HDL: HiGH DIMENSIONAL LEARNING ALINE Roumy
Quiz

0. Which of the following statements are correct?
A. Y, is a union of subspaces of dimension s
B. 34 is a union of subspaces of different dimensions
C. X, is a subspace of dimension s
1. Show that (1) < (2)
2. Which of the following statements might be correct? What is your intuition? And why? (we will establish
the proof of one of these statements)
if Je > 0 s.t.
A. M is (e, 5)-RIP, then M is a good sensing matrix (i.e. allows reconstruction).
B. M is (¢, s)-RIP, then M is a bad sensing matrix.
C. M is (¢,2s)-RIP, then M is a good sensing matrix.
D. M is (e,25)-RIP, then M is a bad sensing matrix.
3. Prove Lemma RIP and operator norm. To do so,
A. (easy) first show that if M is (e, s)-RIP, then
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B. (advanced) then show that
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C. (easy) conclude with
|(MEMs — Ixs||s T
max =||Mg Mg — I||op-
2520 H:L,SHQ || s ts ||0P

4. Which of the following statements are correct? If M is (e, s)-RIP, then
A. VS, ME Mg =~ I when applied to any xg
B. MT M ~ I when applied to any s-sparse vector
C. MTM = I when applied to any n- length vector
5. Which of the following statements are correct?
A. The theorem is a positive result: RIP guarantees the success of THT.
B. The update rule of IHT (2! — 2!*1) is a contraction mapping
C. 3sis a typo. Should be s.
D. 3sis a typo. Should be 2s.
6. Prove Theorem RIP is good for IHT. To do so, let us denote
u' =o'+ M (y — Ma') =o' + MTM(zx — ") (1)
T = H(uh)

e First show that V s-sparse vector =z,
= 2412 <t — a2 )
e Explain all equalities and inequalities below
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e We now want to show that
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To do so, let us denote
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Explain all equalities and inequalities below

(I = MTM)u,v) @ & (I - MEMy) v
(e)

l+1)

< (I = M7 Mr)ur|lz [Jor||2

6))

< [T = Mf Myllop |lurll2 [[or||2

< e |lurllz [|vr]|2

which shows .
e Now, from and , we have
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Conclude, by showing that if 2¢ < 1, then 2 l—> x.
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Let y = Mz. Compute the distribution of y; and of ||y||?.

Explain now why this is called concentration inequality.

. Spot the differences between the two statements.

. Proof of the Johnson Lindenstrauss lemma. Fill in when there is 77
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7. The goal of this quiz is to explain why (5) is called a concentration inequality.
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What is p,? a concentration inequality
From the derivation above, and from the fact that the distribution of
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Therefore, if m > f—;log |($ |, then
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Covering argument.
Let p > 0. Consider that Q allows to cover 8;(R?) (unit ball in R?) i.e.

sup min [z —ql[2 < p
a:l|x|]=1 9€9

We look for the smallest set Q. Which of the following statements are correct?

39 C 81 (R?) s.t.
A. Q is finite
B. Q grows exponentially with s

Mx||3 is sub-exponential, we have
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(15)



