
Asynchronous announcements in a public
channel

Sophia Knight1, Bastien Maubert1, and François Schwarzentruber2

1 LORIA - CNRS / Université de Lorraine,
sophia.knight@gmail.com, bastien.maubert@gmail.com

2 ENS Rennes - IRISA - LORIA
francois.schwarzentruber@ens-rennes.fr

Abstract. We propose a variant of public announcement logic for asyn-
chronous systems. We give a syntax where sending and receiving mes-
sages are modeled by different modal operators. The natural approach to
defining the semantics leads to a circular definition, but we describe two
restricted cases in which we solve this problem. The first case requires the
Kripke model representing the initial epistemic situation to be a finite
tree, and the second one only allows announcements from the existential
fragment. Finally, we provide complexity results for the model checking
problem.

1 Introduction

Asynchrony has long played a central role in distributed systems, where access
to a centralized clock is not always possible, and where communication may not
be delivered or received immediately or predictably. Recently, with the prolifera-
tion of multi-agent systems (MAS) where independent agents interact, communi-
cate, and make decisions under imperfect information, modelling how knowledge
evolves with informative events has also become increasingly important. One of
the first and most influential proposals in this direction is public announcement
logic (PAL) [11], in which some external omniscient entity publicly makes true
announcements to some group of agents. This logic has led to the powerful and
much studied dynamic epistemic logic (DEL) [14]. However, both these logics
assume synchronicity, even though there has been some discussion on this matter
for the latter [4]. In PAL for instance, messages are immediately received by all
agents at the same time, as soon as they are sent. As far as we know, little work
has been done to address the same problem in asynchronous scenarios.

Our goal in this work is the logical study of scenarios with asynchronous
announcements. As a first step, similar to PAL, we consider a simple scenario:
messages are true at the time of announcement, public (directed to everyone),
and we do not model their origin, but rather assume that some external and
omniscient entity emits them. Consider the scenario where three autonomous
agents, moving through an area, receive messages from a public channel. They
do not all read the messages (logical formulas) at the same time, but they do

read them in the same order. Figure 1 depicts the architecture of the system:
each agent has a private copy of the channel and they read messages in first in,
first out (FIFO) order, that is, messages are read in the order they are sent.

new announcement

FIFO for agent a

FIFO for agent b

FIFO for agent c

read

read

read

Fig. 1. Agent architecture

In PAL, not only are all messages received at the same time by all agents,
but they are also received at the same time they are sent. Therefore, in PAL,
the announcement operator combines both sending and receiving. In contrast, in
our setting, messages are not received immediately and they may be received at
different times by different agents. The syntax reflects this aspect by providing
both a sending operator, which adds new messages to the public channel, and
a receiving operator for each agent, which allows her to read the first message
in the channel that she has not read yet. Thus, in our logic, we provide the
following modal operators:

– Kiϕ, where i is an agent and ϕ a formula. Intuitively, this will mean “agent
i knows ϕ,” and as usual, this will be interpreted as “ϕ is true at every state
that agent i considers possible.” Below, we discuss the accessibility relation
we use to define all the states agent i considers possible at a given state (all
states that are indistinguishable from the current state for agent i).

– 〈ψ〉ϕ, which will mean “after the currently true formula ψ is (asynchronously)
announced, ϕ is immediately true.”

– ©iϕ which will mean “after agent i receives the next announced formula in
her queue, ϕ is immediately true.”

Interestingly, the most intuitive semantics for this logic presents a challenging
problem of circular definition. We describe this difficulty in more detail below,
but the basic issue is that in order to check the truth of some formulas, we must
quantify over the set of all indistinguishable states that are consistent. A state
is consistent if it is the result of making a true announcement in a state that
is itself consistent. So evaluating the truth of a formula requires determining
whether a state is consistent, which in turn requires evaluating the truth of for-
mulas. In PAL, a similar problem occurs, as the definition of the update of a
model by an announcement and the definition of the truth values are mutually
dependent. While in PAL this circularity can be solved simply by resorting to

a double induction, things are more complicated here. Indeed, because of asyn-
chrony, an agent does not know what or how many messages other agents have
received; therefore, evaluating a knowledge operator in a state requires consid-
ering possibly infinitely many indistinguishable states, which makes a double
induction impossible. This circularity problem is inherent to the asynchronous
setting, and is independent from our choice to consider an external source for
the announcements.

We partially tackle this issue by defining two restricted cases in which we
manage to avoid circularity. The first one requires the Kripke model representing
the initial epistemic situation to be a finite tree; the second one only allows
announcements from the existential fragment. In the latter case, the semantics
is defined thanks to an application of the Knaster-Tarski fixed point theorem
[12].

Finally, we study the model checking problem for our logic and establish the
following complexity results:

Restrictions Complexity of model checking
Propositional announcements PSPACE-complete
Finite tree initial models in PSPACE
Announcements from the existential fragment in EXPTIME, PSPACE-hard

The paper is organized as follows. In Section 2, we recall (synchronous) pub-
lic announcement logic. In Section 3 we present the language and the models
for asynchronous public announcement logic we propose here. In Section 4 we
present the circularity problem for defining the semantics of the logic, and we
exhibit two cases where it can be solved. We then present some validities in
Section 5, and we study the model checking problem in Section 6. Finally we
discuss related work in Section 7 and future work in Section 8.

2 Background: Public Announcement Logic

In this section, we present background on (synchronous) Public Announcement
Logic (PAL) [11]. Let P be a countable infinite set of atomic propositions, and
let AGT be a finite set of agents.

Definition 1 (Syntax of PAL). The syntax for PAL is as follows:

ϕ ::= p | (ϕ ∧ ϕ) | ¬ϕ | Kiϕ | 〈ϕ〉PAL
ϕ

where p ∈ P and i ∈ AGT .

The intuitive meaning of the last two operators is the following: Kiϕ means
that agent i knows ϕ, 〈ψ〉

PAL
ϕ means that ψ is true and after ψ has been publicly

announced and publicly received by all the agents, ϕ holds.
The semantics of PAL relies on classic Kripke models and the possible worlds

semantics, widely used in logics of knowledge [5].

Definition 2. A Kripke model is a tuple M = (W, {→i}i∈AGT , Π), where:

– W is a non-empty finite set of worlds,
– for each i ∈ AGT , →i⊆W ×W is an accessibility relation for agent i,
– Π : W −→ 2P is a valuation on worlds.

Note that we do not require the accessibility relations to be equivalence
relations as is traditionally done in epistemic logic [14].

Example 1. Let us consider the following Kripke model, where w, u and v are
worlds, a and b are agents and p is a proposition. The arrows represent the
agents’ accessibility relations. At world w, agent a considers u and v possible,
and agent b considers only world v possible.

w : p

u : ¬p v : p

a a, b

The semantics is given as follows:

– M, w |= p if p ∈ Π(w);
– M, w |= ϕ1 ∧ ϕ2 if M, w |= ϕ1 and M, w |= ϕ2;
– M, w |= ¬ϕ if M, w 6|= ϕ;
– M, w |= Kiϕ if for all u such that w →i u, M, u |= ϕ;
– M, w |= 〈ψ〉

PAL
ϕ if M, w |= ψ and Mψ, w |= ϕ where Mψ is the restriction

of M to worlds where ψ holds.

Example 2. Let M be the model of example 1. We have M, w |= 〈p〉
PAL

Kap.
Indeed, we have Mp, w |= Kap where Mp is

w : p v : p
a, b

The model checking in public announcement logic is in P and the satisfiability
problem in public announcement logic is PSPACE-complete [9]. A tableau proof
system for public announcement logic is provided in [3].

3 Language and models

3.1 Language

Again, P is a countable infinite set of atomic propositions, and AGT is a finite
set of agents.

Definition 3 (Syntax). The syntax for the logic is as follows:

ϕ ::= p | (ϕ ∧ ϕ) | ¬ϕ | Kiϕ | 〈ϕ〉ϕ | ©i ϕ,

where p ∈ P and i ∈ AGT .

We use L to denote the set of all formulas. The intuitive meaning of the last
three operators is the following: Kiϕ means that agent i knows ϕ, 〈ψ〉ϕ means
that ψ is true and after ψ has been put on the public channel, ϕ holds, and©iϕ
means that agent i has a message to read, and after he has read it, ϕ holds. We
classically define (ϕ∨ψ) ::= ¬(¬ϕ∧¬ψ), (ϕ→ ψ) ::= (¬ϕ∨ψ), the dual of the
knowledge operator: K̂iϕ ::= ¬Ki¬ϕ, meaning that agent i considers ϕ possible,
and the dual of the announcement operator: [ψ]ϕ ::= ¬〈ψ〉¬ϕ, meaning that if
ψ is true, then ϕ holds after its announcement. |ϕ| is the length of ϕ.

Note that in (synchronous) public announcement logic (see definition 1),
the emission and the reception of a formula ψ is mixed in the operator 〈ψ〉

PAL
,

because in this setting, emission and reception occur simultaneously. In the asyn-
chronous version of announcement logic we propose here (see Definition 3), the
emission of ψ is is represented by 〈ψ〉 and the reception of a message by Agent i
is represented by the operator©i. Note that not only can emission and reception
occur at different times, but also different agents may receive the same message
at different times.

3.2 Models

The models on which our logic is interpreted represent situations obtained by
announcements being made in an initial epistemic model, with agents asyn-
chronously receiving these announcements. We now define initial epistemic mod-
els, sequences of announcements, and a third notion that we call cuts, represent-
ing the announcements each agent has received at the current time.

Initial Kripke model An initial model is given as a Kripke model M =
(W, {→i}i∈AGT , Π), as defined in Definition 2. An initial model represents the
initial static situation before any announcements are made.

Sequences of announcements We consider that, in a given scenario, not every
formula may be announced, but rather that there is a certain set of relevant
announcements. Furthermore, we allow the number of times an announcement
can be made to be bounded.

To represent this, we define an announcement protocol to be a multiset of
formulas in our language, where the multiplicity of an element ψ is either an
integer or ∞.

Example 3. The reader may imagine a card game where it is only possible to
announce ‘Agent a has a heart card’ once and ‘Agent a does not know whether
Agent b has a heart card or not3’ twice. We let the proposition ♥i mean “agent
i has a heart card,” and define the announcement protocol to be:

{{♥a , K̂a♥b ∧ K̂a¬♥b , K̂a♥b ∧ K̂a¬♥b}}.
3 that is ‘a considers ♥b possible and considers ¬♥b possible’

Given an announcement protocol A, we denote by Seq(A) the set of finite
sequences σ = [ϕ1, . . . , ϕk] such that the multiset {{ϕ1, . . . , ϕk}} is a submultiset

of A. We let |σ| =
∑k
i=1 |ϕi|. For σ, σ′ ∈ Seq(A) , we write σ ≤ σ′ if σ is a prefix

of σ′. The sequence σ|k is the prefix of σ of length k.
Given a formula ϕ and a sequence of formulas σ, ϕ::σ (resp. σ::ϕ) is the

sequence obtained by adding ϕ at the beginning (resp. at the end) of σ.

States We can now define the models of our logic. Let M be an initial model
and A an announcement protocol. We define the asynchronous model M⊗A =
(S, {Ri}i∈AGT), where each Ri is a pre-accessibility relation, which we define in
Section 3.2, and S is a set of states defined as follows:

S =
{

(w, σ, c) | w ∈W,σ ∈ Seq(A) and c : AGT −→ {0, ..., |σ|}
}
.

States are also denoted S, S′, etc.
The first element of a state represents the world the system is in. The sec-

ond element is the list of messages that have already been announced. The last
element, c, is called a cut, and for each i ∈ AGT , c(i) is the number of announce-
ments of σ that Agent i has received so far. Given two cuts c and c′, we write
c < c′ if for all i, c(i) ≤ c′(i) and there exists j such that c(j) < c′(j).

Example 4. Consider the state S = (w, ε,0), where ε denotes the empty sequence
of formulas and 0 is the function that assigns 0 to all agents. S represents an
initial world w in which no announcement has been made (and therefore no
announcement has been received either). It can be represented as follows:

w

Example 5. Consider the state S = (w, [ϕ,ψ, χ], c) where c(a) = 2 and c(b) = 1.
S is the state representing that in initial world w, the sequence [ϕ,ψ, χ] of
formulas has been announced and is now in the public channel, Agent a has
received ϕ and ψ, and agent b has only received ϕ. Only χ remains in the queue
of a and has not been read yet, and only ψ and χ remain in the queue of b. We
represent S as follows:

w ϕ ψ χ

a

b

and we may also write S = (w, [ϕ,ψ, χ], a 7→ 2
b 7→ 1).

The definition of S allows for all combinations of worlds, sequences of an-
nouncements, and cuts. This definition is an over-approximation of the set of
states we want to consider: indeed, some of the states in S are inconsistent. For
example, suppose that w is a world inM where p does not hold. Then, the state
(w, [p],0) is intuitively inconsistent because as the formula p is not true in w,
it cannot have been announced. This notion of inconsistency is the source of

the circularity problem. Indeed, to define whether a state is consistent requires
one to define whether an announcement can be made, and this requires the se-
mantics of our logic to be defined. But to define the semantics of the knowledge
operators, we need to define which consistent states are related to the current
one, which requires us to define which states are consistent, hence the circularity
(see Section 4).

Pre-accessibility relation definition We now define, for each agent, a pre-
accessibility relation that does not yet take consistency into account, but is only
based on the agents’ accessibility relations on the initial model and the current
cut. This is the first step toward the final definition of the agents’ accessibiliy
relations, which is presented below.

Definition 4. The pre-accessibility relation for Agent i, written Ri, is defined
as follows: given S = (w, σ, c) and S′ = (w′, σ′, c′), we have SRiS

′ if:

1. w →i w
′, and

2. c(i) = c′(i) and σ|c(i) = σ′|c′(i)

The first clause is obvious. The second clause says that Agent i is aware of,
and only aware of, messages that she has received: therefore she can only consider
possible states where she has received exactly the same messages. However, the
sequence of messages she has not yet received may be longer or shorter in a
related state. Also, as she has no information about what messages the other
agents have received, we do not put any constraints on c′(j) if j 6= i.

Example 6. Here we give an example of an inconsistent state, to show why fur-
ther refinement of the above-defined models is necessary. Let us consider the
following initial model, where w, u, v and z are worlds, a and b are agents and p
is a proposition. The arrows represent the agents’ accessibility relations, before
any announcements have been made. So at world w, agent a considers u and v
possible, and agent b considers world z possible.

w : p

u : ¬p v : p z : p

a a b

Now assuming that the announcement protocol A contains p, ϕ and ψ, a
partial depiction of the asynchronous modelM⊗A is below. We depict the states
w, u, v, and z where no announcements have been made, as well as copies of u
where two different sequences of announcements have been made, and received
in one state by b and in a different state by a. Of course, the entire modelM⊗A
is infinite so we do not depict all the states here. The grey state shown in the
asynchronous model is not consistent because p has been announced although p
is not true in u.

w

u v z u p ϕ

b

u ψ

a

. . .

a a b a b

4 Semantics: the circularity problem

Figures 2 and 3 show a naive attempt to define the truth conditions, which we
explain in Section 4.1. Unfortunately, this leads to a circularity problem which
we detail in Section 4.2. We show how to solve this problem for restricted cases
in Sections 4.3 and 4.4.

(w, ε,0) |= X
(w, σ, c) |= X if there is c′ < c s.t. (w, σ, c′) |= X, or

σ = σ′::ψ, (w, σ′, c) |= X and(w, σ′, c) |= ψ

Fig. 2. Truth conditions for consistency

(w, σ, c) |= p if p ∈ Π(w)
(w, σ, c) |= ϕ1 ∧ ϕ2 if (w, σ, c) |= ϕ1 and (w, σ, c) |= ϕ2

(w, σ, c) |= ¬ϕ if (w, σ, c) 6|= ϕ
(w, σ, c) |= Kiϕ if for all S′ s.t. (w, σ, c)RiS

′ and S′ |= X, S′ |= ϕ
(w, σ, c) |= 〈ψ〉ϕ if σ::ψ ∈ Seq(A), (w, σ, c) |= ψ and (w, σ::ψ, c) |= ϕ
(w, σ, c) |=©iϕ if c(i) < |σ| and (w, σ, c+i) |= ϕ

where c+i(j) =

{
c(j) if j 6= i
c(j) + 1 if j=i

Fig. 3. Truth conditions for formulas

4.1 Intuitions

The pre-accessibility relation takes into account states that are not actually
consistent, because they contain announcements that were not true at the time
they were made. The intuitive meaning of (w, σ, c) |= X is that the state (w, σ, c)
is consistent, that is, all announcements were true when they were made. Figure 2
is an attempt to define this concept formally. The first clause is obvious: the
initial state where no announcements have been made is consistent. The second
clause gives two possibilities for a state to be consistent. Either there was an
earlier consistent state, (w, σ, c′) and then some agents received some already

announced formulas, increasing the cut from c′ to c, or a new, true announcement
ψ has been made from an earlier consistent state, increasing the history from σ′

to σ′.ψ.
In Figure 3, the first three clauses are straightforward. The fourth clause says

that Agent i knows ϕ if ϕ holds in all consistent states that are indistinguishable
to her. The fifth clause says that 〈ψ〉ϕ holds in a state S if ψ can be announced
(it is true in S), and ϕ holds in the state obtained by adding ψ to the public
channel. The last clause says that ©iϕ holds if Agent i has at least one unread
announcement in the channel, and ϕ holds after she reads the first message.

4.2 Circularity

Let us consider the following example, where AGT = {a}. Let the initial model
be M = (W,→a, Π) where W = {w}, →a= {(w,w)} and Π(w) = ∅. Let
the announcement protocol be A = {{Kap}}. According to Figure 2, we have:
(w, [Kap],0) |= X iff (w, ε,0) |= Kap. But, as (w, ε,0)Ra(w, [Kap],0), the def-
inition of the truth value of (w, ε,0) |= Kap depends on the truth value of
(w, [Kap],0) |= X. To sum up, the definition of (w, [Kap],0) |= X depends on
itself.

4.3 When the initial model is a finite tree

If we assume the initial model M = (W, {→i}i∈AGT , Π) to be such that W is
finite and

⋃
i →i makes a finite tree over W , then the circularity problem can

be avoided. Indeed, in this case, we can define a well-founded order on tuples of
the form (w, σ, c, ϕ), where ϕ is either a formula in L or the symbol X, the idea
being that a tuple (w, σ, c, ϕ) means ‘w, σ, c |= ϕ’.

Definition 5. The order ≺ is defined as follows:
(w, σ, c, ϕ) ≺ (w′, σ′, c′, ϕ′) if either

1 w is in the subtree of w′ in M,
2 or w = w′ and |σ|+ |ϕ| < |σ′|+ |ϕ′|,
3 or w = w′, |σ|+ |ϕ| = |σ′|+ |ϕ′| and c < c′,

where |X| = 1.

It is easy to see that ≺ is a well-founded order, and with this order figures 2
and 3 together form a well-founded inductive definition of consistency and se-
mantics of our language.

We detail the non-trivial cases. For the second clause of Figure 2, observe that

by Point 3 of Definition 5, if c′ < c then (w, σ, c′,X) ≺ (w, σ, c,X), and for all

w, σ′, c and ψ, by Point 2 of Definition 5, we have (w, σ′, c, ψ) ≺ (w, σ′::ψ, c,X).

For the fourth clause of Figure 3, by Point 1 of Definition 5 we have that
for all ϕ, σ, σ′, c, c′, if w′ is a child of w then (w′, σ′, c′, ϕ) ≺ (w, σ, c,Kiϕ).

Finally, for the fifth clause of Figure 3, by Point 2 of Definition 5 we have
that (w, σ::ψ, c, ϕ) ≺ (w, σ, c, 〈ψ〉ϕ) for all w, σ, c, ϕ and ψ (note that |〈ψ〉ϕ| =
1 + |ψ|+ |ϕ|).

The following simple example illustrates how our semantics works, and how
it indeed captures the intuitions behind the operators.

Example 7. Suppose that we have only one agent a. Let us consider the following
initial model M:

w : p

u : ¬p v : p

a a

In this model, p holds in the actual world w, but Agent a does not know
it. Assume that p can be announced at least once (p ∈ A). We show that, as
expected, after p is announced and Agent a has received this announcement, it
holds that Agent a knows that p holds. Formally, we prove that, in M⊗A, we
have (w, ε,0) |= 〈p〉 ©a Kap.

To do so we show that (w, [p], a 7→ 1) |= Kap, from which it follows that
(w, [p],0) |=©aKap, hence the desired result.

By Definition 4 for pre-accessibility relations, every state S such that (w, [p], a 7→
1)RaS is of the form S = (w′, p::σ, a 7→ 1), where w′ ∈ {u, v} and σ is a sequence
of announcements. We just have to show that each such state either is inconsis-
tent or verifies p.

First, for w′ = u. According to the first clause of Figure 3, we have that
(u, ε,0) 6|= p, and by the second clause of Figure 2 it follows that (u, [p],0) 6|= X,
from which it follows also that (u, [p], a 7→ 1) 6|= X and (u, p::σ, a 7→ 1) 6|= X, for
any σ.

Now, for w′ = v, by the first clause of Figure 3, we have that for all states
of the form S = (v, p::σ, a 7→ 1), S |= p, so that finally every state related to
(w, [p], a 7→ 1) is either inconsistent or verifies p. Note that we could also prove
that S is consistent.

In practice, this setting can be used as an approximation scheme: unfolding
models and cutting at level l of the obtained trees amounts to assuming that
agents cannot reason about deeper nesting of knowledge. This approach is similar
to the well known idea of bounded rationality, [7], where it is assumed that due to
computational limits, agents have only approximate, bounded information about
other agents’ knowledge, which is represented by allowing only finite-length paths
in the Kripke model. We point out, however, that this method of approximation
is only appropriate in certain settings. One issue is that it does not allow the
accurate representation of transitive accessibility relations, where the leaves of
an initial model of any depth l may be reached just by evaluating a formula
with one knowledge operator. This setting calls for more work to clarify what

this representation really captures, and to develop precise results about which
formulas we are able to correctly evaluate using this method of approximation.

4.4 Announcing existential formulas

Now, we again allow the initial model to be arbitrary. In particular, we may use
an initial model whose underlying frame is KD45 (relations are serial, transitive
and Euclidean) or S5 (relations are equivalence relations) (see [5]). But we re-
strict the announcement protocol to the existential fragment4, generated by the
following rule:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | K̂iϕ | ©i ϕ | 〈ϕ〉ϕ

where p ∈ P and i ∈ AGT . Formulas of the existential fragment are called exis-
tential formulas. If an announcement protocol contains only formulas of the ex-
istential fragment, we call it an existential announcement protocol. For instance,
Example 3 consists of an existential announcement protocol.

Here we can again tackle the circularity problem by defining consistency and
truth conditions separately. We first define as a fixed point the semantics of
announcements in A, together with consistency. In a second step we define the
semantics of the full language with existential announcements as described in
Figure 3, but using the fixed point to evaluate consistency.

Let us fix an initial model M = (W, {→i}i∈AGT , Π) and an existential an-
nouncement protocol A. Let B be the set of all pairs (S, ϕ) such that S is a
state of M⊗A and ϕ is either a formula in A or the symbol X, which is true
only at consistent states. Observe that (P(B),⊆) forms a complete lattice. We
now consider the function f : P(B) → P(B) defined in Figure 4. Function f
takes a set Γ of truth pairs (pairs (S, ϕ) such that S |= ϕ), and extends it with
the new truth pairs that can be inferred from Γ by applying each of the rules
in figures 2 and 3 one time. For instance, if (w, σ, c) |= ϕ and (w, σ, c) |= ψ,
then (w, σ, c) |= ϕ ∧ ψ. That is, if (w, σ, c, ϕ) and (w, σ, c, ψ) are in Γ , then
(w, σ, c, ϕ ∧ ψ) is in f(Γ), which explains line 3 in Figure 4. Every other line of
Figure 4 similarly follows from one line of the truth conditions.

Now, as we restrict to existential formulas, it is easy to see that f is monotone,
that is, if Γ1 ⊆ Γ2 then f(Γ1) ⊆ f(Γ2). By the Knaster-Tarski theorem [12], f
has a least fixed point Γ ∗ :=

⋃
n∈N f

n(∅).
We can now define the truth condition for consistency as: S |= X if (S,X) ∈

Γ ∗, and use Figure 3 to define the semantics of the language with existential
announcements.

4 The terminology ‘existential fragment’ is used in the model checking community [1],
because the operators K̂i, ©i and 〈ϕ〉 are existential. For instance, we will require
that (w, σ, c) |= K̂iϕ iff there exists S′ s.t. (w, σ, c)RiS

′, S′ |= X, and S′ |= ϕ. When
these operators are not in the scope of a negation, only existential quantification
needs to be used in the semantic interpretation of formulas.

f(Γ) = Γ ∪{(w, σ, c, p) | p ∈ Π(w)}

∪ {(w, σ, c,¬p) | p 6∈ Π(w)}

∪
{

(w, σ, c, ϕ ∧ ψ) | (w, σ, c, ϕ) ∈ Γ and (w, σ, c, ψ) ∈ Γ
}

∪
{

(w, σ, c, ϕ ∨ ψ) | ((w, σ, c, ϕ) ∈ Γ or (w, σ, c, ψ) ∈ Γ
}

∪
{

(w, σ, c, K̂iϕ) | there exists (w′, σ′, c′) such that (w, σ, c)Ri(w
′, σ′, c′),

(w′, σ′, c′,X) ∈ Γ and (w′, σ′, c′, ϕ) ∈ Γ

}
∪{(w, ε,0,X) | w ∈W}

∪
{

(w, σ, c,X) | there is c′ < c s.t. (w, σ, c′,X) ∈ Γ
}

∪
{

(w, σ, c,X) | (w, σ′, c,X) ∈ Γ and (w, σ′, c, ψ) ∈ Γ ,
where σ = σ′ :: ψ

}
∪
{

(w, σ, c,©iϕ) | c(i) < |σ| and (w, σ, c+i, ϕ) ∈ Γ
}

∪
{

(w, σ, c, 〈ψ〉ϕ) | σ::ψ ∈ Seq(A), (w, σ, c, ψ) ∈ Γ and (w, σ::ψ, c, ϕ) ∈ Γ
}

Fig. 4. Function applying one step of the truth conditions

Remark 1. If announcements of the form Kiϕ were allowed, then we would have
to add the clause{

(w, σ, c,Kiϕ) | for all (w′, σ′, c′) such that (w, σ, c)Ri(w
′, σ′, c′),

either (w′, σ′, c′,X) 6∈ Γ or (w′, σ′, c′, ϕ) ∈ Γ

}
to the definition of f in Figure 4. But then, if (w, σ, c)Ra(w′, σ′, c′) we would

have:

– (w, σ, c,Kap) ∈ f(∅);
– (w, σ, c,Kap) /∈ f({(w′, σ′, c′,X), (w′, σ′, c′,¬p)})

It would thus no longer hold that f(Γ1) ⊆ f(Γ2) whenever Γ1 ⊆ Γ2. As f
is clearly not a decreasing function either, we would not be able to apply the
Knaster-Tarski theorem.

5 Validities

We say that a formula ϕ is valid if for every initial model M and every an-
nouncement protocol A, such that eitherM is a finite tree or A is an existential
announcement protocol, and for every consistent state S ∈ M ⊗ A,5 we have
M⊗A, S |= ϕ. We write |= ϕ to express that ϕ is valid. As usual, we use [ϕ]ψ
as shorthand for ¬〈ϕ〉¬ψ.

Proposition 1. We have:

1. |=©1©2 ϕ↔©2©1 ϕ

5 Recall definition of M⊗A from 3.2.

2. |=©1> → (©1ϕ↔ ¬©1 ¬ϕ)
3. |= ¬©1 > → [ϕ]©1 K1ϕ, where ϕ is a propositional formula 6

Proof. We prove the first validity and the other two are left to the reader.
Suppose that we haveM⊗A, (w, σ, c) |=©1©2 ϕ. By Figure 3, this means

that c(1) < |σ| and M ⊗ A, (w, σ, c+1) |= ©2ϕ, and the latter implies that

c+1(2) < |σ| andM⊗A, (w, σ,
(
c+1
)+2

) |= ϕ. Now, because
(
c+1
)+2

=
(
c+2
)+1

,
we get thatM⊗A, (w, σ, c+2) |=©1ϕ, and thereforeM⊗A, (w, σ, c) |=©2©1ϕ.
The proof for the other direction is symmetric.

Let us comment on the above validities. Validity 1 says that it is possible
to permute the order of agents that receive next messages in their respective
queues. Validity 2 says that if an agent has a message to read, then reading
the message is a deterministic operation. Validity 3 says that if an agent has
no pending messages and some propositional formula7 is announced, then after
reading his next message, the agent will know that formula.

We also establish the following proposition, which essentially says that in the
case where all sequences of announcements are possible, if all the ©i operators
in a formula ϕ are under the scope of a knowledge operator, then its truth
value is left unchanged by the announcement of any other formula ψ. Indeed,
the knowledge operator considers all possibilities for the content of the agent’s
channel, so that the possibility that ψ is in it is considered, no matter whether
it was actually the announced formula or not.

In the following, either let M be a finite tree and AU the universal an-
nouncement protocol containing every formula with infinite cardinality, or let
M be an arbitrary initial model and AU the announcement protocol containing
every formula in the existential fragment with cardinality infinity.

Proposition 2. Let ϕ be a formula in L, in which every©i is under the scope of
some Kj. For every initial modelM and consistent state S = (w, σ, c) ∈M⊗AU ,
for every ψ ∈ AU , we have M⊗AU , S |= 〈ψ〉ϕ↔ ψ ∧ ϕ.

This result follows immediately from the following lemma:

Lemma 1. Let ϕ be a formula in L, in which every ©i is under the scope
of some Kj. For every initial model M and for every consistent state S =
(w, σ, c) ∈ M ⊗ AU , for every ψ ∈ AU such that (w, σ::ψ, c) is consistent, we
have M⊗AU , (w, σ::ψ, c) |= ϕ iff M⊗AU , (w, σ, c) |= ϕ.

Proof. By induction on ϕ. The Boolean cases are omitted.
Case ϕ = Kaϕ

′:
It is enough to observe that: {S | (w, σ::ψ, c)RaS} = {S | (w, σ, c)RaS}.
Case ϕ = 〈ϕ1〉ϕ2:

6 A propositional formula is any formula without modalities, i.e. no occurrences of Ki,
〈ϕ〉, or ©.

7 We restrict to propositional formulas in order to avoid Moore’s paradox [14].

By definition of AU , σ::ϕ1 ∈ Seq(AU). We therefore have (w, σ::ψ, c) |=
〈ϕ1〉ϕ2 iff (w, σ::ψ, c) |= ϕ1 and (w, σ::ψ::ϕ1, c) |= ϕ2. By induction hypothesis,
this is equivalent to (w, σ, c) |= ϕ1 and (w, σ::ψ, c) |= ϕ2. Again by induction
hypothesis, the latter is equivalent to (w, σ, c) |= ϕ2, which is in turn equivalent
to (w, σ::ϕ1, c) |= ϕ2 (observe that (w, σ::ϕ1, c) is consistent as (w, σ, c) |= ϕ1).
We finally obtain that (w, σ::ψ, c) |= 〈ϕ1〉ϕ2 iff (w, σ, c) |= ϕ1 and (w, σ::ϕ1, c) |=
ϕ2, that is (w, σ, c) |= 〈ϕ1〉ϕ2.

Finally, the case ϕ = ©iϕ
′ is not possible as ©i is not under the scope of

any Kj .

In our framework, the behavior of the public channel is common knowledge.
For instance, let us consider a situation with two agents, 1 and 2, where Agent 1
has read all the announced messages. Now, assume that p is announced, thus
put in the queue, and Agent 1 reads it. Agent 1 now knows p, but she also knows
that if Agent 2 has read all the announced messages (and in particular the last
one, which is p), then Agent 2 also knows p. In some sense, it means that initially
Agent 1 knows that Agent 2 will receive the same messages as herself. This is
reflected in the following validity: ©1⊥ → [p!]©1 K1(p ∧ (©2⊥ → K2p)).

6 Model checking

Here we address the model checking problem when A is a finite multiset, that
is, when the support set of A is finite and the multiplicity of each element is an
integer. More precisely, we consider the following decision problem:

– input: an initial pointed model,8 (M, w), a finite multiset of formulas A
(where multiplicities are written in unary), a formula ϕ0;

– output: yes if M⊗A, (w, ε,0) |= ϕ0, no otherwise.

6.1 Propositional announcements

In this section, we suppose that formulas in A are propositional (which is a
particular case of existential announcements). We consider the model checking
problem for asynchronous announcement logic where inputsM, w,A, ϕ0 are such
that A only contains propositional formulas. This problem is called the model
checking problem for propositional protocols.

Theorem 1. The model checking problem for propositional protocols is
in PSPACE.

Proof. Figure 5 presents an algorithm that takes a pointed model (M, w), a finite
multiset A, a sequence σ ∈ Seq(A), a cut c on σ and a formula ϕ as an input. To
check the consistency of a state (w, σ, c), we call checkconsistency(M,A, w, σ, c)
which verifies that every (propositional) formula ψ occurring in σ evaluates to
true with the valuation Π(w).

It is easily proven by induction that, for all ψ, the following property P (ψ)
holds:
8 A pointed model is a model with a specified state.

M,A, w, σ, c |= ψ iff mc (M,A, w, σ, c, ψ) returns true.

This establishes soundness and completeness of the algorithm. We now ana-
lyze its complexity.

First, observe that because A is finite and each element has finite multiplicity,
we have that Seq(A) only contains sequences of length linear in |A| (recall that
multiplicities are written in unary). It is therefore easy to see that the consistency
check (∗) is done in polynomial time in the size of the input and thus requires
a polynomial amount of space. Now, the number of nested calls of mc is bounded
by the size of the formula to check, and each call requires a polynomial amount
of memory for storing local variables, so that the algorithm runs in polynomial
space.

function mc (M,A, w, σ, c, ϕ)
match ϕ do
case p: return p ∈ V (w);
case X: return checkconsistency(M,A, w, σ, c) (∗)
case ¬ψ: return not mc (M,A, w, σ, c, ψ);
case (ψ1 ∧ ψ2): return mc (M,A, w, σ, c, ψ1) and mc(M,A, w, σ, c, ψ2);
case Kaψ :
for u ∈ Ra(w), σ′ ∈ Seq(A), c′ on σ′ do
if c′(i) = c(i) and σ′[1..c(i)] = σ[1..c(i)] and
mc (M,A, u, σ′, c′,X) then
if not mc (M,A, u, σ′, c′, ψ) then

return false
return true

case 〈ψ〉χ :
if σ::ψ ∈ Seq(A) and mc (M,A, w, σ, c, ψ) then
return mc (M,A, w, σ.ψ, c, χ);

else
return false;

case ©iψ: return c(i) < |σ| and mc (M,A, w, σ, c+i, ψ)

Fig. 5. Model checking algorithm

Theorem 2. The model checking problem for propositional protocols is PSPACE-
hard.

6.2 Finite tree initial model

In this section, we restrict the set of inputs M,A, w, ϕ0 of the model checking
problem to those where the initial pointed models (M, w) are finite trees rooted
in w.

Theorem 3. The model checking problem when we restrict initial models to
finite trees is in PSPACE.

Proof. We consider the algorithm of Figure 5 again but now the consistency
checking (∗) consists of calling the following procedure:

function checkconsistency(M,A, w, σ, c)
if c = 0

return true
else
for c′ < c do
if mc (M,A, w, σ, c′,X) then

return true

return mc (M,A, w, σ′, c,X) and mc (M,A, w, σ′, c, ψ) where σ = σ′.ψ

Soundness and completeness are proven by induction on inputs using the
order ≺ defined in Section 4.3.

Concerning the complexity, the argument given in the proof of Theorem 1
no longer holds. In order to bound the number of nested calls of mc, we have to
remark that from a call of mc to a sub-call of mc:

(1) either we change the current world w in the initial model for a successor u
in the finite tree;

(2) or the quantity |σ| + |ϕ| +
∑
i∈AGT c(i) is strictly decreasing, where |ϕ| is

the length of ϕ and if σ = [ϕ1, . . . , ϕk] then |σ| =
∑k
i=1 |ϕi|.

Now, the number of times (1) occurs is bounded by the depth depth(M, w) of
the finite treeM, w. As each ϕ is either a subformula of the input formula ϕ0 or a
subformula of a formula in A, |ϕ| ≤ |ϕ0|+|A| where |A| :=

∑
ψ∈A |ψ|, and where

each single formula ψ is counted as many times as it occurs in the multiset A.
Furthermore, |σ| ≤ |A| and c(i) ≤ |A|. Thus, the quantity |σ|+|ϕ|+

∑
i∈AGT c(i)

is bounded by (|AGT | + 2)|A| + |ϕ0|. Therefore, the number of nested calls to
mc is bounded by depth(M, w) × ((|AGT | + 2)|A| + |ϕ0|). So the algorithm
requires polynomial amount of memory in the size of the input (recall that the
multiplicity of A is encoded in unary).

6.3 Existential announcements

In this subsection, we design an exponential time algorithm for the model check-
ing problem in the case of existential announcements.

Given an input M,A, w, ϕ0, the algorithm first computes the least fixed
point Γ ∗ of the function f defined in Section 4.4. Because the number of possible
sequences in Seq(A) is exponential in |A|, the set B of pairs (S, ϕ) where S ∈
M⊗A and ϕ ∈ A∪{X} is exponential size in the size of the input, and therefore
computing the fixed point requires exponential time in the size of the input. This
gives us the semantics of consistency for states of M⊗A.

Then, to evaluate ϕ0, we use the procedure mc of Figure 5, in which checking
the consistency of a state (w, σ, c), (∗), is done by checking whether
(w, σ, c,X) ∈ Γ ∗. The algorithm mc also requires exponential time. To sum
up:

Theorem 4. The model checking problem where the announcements are exis-
tential is in EXPTIME.

7 Related work

As far as we know, there has not been much work on the relationship between
knowledge, announcements and asynchronicity. In [4], asynchronicity in dynamic
epistemic logic is studied, but with the idea of synchronicity being that all agents
observe a universal clock, whereas our notion of synchronicity is that all agents
receive messages at the same time, immediately when they are sent. A logic
dealing with knowledge and asynchronicity is also developed in [10], but in this
setting, messages do not have logical content: they are atomic propositions, and
it is impossible, for example, to make an announcement about knowledge or
about the effect of another announcement.

Arbitrary public announcement logic (APAL) [2] has some similarity to our
approach. In this logic, one can ask whether some formula holds after any possi-
ble announcement; this is not possible in our logic, but the knowledge operator
considers any possible future sequence of announcements that follows the proto-
col, which is a similar idea. Interestingly, the satisfiability problem for APAL is
undecidable, but decidability can be achieved by considering a constraint similar
to our restriction to existential announcements ([6], [13]).

The Knaster-Tarski theorem is often used to define the denotational seman-
tics of programming languages [15] in the same spirit as our definition of consis-
tency when announcements are existential. We also note that our definition of
asynchronous modelsM⊗A, especially the notion of cuts, is in the spirit of [8].

8 Future work

This work constitutes a first attempt to provide an epistemic logic for reason-
ing about asynchronous announcements. In the future, first, we would like to
overcome the circularity problem, and hence define the semantics, for the most
general case (removing the finite tree and existential conditions), and provide
model checking algorithms in these cases. One approach to this problem may be
using coinduction to define the set of consistent states. Once we have defined
the semantics for the general case, we plan to provide a complete axiomatization.

Second, we would like to model more general situations of asynchronous com-
munication. We plan to consider the case where messages are not read in FIFO
order, but are received and read in arbitrary order. We also plan to model the
origin of the messages, allowing formulas saying that “After Agent a broadcasts
that ϕ holds, ψ holds”. In our current setting, when the external broadcaster
makes a new announcement, the only effect is to queue it in the channel with-
out affecting anyone’s epistemic state. However, in the case where the agents
themselves make the announcements, Agent a making an announcement should
impact her knowledge: after the announcement she should know, for instance,
that the channel is not empty. She should also know that, after another agent
checks their channel, that agent will know that ψ has been announced.

Third, we would like to model not only asynchronous broadcast on a public
channel but also private asynchronous communications between agents in the

system. In essence, this amounts to defining a complete asynchronous version of
dynamic epistemic logic [14].

Finally, it would be interesting to add temporal operators to our language,
in order to express such things as “After p is announced and Agent 1 receives
it, eventually she will know that Agent 2 knows p” (assuming that agents are
forced to eventually read announcements).

References

1. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

2. Philippe Balbiani, Alexandru Baltag, Hans P. van Ditmarsch, Andreas Herzig,
T. Hoshi, and Tiago De Lima. What can we achieve by arbitrary announcements?:
A dynamic take on Fitch’s knowability. In Proceedings of the 11th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK-2007), Brussels, Bel-
gium, June 25-27, 2007, pages 42–51, 2007.

3. Philippe Balbiani, Hans van Ditmarsch, Andreas Herzig, and Tiago De Lima.
Tableaux for public announcement logic. J. Log. Comput., 20(1):55–76, 2010.

4. Cédric Dégremont, Benedikt Löwe, and Andreas Witzel. The synchronicity of
dynamic epistemic logic. In Proceedings of the 13th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK-2011), Groningen, The Netherlands,
July 12-14, 2011, pages 145–152, 2011.

5. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about knowledge. The
MIT Press, 2004.

6. Tim French and Hans P. van Ditmarsch. Undecidability for arbitrary public an-
nouncement logic. In Advances in Modal Logic 7, papers from the seventh confer-
ence on ”Advances in Modal Logic,” held in Nancy, France, 9-12 September 2008,
pages 23–42, 2008.

7. Bryan D. Jones. Bounded rationality. In Annual Review of Political Science, pages
2–297, 1999.

8. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

9. Carsten Lutz. Complexity and succinctness of public announcement logic. In 5th
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2006), Hakodate, Japan, May 8-12, 2006, pages 137–143, 2006.

10. Prakash Panangaden and Kim Taylor. Concurrent common knowledge: Defining
agreement for asynchronous systems. Distributed Computing, 6(2):73–93, 1992.

11. Jan Plaza. Logics of public communications. Synthese, 158(2):165–179, 2007.
12. Alfred Tarski et al. A lattice-theoretical fixpoint theorem and its applications.

Pacific journal of Mathematics, 5(2):285–309, 1955.
13. Hans van Ditmarsch, Tim French, and James Hales. Positive announcements (un-

der submission).
14. Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Pieter Kooi. Dynamic

epistemic logic, volume 337. Springer Science & Business Media, 2007.
15. Glynn Winskel. The formal semantics of programming languages - an introduction.

Foundation of computing series. MIT Press, 1993.

