∆ otherwise (τ is the content
of bl), (iii) for all 1 ≤ i ≤ `, sbi is a (h−1)-block (the ith sub-
block of bl), and (iv) sb1 is initial and sb` is the unique final
sub-block. The block bl is initial (resp., final) if the content
of each sub-block sbi is 0 (resp., 1). The h-block bl is well-
formed if either h = 1, or h > 1, ` = Tower(n, h − 1) − 1
and for all 0 ≤ i ≤ `, sbi is well-formed and has index i.
If bl is well-formed, then its index is the natural number in
[0,Tower(n, h)−1] whose binary code is bit0, . . . , bit`, where
bitj is the content of sbj for all 0 ≤ j ≤ `.
Encoding k-grids A row-codewr = $bl0 . . . bl`$ is a finite
word such that bl0, . . . , bl` are k-blocks, bl0 is initial, and bl`
is the unique final k-block. The row-code wr is well-formed
if additionally, ` = Tower(n, k)− 1 and for all 0 ≤ i ≤ `, bli
is well-formed and has index i. A k-grid code (resp., well-
formed k-grid code) is an infinite word over AP of the form
w · τω such that (i) w is a finite sequence of row-codes (resp.,
well-formed row-codes), and (ii) τ = acc if the last row-code
of w contains a block whose content is dacc (acceptance), and
τ = ⊥ otherwise. A k-grid code is initialised if the first
k-block of the first row-code is din. Note that while k-grid
codes encode grids of I having rows of arbitrary length, well-
formed k-grid codes encode the k-grids of I.

Construction of MI,k in Proposition 11 For the fixed
k ≥ 1, we now illustrate the construction of the finite Kripke
structure MI,k over two agents, say a1 and a2, in Propo-
sition 11. Essentially, MI,k nondeterministically generates
all the initialised k-grid codes with the additional ability of
nondeterministically marking some positions with the propo-
sitions in Tags. The main idea is to decompose the verifi-
cation that a k-grid code is well-formed and encodes a k-
tiling in layers implementable with polynomially many states
of MI,k, and invoking other layers thanks to the knowledge
modalities for the two agents a1 and a2. In particular, the
propositions in Main are observable by both agents, while the
tag propositions in Tags \ {#1,#2} are not observable by
any agent. For the remaining two tag propositions #1 and
#2, #1 (resp., #2) is observable by agent a1 (resp., a2) but
not observable by agent a2 (resp., a1).

We now define the marking performed by the Kripke struc-
ture MI,k. For a word w over 2AP, the content of w is the
word over 2AP\Tags obtained by removing from each letter in
w the propositions in Tags. Let 1 ≤ h ≤ k. A tagged h-block
is a word bl over 2AP whose content is an h-block and:
• the initial position of bl is marked by the tag #1 if h is

odd, and the tag #2 otherwise;
• there is exactly one (h − 1)-sub-block sb of bl whose

first position is marked by the tag #2 if h is odd, and the
tag #1 otherwise; no other position of bl is marked.

A simple tagged h-block bl is defined in a similar way but
we require that only the first position of bl is marked.

The initialised k-grid codes are marked by the modelMI,k
as follows. A tagged k-grid code is an infinite word ν over
2AP s.t. the content of ν is an initialised k-grid code and there
are two (simple) tagged h-blocks bl and bl ′ along ν for some
1 ≤ h ≤ k so that: (i) bl ′ follows bl, (ii) there is a non-empty



set O ⊆ Tags \ {#1,#2} so that each position in ν following
the last position of bl ′ is marked by the tags in O, (iii) no
other position of ν is marked, and (iv) the following holds:
(h,=)-tagging: bl and bl ′ are tagged h-blocks, {(h,=)} ⊆
O ⊆ {(h,=), good}, and good ∈ O iff the marked sub-block
sb of bl and the marked sub-block sb ′ of bl ′ have the same
content. Moreover, if h = 1, then sb (which is a marked bit)
has the same position as sb ′.
(h, inc)-tagging: bl and bl ′ are adjacent tagged h-blocks
(i.e., adjacent within the same (h + 1)-block if h < k, and
within the same row-code otherwise), {(h, inc)} ⊆ O ⊆
{(h, inc), good}, and good ∈ O iff for the last (h − 1)-sub-
block sb0 of bl whose content is 0, the marked sub-blocks of
bl and bl ′ have the same content if the marked sub-block of
bl precedes sb0, and have distinct content otherwise. More-
over, if h = 1, then the marked sub-block of bl has the same
position as the marked sub-block of bl ′.
simple (inc, h)-tagging: bl and bl ′ are adjacent simple
tagged h-blocks, {(inc, h)} ⊆ O ⊆ {(inc, h), good}. More-
over, if h < k, then O = {(inc, h)}. If instead h = k, then
good ∈ O iff [d]right = [d ′]left, where d ∈ ∆ (resp., d ′ ∈ ∆)
is the content of bl (resp., bl ′).
column-tagging: h = k, bl and bl ′ are simple tagged k-
blocks belonging to two adjacent row-codes in ν, {col} ⊆
O ⊆ {col, good}, and good ∈ O iff [d]up = [d ′]down, where
d ∈ ∆ (resp., d ′ ∈ ∆) is the content of bl (resp., bl ′).

A partial tagged k-grid code is the prefix of some tagged
k-grid code whose last position is labelled by tags in Tags \
{#1,#2}. Thus, we have four different types of partial
tagged k-grid codes ρ, where a type is identifiable by the
tag proposition in Tags \ {#1,#2, good} which marks the
last position of ρ. The additional proposition good is used to
check whether some additional condition is fulfilled depend-
ing on the specific type. Intuitively, partial (h,=)-tagged k-
grid codes are exploited as nested layers for checking that
distinct well-formed h-blocks along the given initialised k-
grid code have the same index, while partial (h, inc)-tagged
k-grid codes are used as nested layers to check that the in-
dices of adjacent h-blocks bl1 and bl2 are consecutive (i.e,
bl1 is not final and the index of bl2 is the index of bl1 plus
one). Finally, partial simple (inc, h)-tagged k-grid codes and
partial column-tagged k-grid-codes are exploited as first-level
layers for verifying well-formedness and the row adjacency-
requirement and column adjacency-requirement.

Let M be a Kripke structure over AP with valuation func-
tion V . A trace of M is a word ρ over 2AP of the form
ρ = V (s0)V (s1) . . . where s0s1 . . . is a path or history of
M (we say that ρ is the trace of s0s1 . . .). By construction,
the following result is straightforward.

Lemma 12. Let k ≥ 1. One can construct in time poly-
nomial in the size of I, a finite Kripke structure MI,k =
(AP, S,R, V, {∼a}a∈{a1,a2}, sι) such that:

1. the set of finite traces of MI,k coincides with the set of
prefixes of tagged k-grid codes, and every initialised k-
grid code is a trace of MI,k;

2. for all i = 1, 2 and states s and s′, s ∼ai s′ iff V (s) ∩
(Main ∪ {#i}) = V (s′) ∩ (Main ∪ {#i}).

Construction of the fixed formula ϕk in Proposition 11
A K-propositional formula (resp., Kh-propositional formula
for h ∈ N) is a CTLK∗ (resp., CTLKh) formula which does
not have occurrences of temporal modalities and path quanti-
fiers. By Lemma 12, histories of MI,k which have the same
trace are indistinguishable by any agent and satisfy the same
K-propositional formulas. Thus, for a finite trace ρ of MI,k
and a K-propositional formula ψ, we write ρ |= ψ to mean
that τ |= ψ under the SPR semantics for any history whose
trace is ρ. We establish the following crucial technical lemma.
Lemma 13. Let k ≥ 1 and MI,k be the Kripke structure
of Lemma 12. Then there are two fixed Kk+1-propositional
formulas ϕrow and ϕcol, and for all 2 ≤ h ≤ k, a fixed Kh-
propositional formula ϕhbl, satisfying the following for each
initialised k-grid code ν:
• if the (h − 1)-blocks in ν are well-formed, then ν≤i |=
ϕhbl for all i ≥ 0 iff the h-blocks in ν are well-formed;
• if all k-blocks in ν are well-formed, then ν≤i |= ϕrow for

all i ≥ 0 iff the row-codes in ν are well-formed and for
all adjacent k-blocks bl and bl ′ in a row-code of ν such
that bl ′ follows bl, [d]right = [d ′]left, where d ∈ ∆ (resp.,
d ′ ∈ ∆) is the content of bl (resp., bl ′).
• if ν is well-formed, then ν≤i |= ϕcol for all i ≥ 0 iff for

all the k-blocks bl and bl ′ such that bl and bl ′ belong
to two adjacent row-codes, bl ′ follows bl, and bl and bl ′
have the same index, it holds that [d]up = [d ′]down, where
d ∈ ∆ (resp., d ′ ∈ ∆) is the content of bl (resp., bl ′).

Due to lack of space, the proof of Lemma 13 is omitted.
Let ϕrow, ϕcol, ϕhbl be the fixed Kk+1-propositional formulas
of Lemma 13, and ϕk be the fixed LTLKk+1

⋂
CTLKk+1 for-

mula E
(
(
∧
t∈Tags ¬t ∧ ϕrow ∧ ϕcol ∧

∧k
h=2 ϕ

h
bl)U acc

)
.

By Lemmata 12–13, MI,k |=sy ϕk iff there is a path of MI,k
whose trace is a well-formed k-code encoding a k-tiling of
I, which concludes the proof of Proposition 11 for the syn-
chronous case. For the asynchronous case, we slightly modify
the construction of model MI,k in Lemma 12 by incorporat-
ing a bit represented by a fresh proposition pb that is flipped
at every transition and is observed by all agents. In such a
way the resulting model M ′I,k generates the same traces as
MI,k (modulo pb), and for all histories τ and τ ′, τ ≈as

a τ
′ iff

τ ≈s
a τ
′ (the asynchronous and synchronous semantics coin-

cide). Lemma 13 holds for the new model as well. Hence,
MI,k |=sy ϕk iff M ′I,k |=as ϕk and we are done.

6 Conclusion
In this work we settle the exact complexity of model check-
ing epistemic temporal logics with synchronous and asyn-
chronous perfect recall, a 20-year-old problem, by showing
that it is (k − 1)-EXPSPACE-complete for formulas of alter-
nation depth at most k ≥ 1. This almost closes the picture for
the 96 logics identified by Halpern and Vardi in their seminal
work on epistemic temporal logics [Halpern and Vardi, 1986],
with the exception of the “no learning” assumption which has,
up to our knowledge, never been studied in conjunction with
model checking. With no learning most cases seem to boil
down to known cases of bounded memory. The only excep-
tion is for synchronous bounded memory for CTLK, which
we plan to investigate in order to finally close the full picture.



References
[Alur et al., 2007] Rajeev Alur, Pavol Černỳ, and Swarat

Chaudhuri. Model checking on trees with path equiva-
lences. In TACAS, pages 664–678. Springer, 2007.

[Aucher, 2014] Guillaume Aucher. Supervisory control the-
ory in epistemic temporal logic. In AAMAS, pages 333–
340, 2014.

[Boas, 1997] P. Van Emde Boas. The Convenience of
Tilings. In Complexity, Logic, and Recursion Theory,
pages 331–363. Marcel Dekker Inc, 1997.

[Bozzelli et al., 2015] Laura Bozzelli, Bastien Maubert, and
Sophie Pinchinat. Uniform strategies, rational relations
and jumping automata. Inf. Comput., 242:80–107, 2015.

[Dechesne and Wang, 2010] Francien Dechesne and Yanjing
Wang. To know or not to know: epistemic approaches
to security protocol verification. Synthese, 177(1):51–76,
2010.

[Dima, 2009] Cătălin Dima. Revisiting satisfiability and
model-checking for ctlk with synchrony and perfect recall.
In CLIMA, pages 117–131, 2009.

[Emerson and Halpern, 1986] E. Allen Emerson and
Joseph Y. Halpern. “Sometimes” and “not never” revis-
ited: on branching versus linear time temporal logic. J.
ACM, 33(1):151–178, 1986.

[Emerson and Lei, 1987] E Allen Emerson and Chin-Laung
Lei. Modalities for model checking: Branching time logic
strikes back. Sci. Comput. Program., 8(3):275–306, 1987.

[Engelhardt et al., 2007] Kai Engelhardt, Peter Gammie, and
Ron Van Der Meyden. Model checking knowledge and
linear time: PSPACE cases. In LFCS, pages 195–211.
Springer, 2007.

[Fagin et al., 2004] Ronald Fagin, Joseph Y Halpern, Yoram
Moses, and Moshe Vardi. Reasoning about knowledge.
MIT press, 2004.

[Halpern and O’Neill, 2005] Joseph Y. Halpern and Kevin R.
O’Neill. Anonymity and information hiding in multiagent
systems. J. Comput. Secur., 13(3):483–512, 2005.

[Halpern and Vardi, 1986] Joseph Y Halpern and Moshe Y
Vardi. The complexity of reasoning about knowledge and
time. In STOC, pages 304–315. ACM, 1986.

[Halpern and Vardi, 1989] Joseph Y. Halpern and Moshe Y.
Vardi. The complexity of reasoning about knowledge and
time. 1. Lower bounds. J Comput. Syst. Sci., 38(1):195–
237, 1989.

[Halpern et al., 2004] Joseph Y. Halpern, Ron van der Mey-
den, and Moshe Y. Vardi. Complete axiomatizations for
reasoning about knowledge and time. SIAM J. Comput.,
33(3):674–703, 2004.

[Huang and van der Meyden, 2010] Xiaowei Huang and
Ron van der Meyden. The complexity of epistemic model
checking: Clock semantics and branching time. In ECAI,
pages 549–554, 2010.

[Huang et al., 2015] Xiaowei Huang, Qingliang Chen, and
Kaile Su. The complexity of model checking succinct mul-
tiagent systems. In IJCAI, pages 1076–1082, 2015.

[Kong and Lomuscio, 2017] Jeremy Kong and Alessio Lo-
muscio. Symbolic model checking multi-agent systems
against CTL*K specifications. In AAMAS, pages 114–122,
2017.

[Ladner and Reif, 1986] Richard E. Ladner and John H.
Reif. The logic of distributed protocols. In TARK, pages
207–222, 1986.

[Lomuscio and Raimondi, 2006] Alessio Lomuscio and
Franco Raimondi. The complexity of model checking
concurrent programs against CTLK specifications. In
AAMAS, pages 548–550, 2006.

[Parikh and Ramanujam, 1985] Rohit Parikh and Ra-
maswamy Ramanujam. Distributed processes and the
logic of knowledge. In Logic of Programs, pages 256–268,
1985.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In FOCS, pages 46–57. IEEE, 1977.

[Puchala, 2010] Bernd Puchala. Asynchronous omega-
regular games with partial information. In MFCS, pages
592–603, 2010.

[Raimondi, 2006] Franco Raimondi. Model checking multi-
agent systems. PhD thesis, University of London, 2006.

[Reif, 1984] John H. Reif. The complexity of two-player
games of incomplete information. J. Comput. Syst. Sci.,
29(2):274–301, 1984.

[van der Meyden and Shilov, 1999] Ron van der Meyden
and Nikolay V. Shilov. Model checking knowledge and
time in systems with perfect recall (extended abstract). In
FSTTCS, pages 432–445, 1999.

[van der Meyden and Su, 2004] Ron van der Meyden and
Kaile Su. Symbolic model checking the knowledge of the
dining cryptographers. In CSFW, pages 280–291, 2004.

[van der Meyden and Vardi, 1998] Ron van der Meyden and
Moshe Y Vardi. Synthesis from knowledge-based specifi-
cations. In CONCUR, pages 34–49. Springer, 1998.

[van der Meyden, 1998] Ron van der Meyden. Common
knowledge and update in finite environments. Inf. Com-
put., 140(2):115–157, 1998.

[Vardi and Wolper, 1994] Moshe Y Vardi and Pierre Wolper.
Reasoning about infinite computations. Inf. Comp.,
115(1):1–37, 1994.


	Introduction
	Preliminaries
	Epistemic Temporal Logics

	Powerset Construction
	Information Sets and Updates
	Powerset Construction

	Upper Bounds
	Alternation Depth One
	Reducing Alternation

	Lower Bounds
	Conclusion

