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ABSTRACT
Alternating-time Temporal Logic (ATL∗) is a central logic
for multiagent systems. Its extension to the imperfect in-
formation setting (ATL∗i ) is well known to have an unde-
cidable model-checking problem when agents have perfect
recall. Studies have thus mostly focused either on agents
without memory, or on alternative semantics to retrieve de-
cidability. In this work we establish new decidability results
for agents with perfect recall: We first prove a meta-theorem
that allows the transfer of decidability results for classes
of multiplayer games with imperfect information, such as
games with hierarchical observation, to the model-checking
problem for ATL∗i . We then establish that model checking
ATL∗ with strategy context and imperfect information is de-
cidable when restricted to hierarchical instances.

1. INTRODUCTION
In formal verification, model checking is a well-established

method to automatically check systems’ correctness [7, 33,
8]. It consists in modelling the system as a mathematical
structure, expressing a desired property as a formula from a
suitable logic, and checking whether the model satisfies the
formula. In the nineties, interest has arisen in the verifica-
tion of multiagent systems (MAS), in which various entities
(the agents) interact and can form coalitions to attain their
objectives. This has led to the development of logics to rea-
son about strategic abilities in MAS [1, 2, 6, 26, 27, 28, 37].

Alternating-time Temporal Logic (ATL∗) [2] plays a cen-
tral role in this line of work. Interpreted on concurrent game
structures (CGS), it extends CTL∗ with strategic modali-
ties, which express the existence of strategies for coalitions
of agents to force the system’s behaviour to satisfy certain
temporal properties. ATL∗ has been extended in many ways,
and notably with strategy contexts [5, 24]: In ATL∗, strate-
gies of all agents are forgotten at each new strategic modal-
ity. In ATL∗ with strategy context (ATL∗sc), instead, they are
stored in a strategy context, and are forgotten only when
replaced by a new strategy or when the formula explicitly
unbinds the agent from her strategy. This makes ATL∗sc
expressive enough to capture important game theoretic con-
cepts, such as the existence of Nash Equilibria [24].

In many real-life scenarios, such as when some information
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is private or hidden for security reasons, agents do not know
precisely what is the current state of the system, but have
a partial view, or observation, of the state. This fundamen-
tal feature of MAS is called imperfect information, and it is
known to quickly bring about undecidability when involved
in strategic problems, especially when agents have perfect re-
call of the past, which is a usual and important assumption
in games with imperfect information and epistemic tempo-
ral logics [12]. For instance solving multiplayer games with
imperfect information and perfect recall, i.e., deciding the
existence of a distributed winning strategy in such games,
is already undecidable for reachability objective [31]. Since
such games are easily captured by ATL∗ with imperfect in-
formation (ATL∗i ), model checking ATL∗i with perfect recall
is also undecidable [2].

However, restricting attention to cases where some sort of
hierarchy exists on the different agents’ information yields
decidability for several problems related to the existence of
strategies: Synthesis of distributed systems, which implic-
itly uses perfect recall and is undecidable in general [32],
is decidable for hierarchical architectures [22]. Actually, for
branching-time specifications, distributed synthesis is decid-
able exactly on architectures free from information forks,
for which the problem can be reduced to the hierarchical
case [13]. For richer specifications from alternating-time log-
ics, being free of information forks is no longer sufficient,
but distributed synthesis is decidable precisely on hierarchi-
cal architectures [34]. Similarly, solving multiplayer games
with imperfect information and perfect recall, i.e., checking
for the existence of winning distributed strategies, is decid-
able for ω-regular winning conditions when there is a hier-
archy among players, each one observing more than those
below [30, 22]. Recently, it has been proven that this as-
sumption can be relaxed: the problem remains decidable if
the hierarchy can change along a play, or even if transient
phases without such a hierarchy are allowed [4]. Note that
hierarchical information occurs naturally, for instance when
agents are assigned different levels of security clearance.

Our contribution. In this work we establish several
decidability results for model checking ATL∗i with perfect
recall, with and without strategy context, all related to no-
tions of hierarchy. Our first result is a theorem that allows
the transfer of decidability results for classes of multiplayer
games with imperfect information, such as those mentioned
above, to the model-checking problem for ATL∗i . This theo-
rem essentially states that if solving multiplayer games with
imperfect information, perfect recall and omega-regular ob-
jectives is decidable on some class of concurrent game struc-



tures, then model checking ATL∗i with perfect recall is also
decidable on this class of models (a simple bottom-up algo-
rithm that evaluates innermost strategic modalities in every
state of the model suffices). As a direct consequence we eas-
ily obtain new decidability results for the model checking of
ATL∗i on several classes of concurrent game structures.

Our second contribution concerns ATL∗ with imperfect
information and strategy context (ATL∗sc,i). Because there
are in general infinitely many possible strategy contexts,
the bottom-up approach used for ATL∗i fails here. Instead
we build upon the proof presented in [24] that establishes
the decidability of model checking ATL∗sc by reduction to
the model-checking problem for Quantified CTL∗ (QCTL∗).
The latter extends CTL∗ with second-order quantification
on atomic propositions, and it has been well studied [36,
20, 21, 14, 23]. QCTL∗i , an imperfect-information exten-
sion of QCTL∗, has recently been introduced, and its model-
checking problem was proven decidable for the class of hier-
archical formulas [3]. In this paper we define a notion of hi-
erarchical instances for the ATL∗sc,i model-checking problem:
an ATL∗sc,i formula ϕ together with a concurrent game struc-
ture G is a hierarchical instance if the observations of agents
appearing in strategy quantifiers get more refined as one goes
down ϕ’s syntactic tree. We adapt the proof from [24] and
prove the model-checking problem for ATL∗sc,i on hierarchi-
cal instances decidable by reduction to the model-checking
problem for hierarchical QCTL∗i formulas.

Related work. The model-checking problem for ATL∗i is
known to be decidable when agents have no memory [35],
and the case of agents with bounded memory reduces to
that of no memory. Another way to retrieve decidability is
to assume that all agents in a coalition have the same infor-
mation, either because their observations of the system are
the same, or because they can communicate and share their
observations [10, 15, 16, 18, 19]. This idea was also used re-
cently to establish a decidability result for ATL∗sc,i [25] when
all agents have the same observation of the game.

The results we establish here thus strictly extend previ-
ously known results on the decidability of model checking
ATL∗i and ATL∗sc,i with perfect recall and standard seman-
tics, and they hold for vast, natural classes of instances, that
all rely on notions of hierarchy, which seems to be inherent to
all decidable cases of strategic problems for multiple entities
with imperfect information and perfect recall.

Outline. After setting some basic definitions in Section 2,
we present our meta-theorem on the model checking problem
for ATL∗i in Section 3. In Section 4 we prove that when
restricted to hierarchical instances, model checking ATL∗sc,i
is decidable, and we conclude in Section 5.

2. PRELEMINARIES
Let Σ be an alphabet. A finite (resp. infinite) word over

Σ is an element of Σ∗ (resp. Σω). The empty word is noted
ε, and Σ+ = Σ∗ \ {ε}. The length of a word is |w| := 0 if w
is the empty word ε, if w = w0w1 . . . wn is a finite nonempty
word then |w| := n + 1, and for an infinite word w we let
|w| := ω. Given a word w and 0 ≤ i, j ≤ |w| − 1, we let wi
be the letter at position i in w and w[i, j] be the subword of
w that starts at position i and ends at position j. For n ∈ N
we let [n] := {1, . . . , n}. Finally, for the rest of the paper, let
us fix a countably infinite set of atomic propositions AP and
let AP ⊂ AP be some finite subset of atomic propositions.

2.1 Kripke structures
A Kripke structure over AP is a tuple S = (S,R, `) where

S is a set of states, R ⊆ S × S is a left-total1 transition
relation and ` : S → 2AP is a labelling function.

A pointed Kripke structure is a pair (S, s) where s ∈ S. A
path in a structure S = (S,R, `) is an infinite word λ over S
such that for all i ∈ N, (λi, λi+1) ∈ R. For s ∈ S, Paths(s)
is the set of all paths that start in s.

2.2 Infinite trees
Let X be a finite set. An X-tree τ is a nonempty set of

words τ ⊆ X+ such that

• there exists r ∈ X, called the root of τ , such that each
u ∈ τ starts with r;

• if u · x ∈ τ with x ∈ X and u 6= ε, then u ∈ τ , and

• if u ∈ τ then there exists x ∈ X such that u · x ∈ τ .

The elements of a tree τ are called nodes. If u · x ∈ τ , we
say that u · x is a child of u. Similarly to Kripke structures,
a path is an infinite sequence of nodes λ = u0u1 . . . such that
for all i, ui+1 is a child of ui, and Paths(u) is the set of paths
that start in node u. An AP-labelled X-tree, or (AP, X)-tree
for short, is a pair t = (τ, `), where τ is an X-tree called the
domain of t and ` : τ → 2AP is a labelling.

Definition 1 (Tree unfoldings). Let S = (S,R, `)
be a Kripke structure over AP, and let s ∈ S. The tree-
unfolding of S from s is the (AP, S)-tree tS(s) = (τ, `′),
where τ is the set of all finite paths that start in s, and for
every u ∈ τ , `′(u) = `(s), where s is the last letter of u.

3. ATL∗ WITH IMPERFECT INFORMATION
In this section we recall the syntax and semantics of ATL∗

with imperfect information and synchronous perfect-recall
semantics, or ATL∗i for short, and establish a meta-theorem
on the decidability of its model-checking problem.

3.1 Definitions
We first introduce the models of the logics we study. For

the rest of the paper, let us fix a non-empty finite set of
agents Ag and a non-empty finite set of moves M.

Definition 2. A concurrent game structure with imper-
fect information (or CGSi for short) over AP is a tuple
G = (V,E, `, {∼a}a∈Ag) where V is a non-empty finite set
of positions, E : V × MAg → V is a transition function,
` : V → 2AP is a labelling function and for each agent
a ∈ Ag, ∼a ⊆ V × V is an equivalence relation.

In a position v ∈ V , each agent a chooses a move ma ∈ M,
and the game proceeds to position E(v,m), where m ∈ MAg

stands for the joint move (ma)a∈Ag (note that we assume
E(v,m) to be defined for all v and m2). For each position
v ∈ V , `(v) is the finite set of atomic propositions that hold
in v, and for a ∈ Ag, equivalence relation ∼a represents the
observation of agent a: for two positions v, v′ ∈ V , v ∼a v′
means that agent a cannot tell the difference between v and
v′. We may write v ∈ G for v ∈ V . A pointed CGSi (G, v) is
a CGSi G together with a position v ∈ G.

1i.e., for all s ∈ S, there exists s′ such that (s, s′) ∈ R.
2This assumption, as well as the choice of a unique set of
moves for all agents, is made to ease presentation. All the
results presented here also hold when the set of available
moves depends on the agent and the position.



In Section 3.2 we also use nondeterministic CGSi, which
are as in Definition 2 except that they have a transition re-
lation E ⊆ V ×MAg×V instead of a transition function. In
a position v, after every agent has chosen a move, forming
a joint move m ∈ MAg, a special agent called Nature (not
in Ag) chooses a next position v′ such that (v,m, v′) ∈ E
(see [4] for detail). In the following, unless explicitly speci-
fied, CGSi always refers to deterministic CGSi. The follow-
ing definitions also concern deterministic CGSi, but they
can be adapted to nondeterministic ones in an obvious way.

A finite (resp. infinite) play is a finite (resp. infinite)
word ρ = v0 . . . vn (resp. π = v0v1 . . .) such that for all i
with 0 ≤ i < |ρ| − 1 (resp. i ≥ 0), there exists a joint move
m such that E(vi,m) = vi+1. A finite (resp. infinite) play
ρ (resp. π) starts in a position v if ρ0 = v (resp. π0 = v).
We let Plays(G, v) be the set of plays, either finite or infinite,
that start in v.

In this work we consider agents with synchronous perfect
recall, meaning that the observational equivalence relation
for each agent a is extended to finite plays the following way:
ρ ∼a ρ′ if |ρ| = |ρ|′ and ρi ∼a ρ′i for every i ∈ {0, . . . , |ρ|−1}.
A strategy for agent a is a function σ : V + → M such that
σ(ρ) = σ(ρ′) whenever ρ ∼a ρ′. The latter constraint cap-
tures the essence of imperfect information, which is that
agents can base their strategic choices only on the informa-
tion available to them, and removing this constraint yields
the semantics of classic ATL with perfect information.

A strategy profile for a coalition A ⊆ Ag is a mapping σA
that assigns a strategy to each agent a ∈ A; for a ∈ A, we
may write σa instead of σA(a). An infinite play π follows
a strategy profile σA for a coalition A if for all i ≥ 0, there
exists a joint move m such that E(πi,m) = πi+1 and for
each a ∈ A, ma = σa(π[0, i]). For a strategy profile σA and
a position v ∈ V , we define the outcome Out(v, σA) of σA
in v as the set of infinite plays that start in v and follow σA.

The syntax of ATL∗i is the same as that of ATL∗, and is
given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ | Xϕ | ϕUϕ,

where p ∈ AP and A ⊆ Ag.
X and U are the classic next and until operators, re-

spectively, while the strategic operator 〈A〉 quantifies over
strategy profiles for coalition A.

The semantics of ATL∗i is defined with regards to a CGSi
G = (V,E, `, {∼a}a∈Ag), an infinite play π and a position
i ≥ 0 along this play, by induction on formulas:

G, π, i |= p if p ∈ `(πi)
G, π, i |= ¬ϕ if G, π, i 6|= ϕ
G, π, i |= ϕ ∨ ϕ′ if G, π, i |= ϕ or G, π, i |= ϕ′

G, π, i |= 〈A〉ϕ if there exists a strategy profile σA s.t.
for all π′ ∈ Out(πi, σA), G, π′, 0 |= ϕ

G, π, i |= Xϕ if G, π, i+ 1 |= ϕ
G, π, i |= ϕUϕ′ if there exists j ≥ i s.t. G, π, j |= ϕ′ and,

for all k s.t. i ≤ k < j, G, π, k |= ϕ.

An ATL∗i formula ϕ is closed if every temporal operator
(X or U) in ϕ is in the scope of a strategic operator 〈A〉.
Since the semantics of a closed formula ϕ does not depend on
the future, we may write G, v |= ϕ, meaning that G, π, 0 |= ϕ
for any infinite play π that starts in v.

The model-checking problem for ATL∗i consists in deciding,
given a closed ATL∗i formula ϕ and a finite pointed CGSi
(G, v), whether G, v |= ϕ.

3.2 Model checking ATL∗i
It is well known that the model-checking problem for ATL∗i

is undecidable for agents with perfect recall [2], as it can eas-
ily express the existence of distributed winning strategies
for multiplayer reachability games with imperfect informa-
tion and perfect recall, which was proved undecidable by
Peterson, Reif and Azhar [29]. A direct proof of this unde-
cidability result for ATL∗i is also presented in [11]. However,
there are classes of multiplayer games with imperfect infor-
mation that are decidable. For many years, the only known
decidable case was that of hierarchical games, in which there
is a total preorder among players, each player observing at
least as much as those below her in this preorder [30, 22].
Recently, this result has been extended by relaxing the as-
sumption of hierarchical observation. In particular, it has
been shown that the problem remains decidable if the hier-
archy can change along a play, or if transient phases without
such a hierarchy are allowed [4]. We establish that these re-
sults transfer to the model-checking problem for ATL∗i .

We remind that a concurrent game with imperfect infor-
mation is a pair ((G, v),W ) where (G, v) is a pointed non-
deterministic CGSi and W is a property of infinite plays
called the winning condition. The strategy problem is, given
such a game, to decide whether there exists a strategy profile
for the grand coalition Ag to enforce the winning condition
against Nature (for more details see, e.g., [4]).

Before stating our meta-theorem we need to introduce a
couple of notions. First we introduce a notion of abstraction
over a group of agents. Informally, abstracting a CGSi G
over an agent consists in erasing her from the group of agents
and letting Nature play for her in G.

Definition 3 (Abstraction). Let A ⊆ Ag be a group
of agents and let G = (V,E, `, {∼a}a∈Ag) be a CGSi. The
abstraction of G from A is the nondeterministic CGSi over
set of agents Ag\A defined as G ↑A:= (V,E′, `, {∼a}a∈Ag\A),

where for every v ∈ V and m ∈ MAg\A,

(v,m, v′) ∈ E′ if ∃m′ ∈ MA s.t. E(v, (m,m′)) = v′.

Thanks to this notion we can define the following problem:

Definition 4 (A-strategy problem). The A-strategy
problem takes as input a pointed CGSi (G, v), a set A ⊆ Ag
of agents and a winning condition W , and returns the an-
swer to the strategy problem for the game ((G ↑Ag\A, v),W ).

The A-strategy problem for (G, v) with winning condition W
thus consists in deciding whether there is a strategy profile
for agents in A to enforce W against everybody else.

Finally we introduce the following notion, which simply
captures the change of initial position in a game from a
position v to another position v′ reachable from v:

Definition 5 (Initial shifting). Let G be a CGSi and
let v, v′ ∈ G. The pointed CGSi (G, v′) is an initial shifting
of (G, v) if v′ is reachable from v in G.

We are now ready to state our first result.

Theorem 1. If C is a class of pointed CGSi closed under
initial shifting and such that the A-strategy problem with ω-
regular objective is decidable on C, then model checking ATL∗i
is decidable on C.



Proof. Let C be such a class of pointed CGSi, and let
(ϕ, (G, v)) be an instance of the model-checking problem for
ATL∗i on C. A bottom-up algorithm consists in evaluating
each innermost subformula of ϕ of the form 〈A〉ϕ′, where ϕ′

is thus an LTL formula, on each position v′ of G reachable
from v. Evaluating 〈A〉ϕ′ on v′ amounts to solving an in-
stance of the A-strategy problem3 with ω-regular objective
(recall that LTL properties are ω-regular). By assumption
(G, v) ∈ C, and because C is closed by initial shifting and
v′ is reachable from v, we have that (G, v′) ∈ C. Also by
assumption, the A-strategy problem for ω-regular winning
conditions is decidable on C. We thus have an algorithm to
evaluate each 〈A〉ϕ′ on each v′. One can then mark posi-
tions of the game with fresh atomic propositions indicating
where these formulas hold, and repeat the procedure until
all strategic operators have been eliminated. It then remains
to evaluate a boolean formula in the initial position v.

Let us recall for which classes of nondeterministic CGSi
the strategy problem is known to be decidable. A (nonde-
terministic or deterministic) CGSi G has hierarchical obser-
vation if there exists a total preorder 4 over Ag such that
if a 4 b and v ∼a v′, then v ∼b v′. This notion was refined
in [4] to take into account the agents’ memory, using the
notion of information set : for a finite play ρ ∈ Plays(G, v)
and an agent a, the information set of agent a after ρ is
Ia(ρ) := {ρ′ ∈ Plays(G, v) | ρ ∼a ρ′}. A finite play ρ yields
hierarchical information if there is a total preorder 4 over
Ag such that if a 4 b, then Ia(ρ) ⊆ Ib(ρ). If all finite plays
in Plays(G, v) yield hierarchical information for the same
preorder over agents, (G, v) yields static hierarchical infor-
mation. If this preorder can vary depending on the play,
(G, v) yields dynamic hierarchical information. The last gen-
eralisation consists in allowing for transient phases without
hierarchical information: if every infinite play in Plays(G, v)
has infinitely many prefixes that yield hierarchical informa-
tion, (G, v) yields recurring hierarchical information.

Proposition 1. Hierarchical observation as well as static,
dynamic and recurring hierarchical information are preserved
by abstraction.

Proposition 2. Hierarchical observation as well as static,
dynamic and recurring hierarchical information are preserved
by initial shifting.

This is obvious for hierarchical observation. For the other
cases we establish Lemma 1 below. It is then easy to check
that Proposition 2 holds.

Lemma 1. If a finite play v · ρ · v′ · ρ′ yields hierarchical
information in (G, v), so does v′ ·ρ′ in (G, v′), with the same
preorder among agents.

Let Cobs (resp. Cstat, Cdyn, Crec) be the class of pointed
CGSi with hierarchical observation (resp. static, dynamic,
recurring hierarchical information). We instantiate Theo-
rem 1 to obtain three decidability results for ATL∗i .

Theorem 2. Model checking ATL∗i is decidable on the
class of CGSi with hierarchical observation.
3Observe that if A = Ag then G ↑Ag\A= G, and Nature thus
does not do anything. This is coherent with the fact that
for agents with perfect recall 〈Ag〉ϕ ≡ Eϕ, where E is the
CTL path quantifier, even for imperfect information.

Proof. By Proposition 2, Cobs is closed under initial shift-
ing. It is proven in [22] that the strategy problem is decid-
able for games with hierarchical observation and ω-regular
objectives. Since, by Proposition 1, all pointed nondeter-
ministic CGSi obtained by abstracting agents from CGSi in
Cobs also yield hierarchical observation, we get that the A-
strategy problem with ω-regular objectives is decidable on
Cobs. We can therefore apply Theorem 1 on Cobs.

It is proven in [4] that the strategy problem with ω-regular
objectives is also decidable for games with static hierarchical
information and for games with dynamic hierarchical infor-
mation. Since Proposition 1 and Proposition 2 also hold for
Cstat and Cdyn, with the same argument as in the proof of
Theorem 2, we obtain the following results as consequences
of Theorem 1:

Theorem 3. Model checking ATL∗i is decidable on the
class of CGSi with static hierarchical information.

Theorem 4. Model checking ATL∗i is decidable on the
class of CGSi with dynamic hierarchical information.

Note that in fact, since Cobs ⊂ Cstat ⊂ Cdyn, Theorem 2
and Theorem 3 are also obtained as corollaries of Theorem 4,
but we wanted to illustrate how Theorem 1 can be applied
to obtain decidability results for different classes of CGSi.

Remark 1. The last result in [4] establishes that the strat-
egy problem is decidable for games with recurring hierarchi-
cal information, but only for observable ω-regular winning
conditions, i.e., when all agents can tell whether a play is
winning or not. Now considering ATL∗i on Cdyn we could
require atomic propositions to be observable for all agents;
in that case we could evaluate the inner-most strategy quan-
tifiers using the above-mentioned result. But then the fresh
atomic propositions that mark positions where these subfor-
mulas hold (see the proof of Theorem 1) would not, in gen-
eral, be observable by all agents. So on Crec we could obtain
a decision procedure for the fragment of ATL∗i without nested
non-trivial strategy quantifiers, where “non-trivial” means
for coalitions other than the empty coalition or the one made
of all agents (which, we recall, are simply the CTL path quan-
tifiers). We do not state it explicitly due to lack of space and
because it does not seem of much interest.

Concerning complexity, the strategy problem for games
with imperfect information and hierarchical observation is
already nonelementary [32, 29], hence the following result:

Corollary 1. Model checking ATL∗i is nonelementary
on games with hierarchical observation, hence also for games
with static or dynamic hierarchical information.

Example 1. Our decidability results typically apply to sys-
tems with different security levels, where higher levels have
access to more data ( i.e., can observe more). In such sys-
tems, by Theorem 4, we can model check all ATL∗i formulas,
even if the distribution of clearance levels between agents
can vary in different scenarios/plays and also along time
(an agent may get access to a higher security clearance).

We now turn to ATL with imperfect information and strat-
egy context, and study its model-checking problem.



4. ATLi WITH STRATEGY CONTEXT
While in ATL strategies for all agents are forgotten each

time a new strategy quantifier is met, in ATL with strat-
egy context (ATLsc) [5, 9, 24] agents keep using the same
strategy as long as the formula does not say otherwise. In
this section we consider ATLsc with imperfect information
(ATLsc,i). As far as we know, the only existing work on
this logic is [25], which proved its model-checking problem
to be decidable in the case where all agents have the same
observation of the game. We extend significantly this result
by establishing that the model-checking problem is decid-
able as long as strategy quantification is hierarchical, in the
sense that if there is a strategy quantification for agent a
nested in a strategy quantification for agent b, then b should
observe no more than a. In other terms, innermost strategic
quantifications should concern agents who observe more.

4.1 Syntax and semantics
The models are still CGSi. To remember which agents are

currently bound to a strategy, and what these strategies are,
the semantics uses strategy contexts. Formally, a strategy
context for a set of agents B ⊆ Ag is a strategy profile σB .
We define the composition of strategy contexts as follows.
If σB is a strategy context for B and σA is a new strategy
profile for coalition A, we let σA◦σB be the strategy context

for A ∪B defined as σA∪B : a 7→

{
σA(a) if a ∈ A,
σB(a) otherwise

.

So if a is assigned a strategy by σA, her strategy in σA◦σB
is σA(a). If she is not assigned a strategy by σA her strategy
remains the one given by σB , if any.

Also, given a strategy context σB and a set of agents
A ⊆ Ag, we let (σB)\A be the strategy context obtained
by restricting σB to the domain B \A.

Finally, because agents who do not change their strategy
keep playing the one they were assigned, if any, we cannot
forget the past at each strategy quantifier, as in the seman-
tics of ATL∗i (see Section 3.1). We thus define the outcome of
a strategy profile σA after a finite play ρ, written Out(ρ, σA),
as the set of infinite plays π that start with ρ and then fol-
low σA: π ∈ Out(ρ, σA) if π = ρ · π′ for some π′, and for all
i ≥ |ρ| − 1, there exists a joint move m ∈ MAg such that
E(πi,m) = πi+1 and for each a ∈ A, ma = σa(π[0, i]).

To differentiate from ATL∗, in ATL∗sc the strategy quanti-
fier for a coalition A is written 〈·A·〉 instead of 〈A〉. ATL∗sc
also has an additional operator, (|A|), that releases agents in
A from their current strategy, if they have one. The syntax
of ATL∗sc,i is the same as that of ATL∗sc and is thus given by
the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈·A·〉ϕ | (|A|)ϕ | Xϕ | ϕUϕ,

where p ∈ AP and A ⊆ Ag. We use standard abbreviations:
> := p ∨ ¬p, ⊥:= ¬>, Fϕ := >Uϕ, and Gϕ := ¬F¬ϕ.

Remark 2. In [24] the syntax of ATL∗sc contains in ad-
dition operators 〈·A·〉 and (|A|) for complement coalitions.
While they add expressivity when the set of agents is not
fixed, and are thus of interest when considering expressiv-
ity or satisfiability, they are redundant if we consider model
checking, which is our case in this work. To simplify pre-
sentation we thus choose not to consider them here.

The semantics of ATL∗sc,i is defined with regards to a CGSi
G = (V,E, `, {∼a}a∈Ag), an infinite play π, a position i ∈ N

along this play, and a strategy context σB . The semantics
is defined by induction on formulas:

G, π, i |=σB p if p ∈ `(πi)
G, π, i |=σB ¬ϕ if G, π, i 6|=σB ϕ
G, π, i |=σB ϕ ∨ ϕ′ if G, π, i |=σB ϕ or G, π, i |=σB ϕ′

G, π, i |=σB 〈·A·〉ϕ if there exists a strategy profile σA s.t.
for all π′ ∈ Out(π[0, i], σA ◦ σB),
G, π′, i |=σA◦σB ϕ

G, π, i |=σB (|A|)ϕ if G, π, i |=(σB)\A ϕ

G, π, i |=σB Xϕ if G, π, i+ 1 |=σB ϕ
G, π, i |=σB ϕUϕ′ if there exists j ≥ i s.t. G, π, j |=σB ϕ′

and, for all k such that i ≤ k < j,
G, π, k |=σB ϕ.

The notion of closed formula is as defined in Section 3.1
and once more, the semantics of a closed formula ϕ being
independent from the future, we may write G, v |=σB ϕ in-
stead of G, π, 0 |=σB ϕ for any infinite play π that starts in
position v. We also write G, v |= ϕ if G, v |=σ∅ ϕ, that is if
ϕ holds in v with the empty strategy context.

The model-checking problem for ATL∗sc,i consists in decid-
ing, given a closed ATL∗sc,i formula ϕ and a finite pointed
CGSi (G, v), whether G, v |= ϕ.

We now present QCTL∗ with imperfect information, or
QCTL∗i for short, before proving our main result on the
model-checking problem for ATL∗sc,i by reducing it to the
model-checking problem for a decidable fragment of QCTL∗i .

4.2 QCTL∗ with imperfect information
Quantified CTL∗, or QCTL∗ for short, is an extension of

CTL∗ with second-order quantifiers on atomic propositions
that has been well studied [36, 20, 21, 23]. It has recently
been further extended to take into account imperfect infor-
mation, resulting in the logic called QCTL∗ with imperfect
information, or QCTL∗i [3]. We briefly present this logic, as
well as a decidability result on its model-checking problem
proved in [3] and that we rely on to establish our result on
the model checking of ATL∗sc,i.

Imperfect information is incorporated into QCTL∗ by con-
sidering Kripke models with internal structure in the form of
local states, like in distributed systems (see for instance [17]),
and then parameterising quantifiers on atomic propositions
with observations that define what portions of the states
a quantifier can “observe”. The semantics is then adapted
to capture the idea of quantification on atomic propositions
being made with partial observation.

Let us fix a collection {Li}i∈[n] of n disjoint finite sets of
local states. We also let Xn = L1 × . . .× Ln.

Definition 6. A compound Kripke structure (CKS) over
AP is a Kripke structure S = (S,R, `) such that S ⊆ Xn.

The syntax of QCTL∗i is that of QCTL∗, except that quan-
tifiers over atomic propositions are parameterised by a set
of indices that defines what local states the quantifier can
“observe”. It is thus defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Eϕ | ∃op. ϕ | Xϕ | ϕUϕ

where p ∈ AP and o ⊂ N is a finite set of indices. As usual,
we let Aϕ := ¬E¬ϕ.

A finite set o ⊂ N is called an observation, and two states
s = (l1, . . . , ln) and s′ = (l′1, . . . , l

′
n) are o-indistinguishable,

written s ≈o s′, if for all i ∈ [n] ∩ o, it holds that li = l′i.



The intuition is that a quantifier with observation o must
choose the valuation of atomic propositions uniformly with
respect to o. Note that in [3], two semantics are considered
for QCTL∗i , just like in [23] for QCTL∗: the structure se-
mantics and the tree semantics. In the former, formulas are
evaluated directly on the structure, while in the latter the
structure is first unfolded into an infinite tree. Here we only
present the tree semantics, as it is this one that allows us to
capture agents with perfect recall. But we first need a few
more definitions.

For p ∈ AP, two labelled trees t = (τ, `) and t′ = (τ ′, `′)
are equivalent modulo p, written t ≡p t′, if τ = τ ′ and for
each node u ∈ τ , `(u) \ {p} = `′(u) \ {p}. So t ≡p t′ if they
are the same trees, except for the labelling of proposition p.

This notion of equivalence modulo p is the one used to
define quantification on atomic propositions in QCTL∗: in-
tuitively, an existential quantification over p chooses a new
labelling for valuation p, all else remaining the same, and the
evaluation of the formula continues from the current node
with the new labelling. For imperfect information we need
to express the fact that this new labelling for a proposition is
done uniformly with regards to the quantifier’s observation.

First, we define the notion of indistinguishability between
two nodes in the unfolding of a CKS. Let o be an observation,
let τ be an Xn-tree (which may be obtained by unfolding
some pointed CKS), and let u = s0 . . . si and u′ = s′0 . . . s

′
j be

two nodes in τ . The nodes u and u′ are o-indistinguishable,
written u ≈o u′, if i = j and for all k ∈ {0, . . . , i}, we have
sk ≈o s′k. Observe that this definition corresponds to the no-
tion of synchronous perfect recall in CGSi (see Section 3.1).
We now define what it means for the labelling of an atomic
proposition to be uniform with regards to an observation.

Definition 7. Let t = (τ, `) be a labelled Xn-tree, let
p ∈ AP be an atomic proposition and o ⊂ N an observation.
Tree t is o-uniform in p if for every pair of nodes u, u′ ∈ τ
such that u ≈o u′, we have p ∈ `(u) iff p ∈ `(u′).

The satisfaction relation |=t (t is for tree semantics) is now
defined as follows, where t = (τ, `) is a labelled Xn-tree, λ
is a path in τ and i ∈ N a position along that branch:

t, λ, i |=t p if p ∈ `(λi)
t, λ, i |=t ¬ϕ if t, λ, i 6|=t ϕ
t, λ, i |=t ϕ ∨ ϕ′ if t, λ, i |=t ϕ or t, λ, i |=t ϕ

′

t, λ, i |=t Eϕ if there exists λ′ ∈ Paths(λi)
such that t, λ′, 0 |=t ϕ

t, λ, i |=t ∃op. ϕ if there exists t′ ≡p t such that
t′ is o-uniform in p and t′, λ, i |=t ϕ

t, λ, i |=t Xϕ if t, λ, i+ 1 |=t ϕ
t, λ, i |=t ϕUϕ

′ if there exists j ≥ i such that t, λ, j |=t ϕ
′

and for i ≤ k < j, t, λ, j |=t ϕ

Similarly to ATL∗i and ATL∗sc,i, we say that a QCTL∗i for-
mula is closed if all temporal operators are in the scope of a
path quantifier. The semantics of such formulas depending
only on the current node, for a closed formula ϕ we may
write t |=t ϕ for t, r |=t ϕ, where r is the root of t, and
given a CGSi G, a state s and a QCTL∗i formula ϕ, we write
S, s |=t ϕ if tS(s) |=t ϕ.

Remark 3. In [3] the syntax is presented with path for-
mulas distinguished from state formulas, and the semantics
is defined accordingly. To make the presentation more uni-
form with that of ATLsc,i we chose here a different, but equiv-
alent, presentation.

Remark 4. Note that when n is fixed, the propositional
quantifier with perfect information from QCTL∗ is equivalent
to the QCTL∗i quantifier that observes all the components,
i.e., the quantifier parameterised with observation [n].

The model-checking problem for QCTL∗i is the following:
given a closed QCTL∗i formula ϕ and a finite pointed CKS
(S, s), decide whether S, s |=t ϕ.

We now define the class of QCTL∗i formulas for which the
model-checking problem is known to be decidable with the
tree semantics.

Definition 8. A QCTL∗i formula ϕ is hierarchical if for
all subformulas ϕ1, ϕ2 of the form ϕ1 = ∃o1p1. ϕ′1 and ϕ2 =
∃o2p2. ϕ′2 where ϕ2 is a subformula of ϕ′1, we have o1 ⊆ o2.

The following result is proved in [3], where QCTL∗i,⊂ is the
set of hierarchical QCTL∗i formulas:

Theorem 5 ([3]). Model checking QCTL∗i,⊂ with tree
semantics is decidable.

4.3 Model checking ATL∗sc,i
We establish that model checking ATL∗sc,i is decidable on

a class of instances whose definition relies on the notion of
hierarchical observation.

Definition 9. Let G = (V,E, `, {∼a}a∈Ag) be a CGSi,
and let a, b ∈ Ag be two agents. Agent a observes no more
than agent b in G, written a 4G b, if for every pair of po-
sitions v, v′ ∈ V , v ∼b v′ implies v ∼a v′. We say that
A ⊆ Ag is hierarchical in G if 4G is a total preorder on A.

If a set of agents A is hierarchical in a CGSi G, we thus
may talk about maximal and minimal agents in A, referring
to maximal and minimal elements of A for the relation 4G .

The essence of the requirement that makes the problem
decidable is the same as for the decidability result on QCTL∗i
(Theorem 5): nesting of quantifiers (here, strategy quan-
tifiers) should be hierarchical, with those observing more
inside those observing less. However, unlike in QCTL∗i , in
ATL∗sc,i observations are not part of formulas, but rather
they are given by the models. We thus define the notion of
hierarchical ATL∗sc,i formula with respect to a given CGSi:

Definition 10. Let Φ be an ATL∗sc,i formula and G a
CGSi. We say that Φ is hierarchical in G if:

• for every subformula ϕ of the form ϕ = 〈·A·〉ϕ′, A is
hierarchical in G, and

• for all subformulas ϕ1, ϕ2 of the form ϕ1 = 〈·A1·〉ϕ′1
and ϕ2 = 〈·A2·〉ϕ′2 where ϕ2 is a subformula of ϕ′1,
maximal agents of A1 observe no more than minimal
agents of A2.

An instance (Φ, (G, v)) of the model-checking problem for
ATL∗sc,i is hierarchical if Φ is hierarchical in G.

In the rest of the section we establish the following:

Theorem 6. Model checking ATL∗sc,i is decidable on the
class of hierarchical instances.

Example 2. Consider the security levels scenario of Ex-
ample 1, and assume that a 4G b 4G c. Then 〈·a·〉[·b·]〈·c·〉Gp,
which says that a and c can collaborate against an unreliable
agent b to ensure some safety property, as long as agent c



can adapt her strategy to that of agent b, forms a hierarchi-
cal instance with G. On the other hand, 〈·c·〉[·b·]〈·a·〉Gp does
not form a hierarchical instance with G.

Further, the decidable fragment of ATL∗sc,i is not restricted
to models where there is a total order on agents’ observa-
tions: assume a fourth agent d that observes more than a
and b, but whose security level is incomparable to that of
c. On such models, the following formulas form hierarchical
instances that we can model check: 〈·a, b, c·〉Fp∨ 〈·a, b, d·〉Fp,
which means that a and b can achieve p by collaborating with
c or with d, and [·a, b·](〈·c·〉Fp ∧ 〈·d·〉Gq), which means that
for all strategies of a and b, c can enforce that p is reached,
and d can enforce that q always holds.

To establish Theorem 6 we build upon the proof in [24]
that establishes the decidability of the model-checking prob-
lem for ATL∗sc by reduction to the model-checking prob-
lem for QCTL∗. The main difference is that we reduce
to the model-checking problem for QCTL∗i instead, using
quantifiers parameterised with observations corresponding
to agents’ observations. We also need a couple of adjust-
ments to obtain formulas in the decidable fragment QCTL∗i,⊂.

Let (Φ, (G, vι)) be a hierarchical instance of the ATL∗sc,i
model-checking problem, where G = (V,E, `, {∼a}a∈Ag) is a
CGSi over AP. In the reduction we will transform Φ into
an equivalent QCTL∗i formula Φ′ in which we need to refer
to the current position in the model G, and also to talk
about moves taken by agents. To do so, we consider the
additional sets of atomic propositions APv := {pv | v ∈ V }
and APm := {pam | a ∈ Ag and m ∈ M}, that we take
disjoint from AP.

First we define the CKS SG on which Φ′ will be evalu-
ated. Since the models of the two logics use different ways
to represent imperfect information (equivalence relations on
positions for CGSi and local states for CKS) this requires a
bit of work. First, for each v ∈ V and a ∈ Ag, let us de-
fine [v]a as the equivalence class of v for relation ∼a. Now,
noting Ag = {a1, . . . , an}, we define for each i ∈ [n] the set
Li := {[v]ai | v ∈ V } of local states for agent ai. Since we
need to know the actual position of the CGSi to define the
dynamics, we also let Ln+1 := V . States of SG will thus
be tuples in L1 × . . . × Ln × Ln+1. For each v ∈ G, let
sv := ([v]a1 , . . . , [v]an , v) be its corresponding state in SG .

We can now define SG := (S,R, `′), where

• S := {sv | v ∈ V },
• R := {(sv, sv′) | ∃m ∈ MAg s.t. E(v,m) = v′}, and

• `′(sv) := `(v) ∪ {pv}.
To make the connection between finite plays in G and

nodes in tree unfoldings of SG , let us define, for every finite
play ρ = v0 . . . vk, the node uρ := sv0 . . . svk in tSG (sv0)
(which exists, by definition of SG and of tree unfoldings).
Observe that the mapping ρ 7→ uρ is in fact a bijection
between the set of finite plays starting in a given position v
and the set of nodes in tSG (sv).

Now it should be clear that giving to a propositional quan-
tifier in QCTL∗i observation oi := {i}, for i ∈ [n], amounts to
giving him the same observation as agent ai. Formally, one
can prove the following lemma, simply by applying the def-
initions of observational equivalence in the two frameworks:

Lemma 2. For all finite plays ρ, ρ′ starting in position v,
ρ ∼ai ρ′ iff uρ ≈oi uρ′ in tSG (sv).

We now describe the translation4 from ATLsc,i formulas
to QCTL∗i formulas. First we recall the translation from [24]
for the perfect-information case.

The translation from ATLsc to QCTL∗ is parameterised
by a coalition B ⊂ Ag, that conveys the set of agents who
are currently bound to a strategy. It is defined by induction
on Φ as follows:

pB := p ¬ϕB := ¬ϕB

ϕ ∨ ϕ′B := ϕB ∨ ϕ′B (|A|)ϕ
B

:= ϕB\A

Xϕ
B

:= XϕB ϕUϕ′
B

:= ϕBUϕ′
B

The only non-trivial case is for formulas of the form 〈·A·〉ϕ.
For the rest of the section, we let M = {m1, . . . ,ml}. Now,
if A = {ai1 , . . . , aik}, we define

〈·A·〉ϕ
B

:= ∃mai1
1 . . .m

ai1
l . . .m

aik
1 . . .m

aik
l pout.(

Φstrat(A) ∧ Φout(A ∪B) ∧A(Gpout → ϕA∪B)
)
,

where

Φstrat(A) :=
∧
a∈A

AG
∨
m∈M

(ma ∧
∧

m′ 6=m

¬m′a)

and

Φout(A) := pout ∧AG [¬pout → AX¬pout] ∧AG

pout →
∨
v∈V

∨
m∈MA

pv ∧ pm ∧AX

 ∨
v′∈E(v,m)

pv′ ↔ pout

 .
In Φout(A), for m = (ma)a∈A ∈ MA, notation pm stands

for the propositional formula
∧
a∈Am

a
a which characterises

the joint move m that agents in A play in v. Also, E(v,m)
is the set of possible next positions when the current one is
v and agents in A play m, and it is defined as E(v,m) :=

{E(v, (m,m′)) |m′ ∈ MAg\A}.
The idea of this translation is the following: first, for each

agent a ∈ A and each possible move m ∈ M, an existential
quantification on the atomic proposition ma “chooses” for
each finite play ρ of (G, vι) (or, equivalently, for each node
uρ of tSG (svι)) whether agent a plays move m in ρ or not,
coded by ma being chosen to be true a in ρ or not. Formula
Φstrat(A) ensures that each agent a chooses exactly one move
in each finite play, and thus that atomic propositions ma

characterise a strategy for her. An atomic proposition pout
is then used to mark the paths that follow the currently
fixed strategies: formula Φout(A∪B) states that pout marks
exactly the outcome of strategies just chosen for agents in A,
as well as those of agents in B, that were chosen previously
by a strategy quantifier “higher” in Φ.

Note that we simplified slightly Φstrat(A) and Φout(A),
using the fact that unlike in [24], we have assumed in our
definition of CGSi that the set of available moves is the same
for all agents in all positions (see Footnote 2).

It is proven in [24] that this translation is correct, in the
sense that for every ATLsc closed formula ϕ and pointed
perfect-information concurrent game structure (G, v), letting

4Here we abuse language: the construction depends on the
model G and is therefore not a translation in the usual sense.



SG be as described above but removing the local states for
all agents and keeping only the Ln+1 component, we have:

G, v |= ϕ iff tSG (sv) |=t ϕ
∅.

We now explain how to adapt this translation to the case of
imperfect information. Observe that the only difference be-
tween ATL∗sc and ATL∗sc,i is that in the latter, strategies must
be defined uniformly over indistinguishable finite plays, i.e.,
a strategy σ for an agent a must be such that if ρ ∼a ρ′, then
σ(ρ) = σ(ρ′). To enforce that the strategies coded by atomic

propositions ma in 〈·A·〉ϕ
B

are uniform, we use the propo-
sitional quantifiers with partial observation of QCTL∗i . For-

mally, we define a translation ˜B from ATL∗sc,i to QCTL∗i .
It is defined exactly as the one from ATL∗sc to QCTL∗, except
for the following inductive case.

If A = {ai1 , . . . , aik} we let

〈̃·A·〉ϕ
B

:= ∃oi1mai1
1 . . .m

ai1
l . . .∃oikmaik

1 . . .m
aik
l ∃pout.(

Φstrat(A) ∧ Φout(A ∪B) ∧A(Gpout → ϕ̃A∪B)
)
,

where Φstrat(A) and Φout(A) are defined as before, and ∃pout
is a macro for ∃{1,...,n+1}pout (see Remark 4).

So the only difference from the previous translation is
that now, the labelling of each atomic proposition mai must
be oi-uniform. This means that if two nodes u and u′ in
tSG (svι) are oi-indistinguishable, then u is labelled with mai

if and only if u′ also is. In other words, in the strategy coded
by atomic propositions mai , agent ai plays m in u if and only
if she also plays it in u′, and thus this strategy is uniform
(recall that, by Lemma 2, observation oi correctly reflects
agent ai’s observation in tSG (svι)). It is then clear that this
translation is correct:

G, vι |= Φ iff tSG (svι) |=t Φ̃∅. (1)

However, even if we have taken (Φ, (G, vι)) to be a hierar-

chical instance, Φ̃∅ is not in the decidable fragment QCTL∗i,⊂.
Indeed, with the current definition of observations {oi}i∈[n],
hierarchical observation in G does not imply hierarchical ob-
servation in SG : since oi = {i}, for i 6= j it is never the
case that oi ⊆ oj . Still, we note that if agent aj observes no
more than agent ai, then letting ai see also what agent aj
sees does not increase her knowledge of the situation:

Lemma 3. If aj 4G ai, then for all finite plays ρ, ρ′ that
start in the same position, uρ ≈oi uρ′ iff uρ ≈oi∪oj uρ′ .

In the light of this Lemma 3, we can safely redefine obser-
vations as follows: for each i ∈ [n], we let

o′i :=
⋃

j|aj4Gai

oj .

Observe that in fact o′i = {j | aj 4G ai}. Informally, a
quantifier with observation o′i sees what agent ai observes
(note that 4G is reflexive), as well as what agents that see
no more than ai observe.

Let us define a new version of the translation ˜B . First,
Φ being hierarchical in G, for each subformula of Φ of the
form 〈·A·〉ϕ we have that A is hierarchical in G. It is thus pos-
sible to choose for agents in A an indexing A = {ai1 , . . . , aik}
such that for all 1 ≤ c < d ≤ k, we have aic 4G aid .

Now the translation remains the same as before except for
the following inductive case:

If A = {ai1 , . . . , aik}, where for all 1 ≤ c < d ≤ k, we
have aic 4G aid , we let

〈̃·A·〉ϕ
B

:= ∃o
′
i1m

ai1
1 . . .m

ai1
l . . .∃o

′
ikm

aik
1 . . .m

aik
l ∃pout.(

Φstrat(A) ∧ Φout(A ∪B) ∧A(Gpout → ϕ̃A∪B)
)
,

where Φstrat(A) and Φout(A) are defined as before.
From Lemma 3 we have that this new translation is still

correct in the sense of Equation (1). In addition, for all
1 ≤ c < d ≤ k we have o′ic ⊆ o

′
id

.

Now consider formula Φ̃∅. Because Φ is hierarchical in G,
for every pair of subformulas ϕ1, ϕ2 of the form ϕ1 = 〈·A1·〉ϕ′1
and ϕ2 = 〈·A2·〉ϕ′2 where ϕ2 is a subformula of ϕ′1, maximal
agents of A1 observe no more than minimal agents of A2.

It is then easy to see that Φ̃∅ would be hierarchical if there
were not the perfect-information quantifications on atomic
proposition pout that break the monotony of observations
along subformulas when there are nested strategic quanti-
fiers. We explain how to remedy this last problem.

We remove altogether proposition pout, and we use instead
the formula ψout(A) defined below to characterise which
paths are in the outcome of the currently-fixed strategies:

ψout(A) := G

∧
v∈V

∧
m∈MA

pv ∧ pm → X
∨

v′∈E(v,m)

pv′

 .

Clearly, this formula holds in a path λ of tSG (svι) marked
with propositions ma characterising strategies for agents in
A, if at each point along λ corresponding to some position
v, the next point in λ corresponds to a position v′ that can
be attained from v when agents in A each play the move
prescribed by their current strategy. The last modification
to ˜B is thus the following:

If A = {ai1 , . . . , aik}, where for all 1 ≤ c < d ≤ k, we
have aic 4G aid , we let

〈̃·A·〉ϕ
B

:= ∃o
′
i1m

ai1
1 . . .m

ai1
l . . .∃o

′
ikm

aik
1 . . .m

aik
l .

Φstrat(A) ∧A
(
ψout(A ∪B)→ ϕ̃A∪B

)
,

where Φstrat(A) is defined as before.
It follows from the above considerations that this transla-

tion is still correct in the sense of Equation (1), and one can

check that Φ̃∅ is a hierarchical QCTL∗i formula. We conclude
the proof by recalling that by Theorem 5, model checking
QCTL∗i,⊂ is decidable.

Concerning complexity, model checking ATLsc being al-
ready nonelementary [24], so is it for ATLsc,i.

5. CONCLUSION
In this work we established new decidability results for

the model-checking problem of ATL∗ with imperfect infor-
mation and perfect recall as well as its extension with strat-
egy context. Should new decidable classes of multiplayer
games with imperfect information be discovered, and assum-
ing the reasonable property of closure under initial shifting,
our transfer theorem (Theorem 1) would entail new decid-
ability results also for ATL∗i . As for ATL∗sc,i, it would be
interesting to investigate whether a meaningful notion of
hierarchical instances based on, e.g., dynamic or recurring
hierarchical information instead of hierarchical observation
as here, could lead to stronger decidability results.



6. ACKNOWLEDGEMENTS
This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No 709188.

REFERENCES
[1] T. Agotnes, V. Goranko, and W. Jamroga.

Alternating-Time Temporal Logics with Irrevocable
Strategies. In TARK, pages 15–24, 2007.

[2] R. Alur, T. Henzinger, and O. Kupferman.
Alternating-Time Temporal Logic. J. ACM,
49(5):672–713, 2002.

[3] R. Berthon, B. Maubert, and A. Murano. Quantified
CTL with imperfect information. CoRR,
abs/1611.03524, 2016.

[4] D. Berwanger, A. B. Mathew, and M. van den
Bogaard. Hierarchical information patterns and
distributed strategy synthesis. In ATVA 2015, pages
378–393, 2015.

[5] T. Brihaye, A. D. C. Lopes, F. Laroussinie, and
N. Markey. ATL with strategy contexts and bounded
memory. In LFCS 2009, pages 92–106, 2009.

[6] K. Chatterjee, T. Henzinger, and N. Piterman.
Strategy Logic. 208(6):677–693, 2010.

[7] E. Clarke and E. Emerson. Design and Synthesis of
Synchronization Skeletons Using Branching-Time
Temporal Logic. In LP’81, LNCS 131, pages 52–71,
1981.

[8] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. 2002.

[9] A. Da Costa, F. Laroussinie, and N. Markey. ATL
with Strategy Contexts: Expressiveness and Model
Checking. In FSTTCS’10, LIPIcs 8, pages 120–132,
2010.

[10] C. Dima, C. Enea, and D. P. Guelev. Model-checking
an alternating-time temporal logic with knowledge,
imperfect information, perfect recall and
communicating coalitions. In GANDALF 2010, pages
103–117, 2010.

[11] C. Dima and F. L. Tiplea. Model-checking ATL under
imperfect information and perfect recall semantics is
undecidable. CoRR, abs/1102.4225, 2011.

[12] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about knowledge, volume 4. MIT press
Cambridge, 1995.

[13] B. Finkbeiner and S. Schewe. Uniform distributed
synthesis. In LICS 2005, pages 321–330, 2005.

[14] T. French. Decidability of quantifed propositional
branching time logics. In Australian Joint Conference
on Artificial Intelligence, pages 165–176. Springer,
2001.

[15] D. P. Guelev and C. Dima. Model-checking strategic
ability and knowledge of the past of communicating
coalitions. In DALT 2008, pages 75–90, 2008.

[16] D. P. Guelev, C. Dima, and C. Enea. An
alternating-time temporal logic with knowledge,
perfect recall and past: axiomatisation and
model-checking. Journal of Applied Non-Classical
Logics, 21(1):93–131, 2011.

[17] J. Y. Halpern and M. Y. Vardi. The complexity of
reasoning about knowledge and time. i. lower bounds.

Journal of Computer and System Sciences,
38(1):195–237, 1989.

[18] W. Jamroga and A. Murano. Module checking of
strategic ability. In AAMAS’15, pages 227–235. ACM,
2015.

[19] P. Kazmierczak, T. Ågotnes, and W. Jamroga.
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