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This paper presents the differential hashing functions. A
differential computation process enables hashing function
processing time to be optimized. After a formal definition of
the differential property for hashing functions, we show that
not all hashing functions have this property, then we
propose a characterization of the differential hashing
function set. Next, we show the performance acceleration
produced by the differential algorithms applied to five
hashing functions found in common applications. The
observed accelerations can be significant because they are
proportional to key length. Last we study the performances
of a differential hashing function for the reachability graph
exploration of distributed systems specified by a Petri net.
This application demonstrates the advantages and the limits
of our differential technique.

1: Introduction

Complex and safety-critical systems such as distributed
systems with their communications protocols and services,
require the development of verification tools based on formal
description techniques. These tools enable the complexity
arising from the parallelism of such systems to be controlled.
To describe the complex behavior of the specified system,
graphs are generated by the verification tools. Numerous
graphs have been introduced: reachability graphs [16],
reduced graphs [15], [10], symbolic graphs [5], colored and
high level graphs [12], [20], and stochastic graphs [9], etc.

The state space explosion inherent to the parallelism of
the studied systems induces constant research: in particular to
reduce the duration of the graph generation process and to
increase the relevance and the density of the graphs [7]. We
distinguish three main methods to deal with the state
explosion. The first method proposes generation of specific
graphs which enable only some restricted classes of
properties to be studied [21], [4]. The second method
proposes partial exploration of the graph using simulation
technique like random or user control state exploration [24],
{11]. The third method promotes data compression
techniques and processing time optimizations [1], [13].
Obviously the three methods can be usefully combined. This
paper describes an enhanced graph generation technique
which belongs to the third method. However this technique
does not only apply to distributed system verification; the
chosen application example will exhibit the advantages and
the restrictions of the proposed technique.

Hashing methods are searching methods used to accelerate
the retrieval process of an element among a large set. Every
element of the set is uniquely identified by its key. Hashing
methods are built upon one hashing function and one
collision resolution function. The hashing function
transforms each key into one hashing value. The key
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definition domain is usually very large while the hashing
value definition domain is smaller. The hashing value is used
as an address to access a memory area where the element
associated with the key is stored. If the storage area is
structured as an array the hashing value is used as a table
index. Due to the reduction of the definition domain the
hashing function can associated several keys to a unique
hashing value. The collision resolution function is in charge
to allocate a specific storage location to each element.

In this paper, we describe differential hashing functions.
These hashing functions use differential computation
processes of the hashing value which can replaced the usual
computation processes, and which can optimized the
processing time. The obtained optimization is based on the
following observation: the structure of the keys can be
regarded as a record of items. The physical characteristics of
items are determined so as to ease the computation of the
differential process. The computation process is called
differential, if we can infer the hashing value of a key from
the hashing value of another key which differs from the
previous key in only few items. It can be more efficient to
deduce the new hashing value knowing the value of some few
new items rather than to apply the usual computation process
on every item of the new key.

We associate a mono-differential computation function
family to the differential computation process. These
functions enable the hashing value of a key to be computed
from the hashing value of another key which differs from the
previous one in only one item. We prove easily that, by
function composition, the mono-differential function family
enables the hashing value of a key which differs from another
in several items to be computed.

A preliminary question is raised by our proposition. Is it
possible 1o associated a differential process to every hashing
function? In the second section, after a formal description of
differential hashing functions, we prove that the answer is
no. Nevertheless, we produce a characterization of the
hashing function set which can be associated with a
differential computation process. Afterwards we show that
this set contains the majority of hashing functions used. 4/

The third section answers to the following question: Are |
the differential computation processes always more efficient
than the usual computation processes? We show that this is
not always the case, but we establish the conditions which
are required to ensure that efficiency. However this is not a
final answer, because the algorithms used during the
implementation of the differential and the usual processes
have the preponderant influence on the performances.
Nevertheless we show that naive implementations product
very good acceleration of the processing speed, and multi-
differential implementations, enabling very efficient coding,
cut the processing time significantly.




The fourth section gives the performances achieved by
the differential hashing function used by the Bouster
verification tool [3], based on formal description of
distributed systems by Petri net. This reachability graph
generation example allows us to exhibit the advantages and
the limits of our differential technique.

2: The differential functions
2.1: Definition

Hashing function can be described as application with N
N

variables from a product of set HAk to a set B:
k=1
N

V <Xy Xy XN>€ [JAL, 3! B(<Xqyere Xy Xp>) € B.
k=1

We denote h(<xj,...,X;,....x5y>) the hashing value of the
key KpeeorXjperns XN
Definition 1: mono-differential computation function
The hashing function h has a mono-differential
computation function of the hashing value for its it item if
and only if it exists a function F; from BXA;XA, to B such as
N
V<X1,...,Xi,...,XN>€ l!_[Ak, VyiE Ai1 Fi(h(<X1,...,yi,...,XN>),
=1

Yis xi)=h(<x1,...,xi,...,xN>). 8

The mono-differential function (F;) enables the
computation of the hashing value of a key (KX seeesX e XN
called son_key) from the hashing value of another key
(<X1see0sYioeXn>: called father_key) having in common
with the previous key every items but one (i: called the
differential item). Knowing the value of the differential item
of the father_key (y;), the new value that this differential item
must have in the son_key (x;), and the hashing value
computes from the father_key (h(<xy,...,yj,....xN>)), the
mono-differential function associated to the differential item
enables the computation of the hashing value associated to
the son_key (h(<Xg,...,Xj...,XN>)).

We denote P(h,i) the set of F; functions which respects
this definition for the hashing function h.

We notice that the father/son relation is symmetrical,
since the same function F; enables the hashing value
associated to the father_key knowing those of the son_key
to be obtained.

Definition 2: differential hashing function

If for every item of the keys of the hashing function h
studied there exists one mono-differential computation
function, then the set of these mono-differential functions
constitutes a complete differential computation function
family: Vie[1,N], 3 F;e P(h,i).

If a hashing function has a complete differential
computation function family, we shall say that it is
differential.

2.2: Characterization

We want to characterize the hashing functions which are
differential, that is, which admit a complete differential
computation function family.
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All hashing functions do not admit differential
computation functions. For instance, the hashing function
"®" builds over a binary set product and defined as the binary
operator "logical And" is not differential. In fact, the mono-
differential computation functions can not be established:
F1(0,0,1) can be equal either to F;(®<0,1>,0,1)=®(<1,1>)=1,
or o F1(®<0,0>,0,1)=®(<1,0>)=0, which is in opposition to
the function definition which ensures the uniqueness of the
image.

Property:

The hashing functions which admit a mono-differential
computation function for their i item are characterized by
the following property:

N N

V<X1,...,Xi,...,XN>E l:!:IlAk,),V<yl,...,yi,...,yN>€ 1!—[1Ak’)'

h(<X1,...,Xi,...,XN>) = h(<y1,...,xi,...,yN>) P
h(<X1,...,yi,...,XN>) = h(<y1,...,yi,...,yN>). @
The proof that the property (2) is necessary and sufficient

condition in order that the hashing functions admit a

complete differential computation function family can be

found in [6].

2.3: Example

For instance, take the simple hashing function h defined as
the "exclusive or" between all the key items. Each item
belongs to the same set B.. Formally

N

V<X1,...,Xi,...,XN>E HB, h(<x1,...,xi,...,xN>) = xl@...
k=1

©x;®...@xy with @ the usual "exclusive or" operator from B
to B.

The mono-differential hashing computation functions F;
can be defined as Fi(h(<x1,..0,¥5- 0 XN>), V%) =
h(<x1,...,yi,...,xN>)@yi®xi .

We can prove the property (2) which demonstrates that
the hashing function h is differential.

Assuming the following initial hypothesis:

N N
V<X1,...,Xi,...,XN>E HB,V<y1,...,yi,...,yN>e HB,
k=1 k=1

h(<X1,...,Xi,...,XN>) = h(<y1,..,.,xi,,..,yN>))

By mono-differential hashing function definition:
h(<X1,...,yi,...,XN>) = Fi(h(<X1,...,Xi,...,XN>), X5 yi)

By definition of F;.

h(<x1,...,yi,...,xN>) = h(<x1,...,xi,...,xN>)@xi®yi

By initial hypothesis:

h(<X1,...,yi,...,XN>) = h(<y1,...,Xi,...,yN>)@Xi@yi

By definition of F;:

h(<x1,...,yi,...,xN>) = Fi(h(<y1,...,xi,...,yN>), Xy yl)

By the mono-differential hashing function definition, we
prove that we obtain the final assertion:

h(<X1serYise e XN>) = <Y1,ee0YipeenYN>)  (ged).

3: Performance study
3.1: Presentation

We are going to show in this section the increase in
g g . - .

performance we can achieve using a differential computation

process. To do so, we compare the performances obtained by




hashing functions using usual algorithms against differential
algorithms.

We can find numerous performance studies on hashing
methods [19], [17], [23], [22]. Our study focuses on the
performances of the hashing functions without studying the
collision resolution functions. Actually our technique can be
used without any problem with all collision resolution
functions, so the performance increasing obtained with
differential hashing algorithms should be entirely preserved.

Five hashing functions have been chosen among those
found in the literature. This sample does not cover all
existing hashing functions, but these 5 functions cover a
large spectrum of hashing functions commonly used. We do
not hide the fact that the utilization frequency is not the only
criterion which has intervened in the choice of these 5
functions, the coding simplicity of the usual algorithm of
these hashing functions, which can provided good
performance, has intervened also as criterion. In fact, a
simple algorithm with short code is often faster than a
complex and long algorithm. Some further studies are
undertaken to research the differential algorithms of some
other hashing functions, so increasing the study spectrum.

workstation with 16 Mbytes main memory. The performance
measures of the five hashing functions have been collected in
two tables: The first table collects the performance results of
the usual algorithm [cf Table 1], the second table collects the
results obtained by the differential algorithm assuming the
median key item has been modified [cf Table 2]. Afterwards,
we shall see that some hashing functions have differential
computation process time which can depend on the index of
the differential item: the median item is average choice. The
tithe unit of the performance table is 1/60.10°% second.

3.2: Preliminary discussion

We should like to established some facts about the different
methods used by the five hashing functions before comparing
the two algorithms types (usual and differential). At first we
state that all the functions but the function number three have
an increasing process time depending on the length of the
key (cf Table 1). In fact, this third function uses fixed bit
position extraction method such that the computation
duration of the hashing value is constant. It is also the
shortest time computation function. We note that the

Key length 1 2 4 8 16 32 64 128 256 512 | 1024 | 2048
Function #1 153 266 210 271 396 1089 | 1156 | 2175 | 4189 | 8190 | 16326 | 31958
Function #2 395 489 679 1039 | 1883 | 3635 | 7202 | 14389 | 28663 | 61917 (129112263277
Function #3 172 176 178 178 179 178 178 180 179 178 179 180
Function #4 304 704 1 1326 | 2266 | 3967 | 7985 | 18941 | 38516 | 79407 |1713011419312{899450
Function #5 277 301 559 | 1126 | 1337 | 1598 | 2623 | 4890 | 9284 117688 | 35056 | 68872

Table 1: Usual algorithm performance

Key length 1 2 4 8 16 32 64 128 256 512 | 1024 | 2048
Function #1 113 107 114 113 113 113 114 114 113 114 113 113
Function #2 164 165 164 164 164 164 164 167 254 165 164 165
Function #3 111 128 137 127 128 129 128 127 128 129 129 131
Function #4 358 358 357 451 765 1088 | 1635 | 2350 | 4009 | 7094 [ 13340 | 25863
Function #5 381 385 201 201 413 290 289 502 345 346 558 348

Table 2: Differential algorithm performance

The proposed hashing functions use the following basic
operators: division/product, modulo, addition/subtraction,
folding, bit extraction [19]. Others operators can be used:
power/root, radix transformation, polynomial computation,
etc. These other operators have long computation time, so we
choose to not use them. Good hashing functions spread the
hashing values over their definition domain to obtain low
collision probability. So basic operators can use
multiplicative constants chosen among prime numbers. The
five proposed hashing functions combine several basic
operators.

The first function (#1) uses a folding method based on the
logical operator "exclusive or". The second function (#2)
sums all its items. The third function (#3) uses extraction
method of some bit groups among the bit suite making the
key. The forth function (#4) is a weighted sum of the key
items by prime constants. The last function(#5) called
"hpjw" combines several logical operators like addition and
rotation.

We succeed in finding the differential algorithms of all
five functions. The functions have been coded in C language.
Their codes can be found in [6]. To simplify the performance
tests and without loss of generality, every key item is a byte.
These performance tests have been executed on a Sun SPARC
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hashing value distribution over the definition domain of this
third function is unequal. In fact hashing functions must use
all the key items, if they are significant, to compute a
hashing value.

If the other hashing functions have similar behavior
(computation time increase according to the key length) the
computation time ratio for the same key length vary from 1/2
for the short keys to more than 1/20 for the longest keys. So
the faster a hashing function is the shorter its computation
time is for the long keys. That justifies our a priori choice of
five simple, and consequently fast, code hashing functions.

We recall that the recorded times are not the overall
performance times of the hashing methods, because hashing
methods are based on a hashing/collision resolution function
pair. We emphasize that an inadequate hashing function can
generated numerous collisions which will degrade
considerably the overall performance of the hashing method.
However, we should not conclude that the obtained results on
hashing computation time are not significant. In fact, the
resolution collision function duration is independent of the
key length, so it becomes to be negligible for the long keys
compared to the computation time of the hashing functions.

We have made these performance tests over numerous
versions of several hashing functions, in particular the first




and the third functions: word length computation (4 bytes
item), modification of the overflow process, arithmetical to
logical operator substitution, etc. The previous described
behaviors have been maintained, even if some local
optimizations have been measured, so we have chosen only
one version.

3.3: Results

If now we compare the results obtained from the differential
algorithm to the usual algorithm, we verify that the
processing time of the differential algorithm is, on one hand,
shorter than the processing time of the usual algorithm, on
the other hand, constant with respect to key length, with the
exception of the hashing function number 4 (cf Table 2). In
fact, the differential algorithm used by this hashing function
needs the power computation of the product of the differential
item and its associated prime constant with an exponent equal
to the index of the differential item. The power computation
is a time expensive process which increases according to the
exponent, i.e the location of the differential item.

The influence of the differential item location can be
studied over all the hashing functions and their differential
algorithms. This influence is very low over all the functions
except the hashing function number 4, as established in the
previous paragraph. The remaining functions, although their
absolute durations are short, have some erratic variations
(especially for the function number 5). In fact, theses
variations are generated by either the coincidence or not
coincidence with some constants used during the differential
computation process.

We recall that the previous results have been established
by algorithms based on mono-differential functions. In case
of multiple differences (case where the son_key differs from
the father_key by more than one item) the computation
duration can be deduced from the mono-differential result: it is
equal to the product of this value and the number of
differences. So the duration is proportional to the number of
different items between the two keys. The ratio between the
differential algorithm durations and the usual algorithm
durations, enables the number of item differences that the
differential algorithm must not reach to be better than the
usual algorithm, to be established. The recorded values during
the performance test establish that, for keys longer than one
hundred items, the differential algorithm is faster than the
usual algorithm as soon as the number of differential items is
less than the following values:

4: Application to reachability graph

The graph states need a very large storage area. In fact, the
size of the graphs and the states depends on parallelism and
accuracy of the system model. Our study leads to establish
that real distributed system or protocol models have states
whose size is significant: 1916 bytes for P-channel protocol
[8]; hundreds of bytes for Holzmann [14]; or from our own
experiments several hundred of bytes (Transport class 4
protocol).

Some graph generation tools prefer to use search method
where the data storage structure is a binary tree or specific
hierarchical structure [5]. These methods are not the most
often used because either they have very high specificity
(they are unsuitable for all sorts of property verification) or
they present an overhead in space (indirection pointer) and in
time (link processing) as opposed to the hashing method.

The performance tests have been done using the Bouster
validation tool [3] on a set of several system models
described by means of Petri net. These models have various
number of places (2 to 50000), various numbers of
transitions (1 to 50000), various numbers of arcs (1000 a
100000) and they generate graphs with several hundred
thousand states. Using the Unix profiler tool, our study
established that the hashing function ("f_hashing()"), the
collision resolution and access function ("put_in_table()")
and the string compare function ("bemp()") are the most time
intensively used functions: each of these three functions
consume 15 to 30 % of the processor time in user mode
depending on the distributed system studied and in various
order. The order and the utilization time of these functions are
variable because they depend on the collision rate which
itself depends on the hashing function, the size of the
hashing table and the model characteristics. All the other
functions without exception used less than 10% of the
processor time (most of them significantly less).

These results exhibit at the same time the importance and
the limits of the gain which we can hope to achieved with our
differential method. In fact, the processor spend about 40% of
its user mode time in the code of the hashing function and
collision resolution function. A fast hashing function,
judicious and balanced, should enable this processing time to
be reduced, decreasing the collision rate and hashing value
computation time. Nevertheless, the performance increase
due to a differential technique can not magically reduce the
inherent complexity of the system studied, in particular the

function #1 function #2 function #3

function

#4 function #5

<15 <66 <2

<12

<8

The application proposed as an example in the next
section has a mean difference ratio (2 to 10% from large to
medium size graphs) which is in concordance with the
difference ratio required by the hashing function used. This
will give the explanation of the good results measured.

We notice that some functions (especially the function
#1) can have multi-differential computation functions which
duration is close to the mono-differential computation
duration. This is due to preprocessing technique which can be
used if the differential key can be obtained with no additional
computation. It is the hashing function with this
Ppreprocessing technique which is used in the next section.
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huge number of states that we sometimes need to generate.
The two other main methods mentioned in the introduction
(data densification and partial exploration) can be combined
to advantage with our differential method, and this
possibility will be our next study.

These optimistic conclusions must not hide an important
phenomena already raised by numerous performance
researchers before us: the influence of the virtual memory
mechanism on execution time. In fact, a considerable slow
down is noticed as soon as the data application can not
longer be kept in core memory. Nevertheless the direct access
technique offered by the hashing method as long as the
collision rate is kept low, favors this method against all



other proposed methods because it reduces the inputs and
outputs between secondary and main memory.

The string compare function "bemp()" also comes from
the Unix standard library. As it belongs to the three most
used functions, we propose to study new optimizations, first
to evaluate new comparison algorithms [18], [2], and second
to use graph compression techniques [13] which enable the
string compare function to be omitted.

5: Conclusion

The performance results establish that the differential
hashing speed-up increases with the key length. In fact, usual
hashing functions use all the key items (this process is
recommended to enable the hashing value distribution to be
balanced); hence the usual algorithm complexity is
proportional to the key length. The application hypothesis
(very large graph, huge state number) generate long key
lengths, as corroborated by numercus examples. The
differential algorithm complexity is proportional to the
differential item index between the original key and new key.
The chosen application generates distributed system graphs
which have inherently successive states whose keys have few
differential items (less than 10%). This fact is in perfect
conformance with the behavior of the modeled systems: in a
distributed system typically all the constituting subsystems
do not evolve simultaneously and at every moment.

The differential hashing functions are not a general
answer to all the computation time problems: they do not
always exist, and when they exist, they are not always the
most efficient. But our study establishes that, first, all the
studied hashing functions can be associated to a complete
mono-differential function set, second, for the majority of
differential computation processes time is shorter than for
the usual one, third, differential techniques require
applications where the differential items can be obtained at
low cost (no need of differential item researching). The
proposed application has all these prerequisite
characteristics, and consequently enables a substantial
improvement of performances.

Numerous extensions to this work can be considered:
optimization of existing differential algorithms;
development of differential algorithms for new hashing
functions; adaptation of hashing functions to new graphs, in
particular reduced graphs; and searching of new applications
for the differential hashing method.
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