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Abstract—Zero-error source coding when side-information (SI)
may be present is a fundamental building block of interactive
real-world compression systems. In such a scenario, the side
information may represent an image that could have been
requested previously by the user. We aim at designing a two layer
zero-error coding scheme that adapts to the presence or absence
of the side information at the decoder. The scenario we consider
involves two decoders and two noiseless channels, the first channel
to both decoder and the second channel of additional information
to decoder 2 only. The side information is available at the encoder
and decoder 1, but not at decoder 2. By using a random coding
argument we characterize the zero-error achievable rate region.
The code construction relies on coset partitioning obtained from
a linear code. The encoder sends the coset of the source sequence
on the first channel to all decoders, and sends the index of the
source sequence in its coset on the second channel to decoder 2.

I. INTRODUCTION

We consider the scenario described in Fig. 1 in which the
information source X is correlated to the side information
(SI) Y observed by the encoder and decoder 1 only. The
information is sent through a noiseless channel at rate R1 to
both decoders and an additional noiseless channel at rate R2 to
decoder 2, which does not observe the SI. All decoders must
recover the source X with zero-error, i.e. with a probability
of error equal to zero, which is a more restrictive assumption
than a vanishing probability of error.

This scenario arises in interactive compression, where the
user can randomly access part of the data directly in the com-
pressed domain. A source sequence Xn models the smallest
entity that can be requested, for instance a file of a database,
a frame of a video, or a block of an omnidirectional image in
[1]. Upon request of Xn, and if no request has been previously
made (case of decoder 2 in Fig. 1), the encoder sends the com-
plete representation of the data (f1(Xn

, Y
n), f2(Xn

, Y
n)) at

rate R1 + R2. If, instead, the block Y
n has already been

requested (case of decoder 1), the encoder sends only a
part of the compressed representation namely f1(Xn

, Y
n) to

complete Y
n. Moreover, we consider the zero-error version

of this problem, as zero-error source coding is a fundamental
building block of practical video coding schemes. We therefore
seek for the set of rates (R1, R2), which can be achieved in
this scenario.

A way to achieve zero-error coding is to use conditional
coding, and send the source X to decoder 1 at rate R1 =

H(X∣Y ), since both encoder and decoder 1 observe the SI
Y . Then, to recover the source X , decoder 2 needs to obtain
the SI Y , which requires a rate of R2 = H(Y ) ≥ I(X;Y ).

In order to be exploitable by both decoders, part of the
information sent through the common channel must be inde-
pendent from Y . For this reason our setting is closely related
to the Slepian and Wolf (SW) problem in [2], seen as lossless
source coding with side information at the decoder only. In [3],
Csiszar proved in that linear codes achieve the optimal SW rate
region. Several works in [4]–[6] investigate the duality between
SW setting and channel coding using linear codes, as the side-
information Y can be seen as the input of a virtual channel
with input X . However these tools cannot be straightforwardly
adapted to the zero-error setting, as the linear codes proposed
also present a vanishing probability of error.

Our setting can be seen as a zero-error variant with side-
informations known at the encoder of the successive refinement
problem proposed by Kaspi in [7]; later generalized by Timo
et al. in [8] for more than two decoders. Even if the lossy
reconstruction of the source makes it fundamentally different
from the zero-error setting, there are notable examples that
present the same tools as in SW. The side-information scalable
source coding (i.e. the decoder 2 has a SI Y ′ s.t. X → Y → Y

′)
in [9] for instance uses nested random binning. This random
binning approach was further developed in [10] to give a
unified coding scheme that works for both scalable source
coding and Wyner-Ziv successive refinement in [11] (i.e. the
decoder 2 has a SI Y ′ s.t. X → Y

′
→ Y ).

In the open problem, the zero-error SW scheme requires
to send at rate H(X) to the decoder with side information,
see [12]–[15]. In [16], Ma and Cheng use linear codes in
a zero-error SW restriction, under symmetry assumptions on
the source. However, a zero-error SW coding scheme in our
setting does not use at all the side information knowledge at the
encoder. Therefore, we study the role of the side information at
the encoder with a zero-error constraint when side information
may be present at the decoder.

In this paper, we characterize the set of rate pairs that
are achievable with zero-error source codes, as depicted in
Fig. 1. More precisely, we show that the pair of rates
(R1, R2) = (H(X∣Y ), I(X;Y )) is achievable and moreover,
it is the corner-point of the set of achievable pair of rates. Our
achievability result relies on a random coding argument. We
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Fig. 1: Source coding when side-information may be present.

use Csiszar and Körner’s method of types [17, Chapter 2] in
order to calibrate a linear code which is used to partition the
set of source sequences. The encoder sends the coset of the
source sequence to all decoders and the index of the source
sequence in its coset to decoder 2. We show that the zero-error
property is satisfied and the corresponding rates converge to
the pair of target rates (H(X∣Y ), I(X;Y )).

A. Notations

Random variables and their realizations are represented
by uppercase letters (e.g., X) and lowercase letters (e.g.,
x), respectively; and their set of possible values with the
corresponding calligraphic letters (e.g., X ). We denote by ∣ ⋅ ∣
the cardinality of a set. We denote a sequence of symbols by
x
n
= (x1, ..., xn). The set of probability distributions over a

finite set X is denoted by P(X ). The distribution of a random
variable X is denoted by PX ∈ P(X ). When computing
entropies with other distributions than PX , we specify it in
subscript (e.g. HQ(X) is computed with the distribution Q).
The conditional distribution of a random variable X knowing
Y is denoted by PX∣Y , and the joint distribution is denoted
by PX,Y . We denote by {0, 1}∗ the set of binary words.
Throughout the paper the logarithms are in base two.

II. PROBLEM STATEMENT AND MAIN RESULT

The setting of Fig. 1 is described by:

⬩ Two finite sets X , Y and a pair of random variables
(X,Y ) ∈ X × Y drawn with the distribution PX,Y .

⬩ An encoder that observes the realizations of (X,Y ).
⬩ Two decoders, where only decoder 1 observes the real-

izations of the side-information Y .
⬩ The encoder transmits over a first channel to both de-

coders, and a second channel to decoder 2 only.
⬩ We denote by n ∈ N⋆ = N \ {0} the block size of the

coding scheme. For n iterated source uses, we denote
by (Xn

, Y
n) the sequences of independent copies of

(X,Y ).

Definition II.1 Given n ∈ N⋆ = N \ {0}, (R(n)
1 , R

(n)
2 ) ∈

[0,+∞)2, a (n,R(n)
1 , R

(n)
2 )-zero-error source code consists of

encoding functions (f1, f2) that assigns variable-length binary
sequences and decoding functions (g1, g2) defined by:

f1 ∶ X
n
× Yn → {0, 1}∗, f2 ∶ X

n
× Yn → {0, 1}∗, (1)

g1 ∶ {0, 1}∗ × Yn → Xn
, g2 ∶ ({0, 1}∗)2 → Xn

, (2)

that satisfy

R
(n)
1 =

1
nE[l(f1(X

n
, Y

n))], R
(n)
2 =

1
nE[l(f2(X

n
, Y

n))],

where l(⋅) denotes the length of a binary word, and that satisfy
the zero-error property, i.e. Xn

= g1(f1(Xn
, Y

n), Y n) =

g2(f1(Xn
, Y

n), f2(Xn
, Y

n)) with probability 1.

Definition II.2 A rate pair (R1, R2) ∈ [0,+∞)2 is achiev-
able if there exists a sequence of (n,R(n)

1 , R
(n)
2 )-zero-error

source codes such that

lim
n
R

(n)
1 = R1, lim

n
R

(n)
2 = R2. (3)

We denote by R the zero-error achievable rate region.

Theorem II.3

R = {(R1, R2), R1 ≥ H(X∣Y ), R1 +R2 ≥ H(X)}. (4)

R

H(X∣Y ) H(X)

I(X;Y )

H(X)

0
0

R1

R2 complement of R
R1 +R2 = H(X)
R1 = H(X∣Y )

Fig. 2: Zero-error achievable rate region R.

Proof. [Converse of Theorem II.3] In this setting, each decoder
must retrieve X with zero-error. Using Shannon lossless source
coding result [18, Theorem 5.3.1] and Slepian-Wolf Theorem
[2, Theorem 2] on each decoder, we have R1 ≥ H(X∣Y )
and R1 + R2 ≥ H(X), as the zero-error source codes are a
subclass of lossless codes considered for these converses.

III. ACHIEVABILITY PROOF OF THEOREM II.3
In order to prove Theorem II.3, we show that

(H(X∣Y ), I(X;Y )) ∈ R. (5)

In order to complete the achievability result we use a time
sharing with the point (H(X), 0), which is known to be
achievable by compressing X using a Huffman code and
sending the resulting binary sequence via f1.



A. Preliminaries

Definition III.1 (Type) For all pair of sequences (xn, yn) ∈
Xn × Yn, the joint type is the distribution from P(X × Y)
denoted Qxn,yn that satisfies for all (x′, y′) ∈ X × Y

Qxn,yn(x′, y′) =
1
n
»»»»»{i ≤ n

»»»»» (xi, yi) = (x′, y′)}»»»»» . (6)

We denote the marginal types by Qxn and Qyn , respectively.
We denote the conditional type of xn knowing yn by Qxn∣yn .

The n-discretized probability simplex Pn(X ×Y) is the set
of types that are achievable using sequences of length n.

We denote by QXn,Y n the random variable of the joint type
of the random sequences (Xn

, Y
n). We denote the random

variables of their conditional and marginal types by QXn∣Y n ,
QXn and QY n , respectively.

Definition III.2 (Type class, V -shell) For all type π ∈

Pn(X × Y), we denote the type class by Tπ

Tπ = {(xn, yn) ∈ Xn
× Yn ∣Qxn,yn = π} . (7)

Given a conditional type V ∈ P(X )∣Y∣, the V -shell of a
sequence yn is the set TV (yn) = {xn ∈ X ∣Qxn∣yn = V }.

Definition III.3 (Generator/parity matrix, syndrome, coset)
Let A be a finite set such that ∣A∣ is prime, so we can give
A ≃ Z/∣A∣Z a field structure. For all n, k ∈ N⋆, we denote
by Mn,k(A) the set of n× k matrices over the finite field A.

Let k ∈ N⋆, a generator matrix is a matrix G ∈Mn,k(A).
An associated parity matrix is a matrix H ∈Mn−k,n(A) such
that Im G = Ker H, where Im and Ker denote the image and
the kernel, respectively.

The syndrome of a sequence an ∈ An is Hxn. The coset
associated to the syndrome Han is the set Im G+an = {ãn ∈
An ∣ Hãn = Han}.

B. Coding scheme

For all n ∈ N⋆, we show the existence of a sequence
of (n,R(n)

1 , R
(n)
2 )-zero-error source codes that achieves the

corner-point (H(X∣Y ), I(X;Y )) of the zero-error rate region
R. Our proof is based on a linear code adjusted depending on
QXn,Y n , and coset partitioning of the Hamming space.

We assume w.l.o.g. that PX,Y ≠ PXPY . We also assume
w.l.o.g. that ∣X ∣ is prime number by padding (i.e. extending
with zeros) PX,Y if necessary. We fix the block-length n and
a constant parameter δ ∈ (0; log ∣X ∣ − H(X∣Y )) that will
represent a rate penalty.
⬩ Random code generation: For each pair of sequences

(xn, yn), we define the parameter

k ≐ ⌈n − n
HQxn,yn (X∣Y ) + δ

log ∣X ∣ ⌉
+

. (8)

where ⌈⋅⌉ denotes the ceiling function and (⋅)+ denotes
max(⋅, 0). We denote by K the random variable induced
by k defined in (8), for the random sequences (Xn

, Y
n).

A generator matrix G ∈ Mn,n(X ) is randomly drawn,

with i.i.d. entries drawn according to the uniform distri-
bution on X . If K ≠ 0, let GK be the matrix obtained by
extracting the K first lines of G, and HK a parity matrix
associated to GK .
The random code C consists of the set of random matrices
C = {(Gk,Hk), 1 ≤ k ≤ n}. Before the transmission
starts, a code realization is chosen and revealed to the
encoder and both decoders.

⬩ Encoding function f1: Let E ∈ {0, 1} be such that E = 0
if K ≠ 0 and (Im GK +X

n) ∩ TQXn∣Y n (Y
n) = {Xn};

E = 1 otherwise. Then we define

f1(Xn
, Y

n) = {b(QX
n,Y n , E,HKX

n) if E = 0,

b(QXn,Y n , E,Xn) if E = 1,
(9)

where b(⋅) denotes the binary expansion.
⬩ Encoding function f2: If E = 0, the index of Xn in its

coset Im GK +X
n is compressed using a Huffman code

with the distribution PXn . Let B(GK , X
n
, Y

n) be the
resulting binary sequence, then we set

f2(Xn
, Y

n) = B(GK , X
n
, Y

n). (10)

Otherwise, f2(Xn
, Y

n) = 0.
⬩ Decoding function g1: It observes f1(Xn

, Y
n) and ex-

tracts E and QXn,Y n . If E = 1,

g1(f1(Xn
, Y

n), Y n) = Xn
. (11)

Otherwise E = 0, it extracts HKX
n and determines the

coset Im GK + X
n. Moreover, by using QXn,Y n and

Y
n it determines the QXn∣Y n -shell TQXn∣Y n (Y

n), and
therefore returns an element

g1(f1(Xn
, Y

n), Y n) ∈ (Im GK +X
n) ∩ TQXn∣Y n (Y

n).

⬩ Decoding function g2: It observes f1(Xn
, Y

n) and ex-
tracts E and QXn,Y n . If E = 0, it extracts HKX

n

and determines the coset Im GK + X
n, and it returns

g2(f1(Xn
, Y

n), f2(Xn
, Y

n)), the element of Im GK +
X
n with index f2(Xn

, Y
n). If E = 1, it returns

g2(f1(Xn
, Y

n), f2(Xn
, Y

n)) = Xn
.

Remark III.4 The parameter K is selected so that when
K > 0, the number of parity bits of the linear code asymp-
totically matches the conditional entropy: (n−K) log ∣X ∣

n
=

HQXn,Y n (X∣Y ) + δ +O ( 1
n
).

C. Zero-error property

We now prove that the code built in Section III-B satisfies
the zero-error property. It is clear that both decoders retrieve
X
n with zero-error when E = 1.
If E = 0, then by definition of E we have (Im GK +

X
n)∩ TQXn∣Y n (Y

n) = {Xn}, hence g1(f1(Xn
, Y

n), Y n) =
X
n with probability 1. On the other hand, f2(Xn

, Y
n) =

B(GK , X
n
, Y

n), so the element of Im GK +X
n with index

f2(Xn
, Y

n) is X
n. Thus, g2(f1(Xn

, Y
n), f2(Xn

, Y
n)) =

X
n with probability 1.



D. Rate analysis

Now we prove that for all parameter δ > 0, the sequence of
rates of the codes built in Section III-B satisfy

R
(n)
1 →

n→∞
H(X∣Y ) + δ, R

(n)
2 →

n→∞
I(X;Y ). (12)

Lemma 1 (Large deviations) Let X ′ be a random variable
such that PX ′ is the uniform distribution over X . Then for
each pair of sequences (xn, yn), we have:

Pr (QX ′n,yn = Qxn,yn) = 2
nHQxn,yn (X∣Y )−n log ∣X ∣+o(n)

(13)

Proof. Since PX ′ is uniform:

Pr (QX ′n,yn = Qxn,yn) = ∣X ∣−n »»»»»TQxn∣yn (y
n)»»»»» (14)

= 2
−n log ∣X ∣

2
nHQxn,yn (X∣Y )+o(n)

,

as [17, Lemma 2.5] gives the asymptotic size of the Qxn∣yn -
shell TQxn∣yn (y

n).

Probability of decoding ambiguity. We need to es-
timate Pr(E = 1). We have E = 1 iff K = 0
or there exists (α1, ..., αK) ∈ XK \ {0, ..., 0} such that
Q(Xn+∑i≤K αiG

(i)
K ),Y n = QXn,Y n , where G(i)

K denotes the i-
th column of GK . Thus

Pr(E = 1) ≤ Pr(K = 0) (15)

+ Pr( ⋃
α∈XK

α≠0

[Q(Xn+∑i≤K αiG
(i)
K ),Y n = QXn,Y n]

»»»»»»»»»»
K ≠ 0).

We provide an upper bound on the second term in (15). For
all (xn, yn) such that k ≠ 0, we have:

Pr( ⋃
α∈Xk

α≠0

[Q(xn+∑i≤k αiG
(i)
k ),yn = Qxn,yn] )

≤ ∑
α∈Xk

α≠0

Pr(Q(xn+∑i≤k αiG
(i)
k ),yn = Qxn,yn) (16)

≤∣X ∣k2nHQxn,yn (X∣Y )−n log ∣X ∣+o(n) (17)

≤2
n log ∣X ∣−nHQxn,yn (X∣Y )−δn+o(n)

× 2
nHQxn,yn (X∣Y )−n log ∣X ∣+o(n)

≤ 2
−δn+o(n)

, (18)

where (17) comes from Lemma 1 and (18) comes from (8).
Therefore,

Pr( ⋃
α∈XK

α≠0

[Q(Xn+∑i≤K αiG
(i)
K ),Y n = QXn,Y n]

»»»»»»»»»»
K ≠ 0)

= ∑
xn,yn

Pr((Xn
, Y

n) = (xn, yn)»»»»»»K ≠ 0)

× Pr( ⋃
α∈XK

α≠0

[Q(Xn+∑i≤K αiG
(i)
K ),Y n = QXn,Y n]

»»»»»»K ≠ 0, (Xn
, Y

n) = (xn, yn)) (19)

≤ ∑
xn,yn

Pr((Xn
, Y

n) = (xn, yn)»»»»»»K ≠ 0)2−δn+o(n) (20)

≤2
−δn+o(n)

, (21)

where (20) comes from (18) and the fact that G is independent
of (X,Y ).

We now provide an upper bound on the first term in (15).

S ≐ {π ∈ P(X × Y), 1 −
Hπ(X∣Y ) + δ

log ∣X ∣ ≤ 0}. (22)

Then we have:

Pr(K = 0) (23)

= Pr(⌈n − n
HQXn,Y n (X∣Y ) + δ

log ∣X ∣ ⌉
+

= 0) (24)

= Pr(n − n
HQXn,Y n (X∣Y ) + δ

log ∣X ∣ ≤ 0) (25)

= Pr(QXn,Y n ∈ S) (26)

= ∑
π∈S∩Pn(X×Y)

Pr(QXn,Y n = π) (27)

≤ ∣S ∩ Pn(X × Y)∣ sup
π∈S∩Pn(X×Y)

Pr(QXn,Y n = π) (28)

≤ ∣S ∩ Pn(X × Y)∣ sup
π∈S∩Pn(X×Y)

2
−nD(π∥PX,Y ) (29)

≤ ∣S ∩ Pn(X × Y)∣ sup
π∈S

2
−nD(π∥PX,Y ) (30)

≤ 2
−n infπ∈S D(π∥PX,Y )+o(n)

, (31)

where (29) comes from [17, Lemma 2.6]. Since PX,Y ∉ S by
definition of δ, we have infπ∈S D(PX,Y ∥π) > 0. Thus there
exists a positive constant β > 0 such that

Pr(K = 0) ≤ 2
−βn+o(n)

. (32)

Thus by combining (15), (21), (32), we have:

Pr(E = 1) ≤ 2
−δn+o(n)

+ 2
−βn+o(n)

. (33)

Rate on the common channel. The encoding function f1
defined in (9) returns QXn,Y n and E. When E = 0, it sends
the syndrome HKX

n at rate n−K
n

log ∣X ∣, otherwise, it sends
X
n. Therefore,

nR
(n)
1 =1 + ∣X ∣∣Y∣ log2(n + 1) + Pr(E = 1)n log ∣X ∣

+ Pr(E = 0) ∑
xn,yn

Pr((Xn
, Y

n) = (xn, yn)∣E = 0)

× (n − k) log ∣X ∣ (34)
≤1 + ∣X ∣∣Y∣ log2(n + 1) + Pr(E = 1)n log ∣X ∣



+ (n − E[K]) log ∣X ∣ (35)
≤1 + ∣X ∣∣Y∣ log2(n + 1) + Pr(E = 1)n log ∣X ∣
+ nE[HQXn,Y n (X∣Y )] + nδ + 1, (36)

where (35) comes from n − k ≥ 0 for all (xn, yn), and (36)
comes from (8).

By the law of large numbers [18, Theorem 11.2.1]
E[HQXn,Y n (X∣Y )] →

n→∞
H(X∣Y ), and by using (33), we

obtain

lim
n→∞

R
(n)
1 ≤ H(X∣Y ) + δ. (37)

Rate on the secondary channel. The encoding function
f2 is defined in (10). If E = 0, then K ≠ 0 and the encoder
transmits the index of Xn in its coset. The Huffman algorithm
has an average output length R(n)

2 that satisfies

R
(n)
2 ≤

1
n(1 +∑

k≠0

Pr(K = k∣E = 0)

×H(Xn∣HkX
n
,K = k, C, E = 0)) (38)

=
1
n +

1
nH(Xn∣K, C, E = 0)

−
1
nH(HKX

n∣K, C, E = 0), (39)

where (39) follows from the fact that HKX
n is a deterministic

function of Xn, given a random code C.

We now provide an upper bound to the last term
− 1
n
H(HKX

n∣K, C, E = 0) in (39). To do so, we introduce
a new encoding scheme that first encodes the sequences Xn

and Y
n with the encoding function f1, and then encode the

output by using an entropy coder. The rate of this code r is
upperbounded by H(f1(Xn

, Y
n)∣C) + 1.

Moreover, the decoder 1 retrieves Xn with zero error (see
Sec. III-C), and the entropy coder is also lossless. Thus r is
greater than the rate achieved by a conditional entropy coder
that compresses Xn knowing the side information Y n, whose
rate is lower bounded by nH(X∣Y ).

Therefore, we have

nH(X∣Y ) ≤ r < H(f1(Xn
, Y

n)∣C) + 1 (40)
= 1 +H(QXn,Y n , E∣C)
+ Pr(E = 0)H(HKX

n∣QXn,Y n , C, E = 0)
+ Pr(E = 1)H(Xn∣QXn,Y n , C, E = 1) (41)

≤ H(HKX
n∣QXn,Y n , C, E = 0) + o(n) (42)

= H(HKX
n∣QXn,Y n ,K, C, E = 0) + o(n) (43)

≤ H(HKX
n∣K, C, E = 0) + o(n) (44)

where o(n) in (42) corresponds to the term 1 +
H(QXn,Y n , E∣C) + Pr(E = 1)H(Xn∣QXn,Y n , C, E = 1),
and (43) follows from the fact that K is a deterministic
function of QXn,Y n .

We now provide an upper bound on the second term of (39).
1
nH(Xn∣K, C, E = 0) ≤ 1

nPr(E = 0)(H(Xn∣K, C, E)

− Pr(E = 1)H(Xn∣K, C, E = 1))

≤
1
nH(Xn∣K, C, E) + o(1) (45)

≤ H(X) + o(1). (46)

By combining (39), (44) and (46), we obtain

lim
n→∞

R
(n)
2 ≤ I(X;Y ). (47)

Conclusion. The rates in (37) and (47) are evaluated on
average over the random code C with a parameter δ > 0
arbitrarily small. This shows that there exists a sequence of
(n,R(n)

1 , R
(n)
2 )-zero-error source codes, such that

(R(n)
1 , R

(n)
2 ) →

n→∞
(H(X∣Y ), I(X;Y )). (48)
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