Notations:

- Upper case letters X, Y, \ldots refer to random variables (r.v.)
- Calligraphic letters X, y, \ldots refer to alphabets
- $|\mathcal{A}|$ is the cardinality of the set \mathcal{A}
- $X^{n}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is an n-sequence of random variables or a random vector (r.vec.) $X_{i}^{j}=\left(X_{i}, X_{i+1}, \ldots, X_{j}\right)$
- Lower case x, y, \ldots and x^{n}, y^{n}, \ldots mean scalars/vectors realization
- $X^{n} \sim p\left(x^{n}\right)$ means that the discrete r.vec. X^{n} has joint probability mass function (pmf) $p\left(x^{n}\right)$
- $p\left(y^{n} \mid x^{n}\right)$ is the conditional pmf of Y^{n} given X^{n}, defined if $p\left(x^{n}\right)>0$.

Entropy

Definition 1 (Entropy). The entropy of a discrete random variable $X \sim p(x)$:

$$
H(X)=-\sum_{x \in X} p(x) \log p(x)=-\mathbb{E}_{X} \log p(X)
$$

Notation: $\log :=\log _{2} \quad$ Convention: $0 \log 0:=0$
Theorem 1. $H(X)$ in bits/source sample is the average length of the shortest description of the rv X.

Properties

E3 $H(X) \geq 0$ with equality iff X deterministic The degenerate distribution (i.e. constant) has zero entropy.
E4 $H(X) \leq \log |X|$. with equality iff X uniform The uniform distribution maximizes entropy.
Example 1 (Binary entropy function:). $X \sim \mathcal{B}(p), 0 \leq p \leq 1, H(X)=h_{b}(p)=-p \log p-(1-p) \log (1-p)$

Joint and conditional entropy

Definition 2 (Conditional independence). Let X, Y, Z be r.v. X is independent of Z conditioning on Y, denoted by $X \Perp Z \mid Y$, if
$\forall(x, y, z), p(x, y, z) p(y)=p(x, y) p(y, z) \quad \Leftrightarrow \quad \forall(x, y, z), p(x, y, z)= \begin{cases}p(x, y) p(z \mid y) & \text { if } p(y)>0 \\ 0 & \text { otherwise }\end{cases}$
$X \Perp Z \mid Y \quad \Leftrightarrow \quad X \rightarrow Y \rightarrow Z$ forms a Markov chain $\quad \Leftrightarrow \quad Z \rightarrow Y \rightarrow X$ forms a Markov chain.

Definition 3. For discrete random variables $(X, Y) \sim p(x, y)$, the Conditional entropy for a given \boldsymbol{x} is:

$$
H(Y \mid X=x)=-\sum_{y \in \mathcal{y}} p(y \mid x) \log p(y \mid x)
$$

and the Conditional entropy is:

$$
H(Y \mid X)=\sum_{x \in X} p(x) H(Y \mid X=x)=-\sum_{x \in X} p(x) \sum_{y \in \mathcal{y}} p(y \mid x) \log p(y \mid x)
$$

and the Joint entropy is:

$$
H(X, Y)=-\mathbb{E}_{X Y} \log p(X, Y)=-\sum_{x \in X} \sum_{y \in y} p(x y) \log p(x y)
$$

Properties

JCE1 $H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)$
JCE2 $H(X, Y) \leq H(X)+H(Y)$ with equality iff X and Y are independent (denoted $X \Perp Y)$.
JCE3 Conditioning reduces entropy: $H(Y \mid X) \leq H(Y)$ with equality iff $X \Perp Y$

JCE4 Chain rule for entropies (formule des conditionnements successifs).
Let X^{n} be a discrete random vector

$$
\begin{aligned}
H\left(X^{n}\right) & =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right) \\
& =\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right) \leq \sum_{i=1}^{n} H\left(X_{i}\right)
\end{aligned}
$$

with notation $H\left(X_{1} \mid X^{0}\right)=H\left(X_{1}\right)$.
JCE5 $H(X \mid Y) \geq 0$ with equality iff $X=f(Y)$ a.s. (i.e. w.p. 1. i.e. on the support of $p(y)$.)
JCE6 $H(X \mid X)=0$ and $H(X, X)=H(X)$
JCE7 Data processing inequality. Let X be a discrete random variable and $g(X)$ be a function of X, then

$$
H(g(X)) \leq H(X)
$$

with equality iff $g(x)$ is injective on the support of $p(x)$.
JCE8 Fano's inequality: Let $(X, Y) \sim p(x, y)$ and $P_{e}=\mathbb{P}\{X \neq Y\}$, then

$$
H(X \mid Y) \leq h_{b}\left(P_{e}\right)+P_{e} \log (|X|-1) \leq 1+P_{e} \log |X|
$$

JCE9 $H(X \mid Z) \geq H(X \mid Y, Z)$ with equality iff $X \Perp Y \mid Z$.
JCE10 $H(X, Y \mid Z) \leq H(X \mid Z)+H(Y \mid Z)$ with equality iff $X \Perp Y \mid Z$.

Mutual Information

Definition 4. For discrete random variables $(X, Y) \sim p(x, y)$, the Mutual Information is:

$$
\begin{aligned}
I(X ; Y) & =\sum_{x \in X} \sum_{y \in \mathcal{y}} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

Properties

MI2 $I(X ; Y)$ is symmetric: $I(X ; Y)=I(Y ; X)$
MI3 $I(X ; X)=H(X)$
MI4 $I(X ; Y)=D(p(x, y) \| p(x) p(y))$
MI5 $I(X ; Y) \geq 0$ with equality iff $X \Perp Y$
MI6 $I(X ; Y) \leq \min (H(X), H(Y))$ with equality iff $\mathrm{X}=\mathrm{f}(\mathrm{Y})$ a.s. or $\mathrm{Y}=\mathrm{f}(\mathrm{X})$ a.s.

Conditional Mutual Information

Definition 5. For discrete random variables $(X, Y, Z) \sim p(x, y, z)$, the Conditional Mutual Information is:

$$
\begin{aligned}
I(X ; Y \mid Z) & =\sum_{x \in X} \sum_{y \in y} \sum_{z \in \mathcal{Z}} p(x, y, z) \log \frac{p(x, y \mid z)}{p(x \mid z) p(y \mid z)} \\
& =H(X \mid Z)-H(X \mid Y, Z)=H(Y \mid Z)-H(Y \mid X, Z)
\end{aligned}
$$

Properties

CMI1 $I(X ; Y \mid Z) \geq 0$ with equality iff $X \Perp Y \mid Z$
CMI2 Chain rule

$$
I\left(X^{n} ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X^{i-1}\right)
$$

CMI3 If $X \rightarrow Y \rightarrow Z$ form a Markov chain, then $I(X ; Z \mid Y)=0$
CMI4 Corollary: If $X \rightarrow Y \rightarrow Z$, then $I(X ; Y) \geq I(X ; Y \mid Z)$
CMI5 Corollary: Data processing inequality:
If $X \rightarrow Y \rightarrow Z$ form a Markov chain, then $I(X ; Y) \geq I(X ; Z)$
CMI6 There is no order relation between $I(X ; Y)$ and $I(X ; Y \mid Z)$

References

[1] C.E. Shannon, "A mathematical theory of communication", Bell Sys. Tech. Journal, 27: 379-423, 623-656, 1948
[2] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley Series in Telecommunications. Wiley, New York, 2006.
[3] A. E. Gamal and Y-H. Kim. Lecture Notes on Network Information Theory. arXiv:1001.3404v5, 2011.
[4] R. W. Yeung. Information Theory and Network Coding. Springer, August 2008.

