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ABSTRACT

To combat the effects of intersymbol interference, the optimal
equalizer to be used is based on maximum a posteriori (MAP)
detection. We consider the case where the MAP equalizer is
provided with a priori information on the transmitted data, as
in a turbo equalizer. We propose to study analytically the im-
pact of the a priori on the MAP equalizer performance. We
distinguish two cases: the case of unreliable a priori and the
case of reliable a priori. We show that when the a priori is
reliable, it is better to perform the detection of the transmitted
symbols based on the a posteriori outputs of the MAP equal-
izer rather than on the a priori only. In a turbo equalizer, the
equalizer and the decoder exchange extrinsic Log Likelihood
Ratios (LLRs). We propose here to study analytically their
distribution. The aim of this study is to perform in the future
the analytical convergence analysis of turbo equalizers using
the MAP equalization.

1. INTRODUCTION

To combat the effects of intersymbol interference (ISI), an
equalizer has to be used. The optimal equalizer, in the sense
of minimum sequence error rate (SER) or bit error rate (BER)
is based on maximum a posteriori (MAP) detection. We dis-
tinguish two criteria, the MAP sequence detection and the
MAP symbol detection. When no a priori information on the
transmitted data is available, MAP detection turns into max-
imum likelihood (ML) detection. Efficient algorithms exist
for MAP sequence detection, for example the SER optimiz-
ing Viterbi algorithm [1], and MAP symbol detection, for ex-
ample the BER optimizing BCJR algorithm [2]. These algo-
rithms are interesting since their complexity grows linearly
rather than exponentially with the sequence size.

The performance of the Viterbi equalizer in the presence
of additive white Gaussian noise (AWGN) has been studied
by Forney [1]. This study assumed that the channel is per-
fectly known at the receiver and no a priori information is
provided to the equalizer.

In this paper, we consider the case where the equalizer has
a priori information on the data, provided by another module
in the receiver, for instance the decoder in a turbo-equalizer
[3]. In [4], we analyzed the impact of the a priori informa-
tion on the MAP equalizer performance. Since the results
presented in [4] hold only for unreliable a priori, we propose

here to extend the analysis to the case of reliable a priori. The
study in [4] has been performed considering the a posteriori
probabilities at the output of the equalizer. However, the ba-
sic idea behind iterative processing is to exchange extrinsic
probabilities among the equalizer and the decoder rather than
a posteriori probabilities, in order to achieve successively re-
fined performance [3]. Therefore, we propose in this paper
to extend the study of [4] to the extrinsic outputs. Thus,
we derive the expression of the distribution of the extrinsic
Log Likelihood Ratios (LLRs) at the output of the equalizer
when it is provided with Gaussian a priori observations, in
both cases of reliable and unreliable a priori. The aim of this
study is to perform, in a future work, the convergence analy-
sis of a turbo equalizer in an analytical way. Actually, most
analyses are based on extrinsic information transfer (EXIT)
charts [5][6]. These analyses use generally simulations since
it is difficult to study analytically the performance of a MAP
equalizer having a large number of states.

The paper is organized as follows. In section 2, we de-
scribe the system model. In section 3, we study the impact
of the a priori information on the equalizer performance and
give the distribution of the extrinsic LLRs at its output. In
section 4, we give simulation results.

Throughout this paper scalars and matrices are lower and
upper case respectively and vectors are underlined lower case.
(.)T denotes the transposition.

2. SYSTEM MODEL

We consider a data transmission system over a frequency se-
lective channel. The input information bit sequence is mapped
to the symbol alphabet A. For simplicity, we will consider
only the BPSK modulation (A = {+1,−1}). We assume that
transmissions are organized into bursts of T symbols. The
channel is supposed to be invariant during one burst. The re-
ceived baseband signal sampled at the symbol rate at time k
is

xk =

L−1
∑

l=0

hlsk−l + nk (1)

where L is the channel memory and sk, for 1 − L ≤ k ≤
T − 1, are the transmitted symbols. In this expression, nk

are modeled as independent samples of a real white Gaussian



noise with normal probability density function (pdf)N (0, σ2)
where N (α, σ2) denotes a Gaussian distribution with mean α
and variance σ2. The term hl is the lth tap gain of the channel,
which is assumed to be real valued. Let s = (sT−1, ..., s1−L)T

be the (L+T−1)-long vector of symbols and n = (nT−1, ..., n0)
T

be the T -long noise vector. The output of the channel is the
T -long vector x = (xT−1, ..., x0)

T defined as

x = τ(h)s + n (2)

where τ(h) is a T × (T + L − 1) Toeplitz matrix with its
first row being (h0, h1, ..., hL−1, 0, ..., 0) and its first column
(h0, 0, ..., 0)

T .
When the channel is known and no a priori information is

provided to the equalizer, the data estimate according to the
MAP sequence criterion (or to the ML criterion since there is
no a priori) is given by

ŝ = argmin
u

(

‖x − τ(h)u‖ : u ∈ AT+L−1
)

. (3)

Now, we consider a particular error event characterized by its
length m [1]. Thus, we suppose that there exists an interval
of size m such that all the symbols of ŝ are different from the
corresponding symbols of s while the preceding symbol and
the following one are the same for s and ŝ. Define sm and
ŝm to be the vectors of symbols corresponding to this interval
and the vector of errors em = ŝm − sm. A subevent Em of
the error event is that ŝm is better than sm in the sense of the
ML metric

Em : ‖xm − τm(h)ŝm‖ ≤ ‖xm − τm(h)sm‖ (4)

where xm is the subvector of x and τm(h) is the block of τ(h)
corresponding to the error interval. The probability P (Em) of
Em is given by [1]:

P (Em) = Q

(

‖εm‖

2σ

)

(5)

where εm = τm(h)em and Q(α) = 1√
2π

∫∞
α

exp(−y2/2)dy.
Let Σm be the set of all possible error events of length m.
Then, the probability, P (Σm), that any error event is of length
m is bounded by the sum of the probabilities of the subevents
Em

P (Σm) ≤
∑

Em

P (Em). (6)

Let dmin be the channel minimum distance [1]. Because of
the exponential decrease of the complementary Gaussian dis-
tribution function Q (.), the overall probability of error P (Σ) ≤
∑

m P (Σm) will be dominated at high SNR by the term in-
volving the minimum value dmin of ‖εm‖ . Thus,

P (Σ) ' Q

(

dmin

2σ

)

. (7)

3. ANALYSIS OF THE EQUALIZER

We assume here that the channel is perfectly known at the
receiver. The MAP equalizer computes the a posteriori prob-
abilities (APPs) on the transmitted bits, P (sk = s|x), s ∈ A,

1 − L ≤ k ≤ T − 1. As in a turbo equalizer, we assume that
it outputs the extrinsic log-likelihood ratios (LLRs) [6]:

LLRext eq (sk) = LLReq (sk) − LLRpriori eq (sk)

= log
P (sk = +1|x)

P (sk = −1|x)
− log

P (sk = +1)

P (sk = −1)
(8)

which are the a posteriori LLRs LLReq (sk) minus the a pri-
ori LLRpriori eq (sk). We suppose that the a priori obser-
vations at the input of the equalizer are modeled as the out-
puts of an AWGN (Additive White Gaussian Noise) channel
with zero mean and variance σ2

eq . Hence, the a priori LLRs
are modeled as i.i.d samples from a random variable with the

conditional pdf N (
2skµ2

eq

σ2 ,
4µ2

eq

σ2 ) where µeq = σ
σeq

. This as-
sumption is classically taken in the analysis of iterative re-
ceivers [5][6]. We showed in [4] that when the equalizer is
provided with the a priori information, the probability of the
error event P (Em) is given by

P (Em) = Q





√

‖εm‖2
+ 4mµ2

eq

2σ



 .

In the following, we propose to calculate the overall probabil-
ity of error of the equalizer and to find the distribution of the
extrinsic LLRs LLRext eq(sk). We generalize the result of
[4] and distinguish two cases: the case of unreliable a priori
information (µeq is low) and the case of reliable a priori (µeq

is high).

3.1. Case1: unreliable a priori

We consider here the case of unreliable a priori. By defi-
nition, ‖εm‖2 ≥ d2

min. Generally, in the MAP equalizer, er-
rors occur in packets. Thus, we do not consider isolated errors
since they occur rarely and we assume that m ≥ 2. Then, an

upper bound for P (Em) = Q

(

q

‖ε
m‖

2
+4mµ2

eq

2σ

)

is obtained

by replacing ‖εm‖2 by d2
min and m by 2. We observed that

this bound is reached for channels with memory L less than 6,
since for these channels the error sequence allowing to attain
the minimum distance is of length m = 2 (see examples of
channels in [7]). For longer channels, an exhaustive search of
a close upper bound has to be performed. For the simplicity of
the presentation, we will consider in the following the case of
short channels (L ≤ 6) since we have the exact expression of
the bound in this case. At high SNR, the term corresponding
to the upper bound will dominate the sum of the probabilities
of the error events (because of the exponential decrease of the
Q (.) function). Thus the overall probability of error can be
approximated by [4]:

P (Σ) ' Q





√

d2
min

+ 8µ2
eq

2σ



 . (9)

We know that the overall probability of error for the BPSK
modulation, for an AWGN channel with zero mean and vari-
ance σ2

1 is



P (Σ) ' Q

(

1

σ1

)

. (10)

Comparing (9) and (10), we can conclude that the perfor-
mance of the MAP equalizer when it is provided with the a
priori information is equivalent to the performance achieved
for an AWGN channel with zero mean noise and variance
σ2

1 = 4σ2

d2

min
+8µ2

eq

.

Hence, the a posteriori LLRs at the output of the MAP
equalizer can be modeled as i.i.d samples from a random vari-
able with pdf N ( 2sk

σ2

1

, 4

σ2

1

)

Since the a priori and extrinsic LLRs are independent by
construction, we obtain

LLRext eq(sk) ∼ N

(

sk

(

2

σ2
1

−
2µ2

eq

σ2

)

,

(

4

σ2
1

−
4µ2

eq

σ2

))

Hence,

LLRext eq(sk) ∼ N

(

sk

(

d2
min + 4µ2

eq

2σ2

)

,

(

d2
min + 4µ2

eq

σ2

))

(11)

3.2. Case2: reliable a priori

When the a priori become good (µeq is high), the a priori
observations have more influence on the detection than the
channel observations. Since the a priori information are in-
dependent, the errors will not occur in packets. Thus, in this
case, isolated errors (m = 1 and ‖εm‖2

= 4) will occur and
will dominate the overall probability of error which can be
approximated by:

P (Σ) ' Q





√

1 + µ2
eq

σ



 .

In this case, the performance of the MAP equalizer is equiva-
lent to the performance of an AWGN channel with zero mean
and variance σ2

2 = σ2

(1+µ2
eq)

. Note that the performance is in-

dependent from the channel.
Assuming that the a priori and extrinsic LLRs are inde-

pendent, we obtain

LLRext eq(sk) ∼ N

(

sk

(

2

σ2
2

−
2µ2

eq

σ2

)

,

(

4

σ2
2

−
4µ2

eq

σ2

))

Hence,

LLRext eq(sk) ∼ N

(

sk

(

2

σ2

)

,
4

σ2

)

(12)

We notice that when the a priori information become good,
the extrinsic LLRs are equivalent to the LLRs correspond-
ing to the AWGN channel with zero mean and variance σ2.
Hence, the effect of the ISI is eliminated. In a turbo equalizer,
the equalizer provides the decoder with the extrinsic LLRs

LLRext eq(sk), at each iteration. Hence, when the a priori in-
formation are reliable, the performance of the decoder (which
is also the performance of the turbo equalizer) is equivalent to
the performance of the coded AWGN channel.

3.3. Extrinsic LLRs modeling

Until now, we give two distributions of the extrinsic LLRs in
two limit cases, i.e. when the a priori is not reliable (µeq is
low) and when it is reliable (µeq is high). However, it is not
obvious that the analysis holds for the intermediate values of
µeq . We suggest here that there exists a limit value µeq−lim of
µeq such as










LLRext eq(sk) ∼ N
(

sk

(

d2

min
+4µ2

eq

2σ2

)

,
(

d2

min
+4µ2

eq

σ2

))

, if µeq < µeq−lim

LLRext eq(sk) ∼ N
(

sk

(

2

σ2

)

, 4

σ2

)

, elsewhere.
This value corresponds to the equality between expressions
(11) and (12). Thus, it is given by

µeq lim =

√

1 −
d2
min

4
(13)

This result will be validated by the simulations in the next
section.

3.4. Usefulness of the MAP equalizer when the a priori is
reliable

When the a priori is reliable, a question that one can ask is:
is it better to perform the detection of the transmitted sym-
bols based on the a posteriori outputs of the MAP equalizer
or based on the a priori only? i.e. does the equalizer benefit
from the channel observations? In order to answer this ques-
tion, we propose to compare the probabilities of error in both
cases.

We first consider the case where the detection is based on
the a priori only. Since the a priori observations at the input
of the equalizer are modeled as the outputs of an AWGN with
variance σ2

eq , the overall probability of error is

P (Σ) ' Q

(

1

σeq

)

. (14)

When the MAP equalizer is used, the overall probability of
error is (see section 3.2)

P (Σ) ' Q





√

1 + µ2
eq

σ





= Q

(√

1

σ2
+

1

σ2
eq

)

. (15)

Since Q (.) is monotonically decreasing, the probability given
in (14) is greater than the one given in (15). Thus, in the case
of reliable a priori, in terms of error probability, it is better to
use the MAP equalizer rather than performing the detection
using only the a priori.



4. SIMULATION RESULTS

In this section, we propose to test for the validity of the ana-
lytical results given previously. In the simulations, the mod-
ulation used is the BPSK and the channel is assumed to be
constant and known at the receiver. We consider the follow-
ing channels [7]:

• Channel3: (0.5; 0.71; 0.5)

• Channel5: (0.29; 0.50; 0.58; 0.50; 0.29).

The minimum distances of Channel3 and Channel5 are
respectively 1.5308 and 1.0532 [7]. We provide the equal-
izer with Gaussian a priori LLRs with the conditional pdf

N (
2skµ2

eq

σ2 ,
4µ2

eq

σ2 ), for a given µeq = σ
σeq

. We perform the de-
tection of the transmitted symbols using the extrinsic LLRs at
the output of the equalizer. In Figures 1 and 2, we plot the Bit
Error Rate (BER) curves with respect to the SNR, for dif-
ferent values of the ratio µeq , respectively for Channel3 and
Channel5. Each curve is obtained while the ratio µeq is kept
constant. The solid lines indicate the performance obtained
by simulations. The dotted lines are obtained by consider-
ing the theoretical expressions of the extrinsic LLRs given
in (11) and (12). By using (13), we obtain that for Channel 3,
µeq−lim = 0.64 and for Channel 5, µeq−lim = 0.866.

We notice that, for both channels, when µeq ≥ µeq−lim,
the performance is similar to the performance of an AWGN
channel with variance σ2. We notice that when µeq < µeq−lim,
the theoretical curves approximate well the curves obtained
by simulations for high SNR. For low SNR, the approxima-
tion is less accurate. Actually, for µeq < µeq−lim, the as-
sumption that the LLRs at the output of the MAP equalizer
have pdf N ( 2sk

σ2
eq

, 4

σ2
eq

) is not always verified.
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Fig. 1. BER versus SNR: comparison of the equalizer perfor-
mance (solid curves) and the theoretical performance (dotted
curves) for Channel3 (µeq−lim = 0.64 ), when the detection
is based on the extrinsic LLRs.

Figures 3 and 4 show the means of the extrinsic LLRs
when the transmitted bits are equal to +1 with respect to µeq
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Fig. 2. BER versus SNR: comparison of the equalizer perfor-
mance (solid curves) and the theoretical performance (dotted
curves) for Channel5 (µeq−lim = 0.866 ), when the detection
is based on the extrinsic LLRs.

respectively for Channel 3 at SNR=9dB and for Channel 5 at
SNR=7dB. We notice that for µeq >> µeq−lim and µeq <<
µeq−lim, the analytical means approximate well the means ob-
tained by simulations. Around the limit value µeq−lim the ap-
proximation is less accurate, but is still satisfactory to predict
the extrinsic performance of the equalizer as shown in Figures
1 and 2.

5. CONCLUSION

In this paper, we consider a MAP equalizer provided with
Gaussian a priori observations, as in a turbo equalizer. We
propose to study analytically the impact of the a priori infor-
mation on the MAP equalizer performance. We distinguish
two cases: the case of unreliable a priori and the case of re-
liable a priori. We show that when the a priori is reliable, it
is better in terms of performance to carry out the detection of
the transmitted symbols based on the a posteriori outputs of
the MAP equalizer rather than on the a priori only. We also
give an expression of the distribution of the extrinsic LLRs at
the output of the MAP equalizer. The aim of this work is to
perform in the future the analytical convergence analysis of
turbo equalizers using MAP equalization. This requires us to
perform also the study of the extrinsic LLRs at the output of
the decoder.
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Fig. 3. Means of the extrinsic LLRs when the transmitted
bits are equal to +1 with respect to µeq for Channel3 and
SNR=9dB.
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Fig. 4. Means of the extrinsic LLRs when the transmitted
bits are equal to +1 with respect to µeq for Channel5 and
SNR=7dB.


