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Course material

Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning: From
Theory to Algorithms, Cambridge University Press, 2014.

UNDERSTANDING
MACHINE
LEARNING

Website and online version at (web)
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https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/index.html

Course material

S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing,
Birkhatuiser, 2013.

A Mathematical
Introduction to

Compressive
Sensing

Early and short version:
S. Foucart, Notes on compressed sensing, 2009. (pdf)
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http://www.math.tamu.edu/~foucart/teaching/notes/CS.pdf

Course material

Compressed Sensing: Theory and Applications, Edited by Y.C. Eldar and G.
Kutyniok, Cambridge University Press, 2012.

Compressed
Sensing

Theoryand Applications

Yonina C. Eldar and Gitta Kutyniok

® Chapter 1:
M.A. Davenport, M.F. Duarte, Y.C. Eldar, G. Kutyniok Introduction to
compressed sensing. (pdf)

® Short version:
G. Kutyniok, Theory and Applications of Compressed Sensing, GAMM
Mitteilungen 36 (2013), 79-101.
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http://www-stat.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf

Lecture 3 - LINEAR dimensionality reduction and
NON-LINEAR reconstruction
= Compressive sensing

@ 3.1. Reconstruction guarantee: Restricted Isometry Property
® 3.2 Iterative Hard Thresholding satisfies RIP: IHT = RIP
© 3.3. Which matrices satisfy the RIP?

O 3.4. Summary on Compressive sensing
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Reconstruction guarantee:
Restricted Isometry Property (RIP)
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The problem: invert y = Mx

M square ﬁ
3 a reconstruction map:
R™ — R?
y—=x=M"1y
T
condition on the matrix
rank(M) =m=d
ker(M) ={z: Mz =0} = {0}
0 . ker(M)

0 llzllo

8/ 25



The problem: invert y = Mx
M square ﬁ
3 a reconstruction map:
R™ — R?

y = x=M"1y

)

condition on the matrix
rank(M) =m=d

M fat

3 a reconstruction map:

R™ — RY
y = x=77
7
ker(M) ={z: Mz =0} = {0}
0. ker(M)

condition on the matrix 777
NEW Reduce the domain of definition
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of M: s-sparse
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The restricted isometry property (RIP): definition

Definition (RIP)
Let € >0, s,m,d € N. A matrix M € R™9 with m < d is (¢, s)-RIP if

Vx € X, (1—e¢)||x|3 < |IMx|I3 < (1 + €)|Ix]I3 (1)

Interpretation of (e, s)-RIP:

® M preserves the Euclidean norm of s-sparse vectors

9/ 25



The restricted isometry property (RIP): definition

Definition (RIP)

Let € >0, s,m,d € N. A matrix M € R™9 with m < d is (¢, s)-RIP if

Vx € Lo, (1= e)lIxll3 < [[Mx][3 < (1+ €)l|x|]3 (1)

Interpretation of (e, s)-RIP:

® M preserves the Euclidean norm of s-sparse vectors
e McR™ with m < d is (¢, s)-RIP if

[ Mx[5 — [Ix]13

2

<e (2)

9/ 25



The restricted isometry property (RIP): definition

Definition (RIP)

Let € >0, s,m,d € N. A matrix M € R™9 with m < d is (¢, s)-RIP if

Vx € Lo, (1= e)lIxll3 < [[Mx][3 < (1+ €)l|x|]3 (1)

Interpretation of (e, s)-RIP:

® M preserves the Euclidean norm of s-sparse vectors
e McR™ with m < d is (¢, s)-RIP if

[ Mx[5 — [Ix]13

2

<e (2)

9/ 25



RIP: | reconstruction

Proposition (RIP and /, reconstruction)

Let M € R™? with m < d. Let 0 < e < 1. If M is (¢,25)-RIP, then

Vx € X, X =x, with & € arg min ||z]|o.
z:Mz=y

Proof. Blackboard + Th 2.13 of Foucart-Rauhut.

Interpretation:
“a (&,2s)-RIP matrix is a good sensing matrix for Iy reconstruction.” We "pay” 2s
instead of s, because the support is unknown.

THE Question: is a (¢, 2s)-RIP matrix a good sensing matrix for practical
reconstruction algorithms?
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RIP: operator norm

Lemma (RIP and operator norm)

Let M € R™? with m < d. If M is (¢,s)-RIP, then

vS C[1,d],1S| <5, |[MMs — Is|lop < €.

(3)

Recall (note in the definition below ||.||2 not ||.]|3)

op — .
s lIxsll2

Proof.
Interpretation:

VS, MIMs ~ Is when applied to any xs (vector of size S)

11/ 25



A practical algorithm lterative Hard Thresholding
satisfies RIP

Iterative Hard Thresholding (IHT) = RIP
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A practical algorithm

Definition (Iterative Hard Thresholding (IHT))

x°=0
X" = H, (x' + M7 (y — Mx"))
output: Xy = lim x!
|—+00

Hs: Hard Thresholding
keeps the s coefficients with largest absolute value.

Justification: x/*1 = Hy(x! + error(y, M, x'))
N—— —

~x—x!

13/ 25



RIP is good for IHT

Theorem (Optimality of IHT for RIP matrices )

Let M € R™? with m < d. Let e > 0.
If M is (e, 3s)-RIP, then

[ = x|| < 2€]|x" ]|

(4)

Interpretation:
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RIP is good for IHT

Theorem (Optimality of IHT for RIP matrices )

Let M € R™? with m < d. Let e > 0.
If M is (e, 3s)-RIP, then

[ = x|| < 2€]|x" ]|

XI =

. . 1
In particular, if e < =,
2 I—+o00

(4)

Interpretation:
Proof.
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Summary: if M is (¢,3s)-RIP, with € < 1/2, then X7 = x

Similarly: if M is (¢, 25)-RIP, with € < 1/3, then Rgp = x 1 10
if M is (6, 135)-R|P, with € < 1/6, then Xopmp = X [Fr Th6.25)

THE question: how to construct a matrix M that is (1/2, 3s)-RIP?
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Which matrices satisfy the RIP?
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Sensing matrices that are not good

L

Vector y = Mx is all zero!
— If x sparse, M must be non-sparse
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Concentration inequality

Theorem (Concentration of Gaussian Matrices . Lemma5.121)

Let x e R?. Let M € R™? s.t. M;; ~ N(0,1/m) i.id.

2

|| Mx|[5 ng

_ B _
VO<t<3, Py B 1‘>t <2e % (5)

(*)

Interpretation:

® Neg(x) & (1—t)|[x|[3 < |[Mx||3 < (1+t)||x]|3 & M is good for this x

¢ [Quiz 7]

18/ 25




Concentration inequality

Theorem (Concentration of Gaussian Matrices . Lemma5.121)

Let x e R?. Let M € R™? s.t. M;; ~ N(0,1/m) i.id.

M]3 o

VO<t<3, Py —1>t]| <2 % (5)
|IxI13

(*)

Interpretation:

® Neg(x) & (1—t)|[x|[3 < |[Mx||3 < (1+t)||x]|3 & M is good for this x

¢ [Quiz 7]

(5) & Ja,0 s.t. Py (|||Mx|3 — E[[|Mx|[3]] > a) <6

concentration (around the mean) inequality
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Other concentration inequalities

Markov’s inequality (due to Chebyshev (Markov's teacher)):
Given a non-negative random variable X with finite mean

E[X 1
P(X >t) < %, Vt>0. Decayin C)(;)
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Other concentration inequalities

Markov’s inequality (due to Chebyshev (Markov's teacher)):
Given a non-negative random variable X with finite mean

P(X > ) < ]E[tx], Ve > 0. (6)

Chebyshev’s inequality: Given a random variable X with mean x and finite
variance (denoted var(X) < o0)

var(X)
t2

P(IX —E(X)| >t) < , Vt>0. @)
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Other concentration inequalities

Chernoff bound: (due to Herman Rubin)
Given a random variable X with mean p and finite variance

- ]E[eAIXﬂLI]

]P(Xiuzt)— ert )

Vt,A > 0. Decay in O(e )
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Other concentration inequalities

Chernoff bound: (due to Herman Rubin)
Given a random variable X with mean p and finite variance

E[eMX =l

Cramer-Chernoff method:

step 1 Apply Chernoff bound
step 2 Bound optimization

E[eMNX—ul
L G|
A>0 et

step 3 Repeat with X' := —X.
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Difference between RIP and concentration

Concentration inequality for Gaussian matrices (5) means
Given x

m2
P ([I1Mx][3 = [IxI3] > tl|x|3) < 27

RIP means
For all x s-sparse

(1= 0)lIx|I3 < [[Mx][3 < (1 + £)lIxI13
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Condition for “RIP” over FINITE set

Lemma (Johnson-Lindenstrauss)

Let M e R™? s.t. M;; ~N(0,1/m) . Let0<t <3, §>0.
Let Q be a finite set of vectors C R".
2|9|

6
If m> 2 log 5 then

Mx||2
pu (sp L2
xea| [IxI13

—1‘§t)21—5 (9)

v

Interpretation: with probability at least 1 — §, the norm of the vectors is preserved
(precision t).

Proof:
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Condition for RIP and success of IHT

Theorem (RIP and success of IHT (s . 615 and chap. 125])
Let M e R™? s.t. M;; ~N(0,1/m) . Lete> 0,5 > 0.
4 2
Ifm> = (2s|n L 75420 ) then
€ s )

2

M
I X|2|2—1‘>e> )
[Ix113

Py < sup
XEX,

. . n

In particular: d¢1, 6,3 > 0s.t. if m> cisln— + s + ¢,
s

then with probability at least 1 — §

RiHT = X

Proof:
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3.4. Summary on Compressive sensing
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Compressive sensing overview

Observe x € RY via m measurements, with m < d
More precisely, y = Mx where y € R™

Compressible
set of interest

Assumptions:

- signal approximately s-sparse

n
- use m > ¢ slog —, c=constant, random
s

linear measurements

. . nonlinear l
- reconstruct by a non linear mapping approximation

(reconstruction) random projection

(observation)

%l

Mike Davies.

25/ 25



	3.1. Reconstruction guarantee: Restricted Isometry Property
	3.2 Iterative Hard Thresholding satisfies RIP: IHT  RIP
	3.3. Which matrices satisfy the RIP?
	3.4. Summary on Compressive sensing

