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Abstract— In this paper, we consider an iterative receiver
composed of a Maximum A Posteriori (MAP) equalizer and
a MAP decoder. During the iterations, the equalizer and the
decoder exchange extrinsic information and use them as a priori
in order to improve their performance. We consider here an
iterative receiver including a channel estimator. We propose to
study analytically the impact of both the a priori information and
the channel estimation errors on the equalizer performance. We
show that it is equivalent to a shift in terms of signal-to-noise
ratio (SNR) and we provide an analytical expression. Simulation
results show that the analytical expression we give approximate
quite well the equalizer performance.

I. INTRODUCTION

The optimal receiver for a frequency selective coded channel
performs joint equalization and decoding which makes its
complexity generally prohibitive. A solution achieving a good
complexity/performance trade-off is to use an iterative receiver
composed of a soft-input soft-output (SISO) equalizer and a
SISO decoder [1]. The basic idea behind iterative processing is
to exchange extrinsic information among the equalizer and the
decoder in order to achieve successively refined performance.
The optimal SISO algorithm, in the sense of minimum bit error
rate (BER), to be used for equalization and decoding is the
symbol MAP algorithm [2]. Hence, in this paper, we consider
an iterative receiver composed of a MAP equalizer and a
MAP decoder. We propose to study analytically the impact
on the equalizer performance of both the channel estimation
errors and the a priori information provided by the channel
decoder. To do that, we follow the approach of [3] and [4]
which studied the impact of channel estimation errors on the
equalizer performance. In [3], Gorokhov studied the impact
of channel estimation errors on the performance of the Viterbi
equalizer and showed that it is equivalent to a loss in SNR and
evaluated this loss. In [4], we have extended the study to a
List-type MAP equalizer prefiltered by the whitened matched
filter, in the case of multiple-input multiple-output (MIMO)
systems.

In [5], we assumed that the channel is perfectly estimated
by the receiver and we showed that the use of the a priori
information by the MAP equalizer is equivalent to a gain in
SNR. In this paper, we consider a more realistic scheme where
the channel estimation is not perfect. In this case, we will show
that the use of both the a priori information and the channel

estimate by the MAP equalizer is equivalent to a shift in SNR
and we will give a closed form of this shift.

This work is a first step in the study of the convergence anal-
ysis of iterative receivers. Most analyses are based on extrinsic
information transfer (EXIT) charts [6]. These analyses use
generally simulations since it is difficult to study analytically
the performance of a MAP equalizer having a large number of
states. Actually, analytical studies based on the EXIT function
have been performed when the trellis has only two states [7].
The contribution of our paper is to give an analytical study of
the MAP equalizer performance when the number of states is
greater than two.

Throughout this paper scalars and matrices are lower and
upper case respectively and vectors are underlined lower case.
(.)T denotes the transposition and Im is the m × m identity
matrix.

II. SYSTEM MODEL

We consider a coded data transmission system over a
frequency selective channel depicted in Figure 1. The input
information bit sequence is first encoded with a convolutional
encoder. The output of the encoder is interleaved, mapped
to the symbol alphabet A. For simplicity, we will consider
only the BPSK modulation (A = {+1,−1}). We assume that
transmissions are organized into bursts of T symbols. The
channel is supposed to be invariant during one burst. The
received baseband signal sampled at the symbol rate at time
k is

xk =

L−1
∑

l=0

hlsk−l + nk (1)

where L is the channel memory. In this expression, nk are
modeled as independent samples of a real white Gaussian
noise with normal probability density function (pdf) N (0, σ2)
where N (α, σ2) denotes a Gaussian distribution with mean α

and variance σ2. The term hl is the lth tap gain of the channel,
which is assumed to be real valued. Let s = (sT−1, ..., s1−L)T

be the (L + T − 1)-long vector of coded symbols and n =
(nT−1, ..., n0)

T be the T -long noise vector. The output of the
channel is the T -long vector x = (xT−1, ..., x0)

T defined as

x = τ(h)s + n (2)



where τ(h) is a T × (T + L − 1) Toeplitz matrix with its
first row being (h0, h1, ..., hL−1, 0, ..., 0) and its first column
(h0, 0, ..., 0)T .
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Fig. 1. Transmitter structure

When the channel is known and no a priori information is
provided to the equalizer, the data estimate according to the
sequence MAP criterion (equivalently the maximum likelihood
(ML) criterion since there is no a priori) is given by

ŝMAP = argmin
u

(

‖x − τ(h)u‖ : u ∈ AT+L−1
)

. (3)

Now, we consider a particular error event characterized by its
length m [8]. Thus, we suppose that there exists an interval
of size m such that all the symbols of ŝ are different from the
corresponding symbols of s while the preceding symbol and
the following one are the same for s and ŝ. Define sm and
ŝm to be the vectors of symbols corresponding to this interval
and the vector of errors em = ŝm − sm. A subevent Em of
the error event is that ŝm is better than sm in the sense of the
ML metric

Em : ‖xm − τm(h)ŝm‖ ≤ ‖xm − τm(h)sm‖ (4)

where xm is the subvector of x and τm(h) is the block of τ(h)
corresponding to the error interval. The probability P (Em) of
Em is given by [8]:

P (Em) = Q

(

‖εm‖

2σ

)

(5)

where εm = τm(h)em and Q(α) = 1√
π

∫∞
α

exp(−y2)dy. Let
Σm be the set of all possible error events of length m. Then,
the probability, P (Σm), that any error event is of length m is
bounded by the sum of the probabilities of the subevents Em

P (Σm) ≤
∑

Em

P (Em). (6)

Let dmin be the channel minimum distance [8]. Because of
the exponential decrease of the Gaussian distribution function,
the overall probability of error P (Σ) ≤

∑

m P (Σm) will be
dominated at high SNR by the term involving the minimum
value dmin of ‖εm‖ . Thus

P (Σ) ' Q

(

dmin

2σ

)

. (7)

Our goal is to find an approximation of P (Σ) when the
equalizer is integrated into an iterative receiver including a
channel estimator.
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Fig. 2. Transmitter structure

III. ITERATIVE RECEIVER

As shown in Figure 2, the receiver consists of two soft-input
soft-output (SISO) processors, the equalizer and the decoder.
We consider only the MAP approach for both equalization and
decoding, using the BCJR algorithm [2]. The MAP equalizer
computes the a posteriori probabilities (APPs) on the coded
bits, P (sk = s|x, h̃), s ∈ A, 1 − L ≤ k ≤ T − 1,

using the received vector x and the channel estimation vector

h̃=
(

h̃0, · · · , h̃L−1

)T

, and outputs the log-likelihood ratios
(LLRs) [6]:

Le (sk) = L
(

sk|x, h̃
)

− L (sk)

= log
P (sk = +1|x, h̃)

P (sk = −1|x, h̃)
− log

P (sk = +1)

P (sk = −1)
(8)

which are the a posteriori LLRs L
(

sk|x, h̃
)

minus the a pri-

ori LLRs L (sk) . These a priori LLRs are provided by the de-
coder. At the first receiver iteration, L (sk) = 0 since no a pri-
ori information is available. The LLRs Le (sk) are then dein-
terleaved and provided to the decoder as input information, in
order to refine its reliability. The MAP decoder computes the
APPs P (sk = s|r), r = (Le (s1−L) , · · · , Le (sT−1))

T
, and

outputs the LLRs

Ld (sk) = log
P (sk = +1|r)

P (sk = −1|r)
− log

P (sk = +1)

P (sk = −1)
.

These LLRs are then interleaved and provided to the equalizer
as a priori, L (sk), at the next iteration. After some iterations,
hard decisions are taken on the information bits by the decoder.

IV. PERFORMANCE ANALYSIS

Now, we want to evaluate the impact of both the a priori
information and the channel estimation errors on the MAP
equalizer performance. The study will be done here for the
equalizer using the sequence MAP criterion. It holds for the
symbol MAP equalizer using the BCJR algorithm [2] since the
two equalizers have almost the same performance as shown in
[9, page 814].

Proposition: Suppose we are given a frequency selective
channel with a memory of L and an additive white Gaussian
noise (AWGN) with noise variance σ2. Assume that the
outputs of an AWGN channel with noise variance σ2

a are
also available as observations (corresponding here to the a
priori observations). Suppose that the channel is estimated by
using a perfect training sequence of length T0, having ideal



autocorrelation properties. The estimates h̃l of the tap gains
hl, for 0 ≤ l ≤ L − 1, are thus modeled as h̃l = hl + σekl,
where kl are independent Gaussian random variables with zero
mean and variance 1 and σe = σ√

T0

.Then, at high SNR,
the MAP equalizer using the a priori information and the
channel estimate is equivalent to the MAP equalizer having
no a priori information and a perfect channel knowledge but
with an equivalent signal-to-noise ratio

ˆSNRest = SNR(1 +
8µ2

d2
min

)



1 +
Lr2

1 + 8µ2

d2

min





−1

(9)

where SNR is the true signal-to-noise ratio, µ = σ
σa

and
r = σe

σ .

Remark: The representation of the a priori information as
the outputs of an AWGN channel is a good approximation of
the decoder outputs. Actually, it has been shown in [11][10][6]
that it is equivalent to have at the equalizer input a set of
observations

zk = sk + wk (10)

where wk ∼ N (0, σ2
a). Thus, the LLRs L (sk) fed back from

the decoder can be modeled as independent and identically
distributed (i.i.d) samples from a random variable with the
conditional pdf N ( 2sk

σ2
a

, 4

σ2
a
) for some σ2

a [10][6].

Proof:
The proof is divided into three parts. First, the probability

of an error subevent of length m, P (Em), is derived and
then upper bounded. Finally, the overall probability of error,
P (Σ), is calculated in order to find an approximation of the
equivalent SNR.

Proof-part1: P (Em)
Let h= (h0, · · · , hL−1)

T be the vector of true channel

parameters and h̃=
(

h̃0, · · · , h̃L−1

)T

be its estimate. Taking
into account the a priori information and the channel
estimation errors, the a posteriori probability of the sequence
s is given by

p(s|x, z, h̃) ∝ exp






−

∥

∥

∥x − τ(h̃)s
∥

∥

∥

2

2σ2






exp

(

−
‖z − s‖2

2σ2
a

)

(11)
where z= (zT−1, ..., z1−L)T and τ(h̃) is a
T × (T + L − 1) Toeplitz matrix with its first row

being
(

h̃0, h̃1, ..., h̃L−1, 0, ..., 0
)

and its first column
(

h̃0, 0, ..., 0
)T

. The data estimate according to the sequence
MAP criterion is then given by

ŝMAP = arg min
u

(

∥

∥

∥
x − τ(h̃)u

∥

∥

∥

2

+
σ2

σ2
a

‖z − u‖2 : u ∈ AT+L−1

)

(12)

A subevent Em of the error event of length m is that ŝm is
better than sm in the sense of the sequence MAP metric

Em :
∥

∥

∥xm − τm(h̃)ŝm

∥

∥

∥

2

+
σ2

σ2
a

‖zm − ŝm‖2 ≤ (13)

∥

∥

∥xm − τm(h̃)sm

∥

∥

∥

2

+
σ2

σ2
a

‖zm − sm‖2

where zm is the subvector of z and τm(h̃) is the block of τ(h̃)
corresponding to the error interval.

Let µ = σ
σa

, y= (xT−1, xT−2, · · · , x0, µzT−1, · · · , µz1−L)T ,

M =
(

(τ(h))T
, µIT+L−1

)T

a (L − 1) × (2T + L − 1)

matrix and b= (nT−1, nT−2, · · · , n0, µwT−1, · · · , µw1−L)T .

Using (1) and (10), we can write

y = Ms + b. (14)

Using h̃ instead of h, the data estimate according to the
sequence MAP criterion is given by,

ŝMAP = arg min
u

(

∥

∥

∥y − M̃u
∥

∥

∥

2

: u ∈ AT+L−1

)

(15)

where M̃ =

(

(

τ(h̃)
)T

, µIT+L−1

)T

. Hence, (13) is equiv-

alent to

Em :
∥

∥

∥y
m
− M̃mŝm

∥

∥

∥

2

≤
∥

∥

∥y
m
− M̃msm

∥

∥

∥

2

(16)

where y
m

is the (2m+L−1)×1 subvector of y corresponding

to the error interval and M̃m =

(

(

τm(h̃)
)T

, µIm

)T

.

Let em = ŝm − sm, then (16) is equivalent to the event

∥

∥

∥M̃mem

∥

∥

∥

2

≤ 2
(

eT
mM̃T

m

(

y
m
− M̃msm

))

. (17)

Let Mm (∆h) = M̃m−Mm and bm = y
m
−Mmsm, then we

obtain

∥

∥

∥M̃mem

∥

∥

∥

2

≤ 2
(

−eT
mM̃T

mMm (∆h) sm + eT
mM̃T

mbm

)

.

(18)
Using the assumptions given in [3], we obtain
that
∥

∥

∥τm(h̃)em

∥

∥

∥ −→ ‖εm‖ (1 + ξT0
) where ξT0

tends in
probability to 0, hence

∥

∥

∥M̃mem

∥

∥

∥

2

=
∥

∥

∥τm(h̃)em

∥

∥

∥

2

+ 4mµ2

→ ‖εm‖2
+ 4mµ2. (19)

Replacing
∥

∥

∥M̃mem

∥

∥

∥

2

by ‖εm‖2
+4mµ2 and M̃mem by Em =

Mmem in (18), leads to

‖εm‖2
+ 4mµ2 ≤ 2

(

ET
mbm − ET

mMm (∆h) sm

)

(20)

Since the lower block of Mm (∆h) is equal to zero, we have



ET
mMm (∆h) sm = εT

mMm (∆h) sm. (21)

We suppose that ∆h =h̃−h ∼ N (0, C), C being the covari-
ance matrix of ∆h. Defining Cm(s) = HL(sm)CHL(sm)T ,

HL(sm) being the Hankel matrix such as HL(sm)∆h =
Mm (∆h) sm, we obtain

‖εm‖2
+ 4mµ2 ≤ χs (22)

where χs ∼ N (0, ∆s) with

∆s = 4σ2 ‖Em‖2
+ 4εT

mCm(s)εm

= 4σ2 ‖Em‖2



1 +
1

1 + 4mµ2

‖εm‖
2

εT
mCm(s)εm

σ2 ‖εm‖2



 (23)

Hence, the probability of the error event P (Em) is given by

P (Em)=Q







‖Em‖

2σ



1 +
1

1 + 4mµ2

‖ε
m‖

2

εT
mCm(s)εm

σ2 ‖εm‖2





−1/2






=Q







‖εm‖

2σ

√

1 +
4mµ2

‖εm‖2



1 +
1

1 + 4mµ2

‖εm‖
2

εT
mCm(s)εm

σ2 ‖εm‖2





−1/2






(24)

We suppose here that a perfect training sequence of length
T0 is used and then h̃l = hl + σekl, where kl are modeled
as independent complex Gaussian random variables with zero
mean and variance 1 and σe = σ√

T0

. Thus, Cm(s) → Lσ2
eIm,

and εT
mCm(s)εm → Lσ2

e ‖εm‖2
. This leads to

P (Em) = Q





∥

∥

∥Ẽm

∥

∥

∥

2σ





= Q







√

‖εm‖2
+ 4mµ2

2σ



1 +
1

1 + 4mµ2

‖εm‖
2

Lr2





−1/2






(25)

where r = σe

σ .

Proof-part2: upper bound for P (Em):
In order to find an approximation of P (Σ) , the overall

probability of error, we now want to find a lower bound for
the quantity

∥

∥

∥Ẽm

∥

∥

∥ . Actually, at high SNR, this term will
dominate the sum of the probabilities of the error events (be-
cause of the exponential decrease of the Gaussian distribution
function). Let us consider first the case of perfect channel
knowledge. By definition, ‖εm‖2 ≥ d2

min. Moreover, we have

m ≥ 2. Thus, a lower bound for
∥

∥

∥Ẽm

∥

∥

∥ =

√

‖εm‖2
+ 4mµ2

is given by

bound(µ2) =
√

d2
min

+ 8µ2. (26)

In [5], we showed that this bound is tight.
When the channel is not perfectly estimated, the probability

of the error event can be rewritten as

P (Em) = Q





‖εm‖2
+ 4mµ2

2σ

√

‖εm‖2
Lr2 + ‖εm‖2

+ 4mµ2



 . (27)

We assume here that L << T0 which is equivalent to
Lr2 << 1. In this case, ‖εm‖2

Lr2 is negligible compared
to ‖εm‖2. When the error sequence allowing to attain the
minimum distance is of length m = 2, we can consider that
the quantity obtained by calculating

∥

∥

∥Ẽm

∥

∥

∥ taking m = 2 and

‖εm‖2 = d2
min is a lower bound for

∥

∥

∥Ẽm

∥

∥

∥. Otherwise, an
exhaustive search has to be done to find the lower bound.

Proof-part3: P (Σ)

As in the case without a priori and perfect channel knowl-
edge, at high SNR, the overall probability of error P (Σ) can
be approximated by

P (Σ) ' Q







dmin

2σ

√

1 +
8µ2

d2
min



1 +
1

1 + 8µ2

d2

min

Lr2





−1/2





.

(28)
Thus, the expression of the error probability given in (28) can
be seen as the one given in (7) with an equivalent signal-to-
noise ratio

ˆSNRest = SNR(1 +
8µ2

d2
min

)



1 +
Lr2

1 + 8µ2

d2

min





−1

. (29)

V. SIMULATION RESULTS

In our simulations, we consider the following channels:

• Channel3: (0.5; 0.71; 0.5)
• Channel5: (0.29; 0.50; 0.58; 0.50; 0.29)

The modulation used is the BPSK. The transmissions are
organized into bursts of 512 symbols. Figures 3 and 4 show
the Bit Error Rate (BER) curves with respect to the SNR, for
different values of the ratio µ = σ

σa
and for r = σe

σ = 0.3.

This value of the ratio r corresponds to an ideal training
sequence of length T0 = 11. Each curve is obtained while
the ratio µ is kept constant. The solid lines indicate the
receiver performance obtained by simulations. The dotted
lines are obtained by shifting the curve corresponding to the
case with no a priori and with a perfect channel knowledge
(µ = 0, r = 0) by the values of the SNR shift: 10 log10(1 +

8µ2

d2

min

)− 10 log10

(

1 + Lr2

1+
8µ2

d2
min

)

. Table.1 shows the values of

the minimum error distance dmin and the minimum distance
input error sequence for the channels of interest [12].



Channel3 Channel5
dmin 1.5308 1.0532
Error sequence (2,−2) (2,−2)

Table.1

For Channel3, we notice that the theoretical curves (dotted
lines) approximate well the BER. However, for larger µ

(µ = 0.83), the approximation becomes slightly erroneous.
Moreover, Figure 4 shows that the approximation is better for
Channel5. We can conclude that the approximation holds in
general for σ < σa and that it is better for Channel5.

Now, we propose to test the reliability of the term due to the
channel estimation errors in (9). In Figure 5, the solid curves
indicate the performance of the equalizer fed by the a priori
when the channel is estimated (r = 0.3), for different values
of µ. The dotted curves are obtained by shifting the curves
given by simulations for different values of µ and r = 0 by

the values of the SNR loss: −10 log10

(

1 + Lr2

1+
8µ2

d2
min

)

. We

notice that the dotted curves approximate well the solid ones
independently of the values of µ. Hence, the gap observed
between the theoretical curves and the curves obtained by
simulations in figures 3 and 4 is due to the term corresponding
to the effect of the a priori and not to the term corresponding
to the channel estimation errors in (9).
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Fig. 3. Comparison of the equalizer performance and the theoretical
performance when r = σe

σ
= 0.3, for different values of µ, for Channel3.
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Fig. 4. Comparison of the equalizer performance and the theoretical
performance when r = σe

σ
= 0.3, for different values of µ, for Channel5.
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Fig. 5. The solid curves indicate the performance of the equalizer within the
iterative receiver when the channel is estimated (r = 0.3). The dotted curves
are obtained by shifting the curves given by simulations for different values
of µ and r = 0 by the values of the SNR loss.

VI. CONCLUSION

In this paper, we considered an iterative receiver composed
of a MAP equalizer and a MAP decoder. We proposed to study
analytically the impact of both the a priori information and
the channel estimation errors on the equalizer performance. We
gave an approximation of the error probability which allows
us to find an expression of the shift in terms of the SNR
due to the use of the a priori information and the channel
estimate. Simulation results showed that this expression gives
a quite good approximation especially for long channels. This
work is a first step in the study of the convergence analysis
of iterative receivers.
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