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Abstract—Data acquired over long periods of time like High
Definition (HD) videos or records from a sensor over long time
intervals, have to be efficiently compressed, to reduce their size.
The compression has also to allow efficient access to random parts
of the data upon request from the users. Efficient compression is
usually achieved with prediction between data points at successive
time instants. However, this creates dependencies between the
compressed representations, which is contrary to the idea of
random access. Prediction methods rely in particular on reference
data points, used to predict other data points. The placement
of these references balances compression efficiency and random
access. Existing solutions to position the references use ad hoc
methods. In this paper, we study this joint problem of compres-
sion efficiency and random access. We introduce the storage cost
as a measure of the compression efficiency and the transmission
cost for the random access ability. We express the reference
placement problem that trades storage with transmission cost as
an integer linear programming problem. Considering additional
assumptions on the sources and coding methods reduces the
complexity of the search space of the optimization problem.
Moreover, we show that the classical periodic placement of the
references is optimal, when the encoding costs of each data
point are equal and when requests of successive data points
are made. In this particular case, a closed-form expression of
the optimal period is derived. Finally, the proposed optimal
placement strategy is compared with an ad hoc method, where
the references correspond to sources where the prediction does
not help reducing significantly the encoding cost. The proposed
optimal algorithm shows a bit saving of -20% with respect to the
ad hoc method.

Index Terms—Predictive Coding, Random Access, Integer
Linear Programming.

I. INTRODUCTION

Data acquired over a long period of time, for instance a
long HD video, or time serie measurements acquired by a
sensor, require compression to be stored on a server. Random
access (RA) to compressed data is the ability for a user to
access any temporal interval, for instance any frame within a
video, or any temporal sample acquired by the sensors. On the
other hand, efficient compression requires to exploit temporal
correlations by jointly processing the data points at successive
time instants, see [7, Th. 2.6.6]. This creates dependencies
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between the successive compressed representations of data
points and makes it impossible to directly access any data point
at any time instant without sending additional unrequested data
points. This paper aims to address the resulting compromise
between RA and compression efficiency.

Predictive coding (PC) is one way to achieve efficient
compression and is used in many standards for speech, audio,
image, and video compression [17]. PC is well adapted to
data points that are available sequentially, as in standard video
coding [9], [21], [24] and streaming video coding [2]. In
PC, there exists two types of sources. First, reference sources
are coded independently of the others. Second, predicted
sources are predicted from other sources (either reference or
predicted), and only the prediction residual is encoded. PC
is very popular since it is known to optimaly exploit the
correlation between data points, for a large class of source
models. For instance, for lossless compression, if each data
point is modeled as the realization of a source, PC achieves
the joint entropy of the sources and is therefore optimal [7, Th.
2.5.1] (chain rule). For lossy compression, optimality results
exist for Gauss-Markov sources and linear prediction [22, Sec.
6.4.1].

The tradeoff between RA and PC is a longstanding problem
in the video coding literature [9], [21], [24]. In video coding,
RA is expressed as the ability to start reading a video stream
at an arbitrary moment, even if the file has been damaged, or if
the users do not start watching at the beginning of the video
stream. A classical solution for RA consists in periodically
placing references. For instance, in [23], a reference is imposed
every eight frames in order to limit the delay to access the data.
The video content may also be taken into account to position
the references, as in [1]. Some of the frames may be stored
twice, both as a reference and as a prediction, which lowers
the storage efficiency [11]. Apart from video coding, RA was
also addressed for sensor networks measurements [15], [19]. In
these works, however all the sources are encoded as references.
Genome [8] and Internet of Things [20] databases were also
considered in the context of RA, as well as some specific
sequential lossless compression algorithms, such as Lempel-
Ziv [10], or Burrows-Wheeler [18]. What is common to all
the above works is to seek at determining a set of reference
positions in order to allow for RA. Nevertheless, all the
proposed solutions are either suboptimal, or specific to a
particular coding algorithm.

Therefore, the objective of this paper is to introduce a
generic method in order to determine the set of optimal
reference positions that will address the tradeoff between
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RA and compression efficiency. In order to address the RA
problem for a wide range of applications, we model the data
to be compressed as a sequence of sources indexed by time.
Each source of the sequence generates a sample vector which
may correspond to a frame (standard video coding), to a set
of simultaneous frames with different viewpoints (multiview
video coding), or to a set of measurements taken by multiple
sensors at the same time instant (sensor networks). Within this
model, we define a request as a user-dependent set of sources
to be transmitted to the user.

Optimal positioning of references was investigated in the
context of tiling for omnidirectional visual content. In this
context, the request now concern tiles, where a tile is a subpart
of the onmidirectional image and can be seen as a view in
multiview coding [12], [13], [25]. Put in our model, [12], [13],
[25] have an additional constraint compared to our work: if the
request ends between two references, then the whole segment,
from previous reference to next reference, is transmitted to
the user. Besides, the above works optimize some specific
parameters, that are segment size in [12], resolution at which
tiles are transmitted in [13], and segment prediction method
in [25]. Therefore, these methods do not allow to completely
address the tradeoff between RA and compression efficiency.

In order to jointly study the compression and RA prob-
lems, we propose to measure compression efficiency with the
storage cost, i.e. the amount of bits needed to encode the
whole data. We further propose to measure the RA ability
with the transmission cost, i.e., the cost to send requests to
the users. The introduced transmission cost takes also into
account the popularity of the requests modeled as a probability
distribution defined over the set of possible requests. In order
to take both critera into account, we then propose to optimize
a single metric given by the weighted sum of the storage
cost and the transmission cost. In particular, we show that
the reference placement problem that trades off storage with
transmission cost is an integer linear programming problem,
that can be solved by standard optimizer [16]. Moreover, we
show that the commonly considered periodic placement of the
references [23] is not optimal in general, unless some very
restrictive assumptions are considered, that are for instance
that the encoding costs of each data point are equal (i.e. all
data points when compressed as a reference require the same
cost, and when compressed as a predicted source require the
same cost, but not necessarily equal to the previous one) and
that all requests are equally probable.

We demonstrate the performance of the proposed method
for: 1) the particular case where the data points have the
same encoding cost (i.e. the encoding costs of the sources
as a reference are equal, and the encoding costs as predicted
are also equal) and 2) the general scenario, where the sources
have variable encoding costs. Experiments are conducted on
various applications. We first consider the case where a source
is a frame of a video encoded with the Versatile Video Coding
(VVC) [5] Test Model (VTM) version 6.2. We then apply our
method to meteorological data and to the occupancy measure
of self-service bicycle terminals in Paris. For each case,
the transmission cost is evaluated with different popularity
distributions: either all sources are equally popular, or with

significantly unequal popularity. Depending on the applica-
tion, we consider different unequal popularity distributions.
We use a log-normal distribution for video coding [4], a
Gaussian distribution for meteorological data, and an empirical
frequency distribution based on real measurements for self-
service bicycles.

In order to show the interest of our approach, we compare
our optimization results with two other methods. First, we
consider a naive approach, in which sources with high pre-
dictive encoding cost are chosen to be a reference. Second,
we incorporate the tiling constraint of [12], [13], [25] into
our method, and derive the corresponding optimal solution.
Experimental results are compared in terms of BD-rates for
the video coding application, and in terms of rate-saving for
the other two applications. Our method shows around −20%
of bit-rate saving compared to the naive approach, and around
−3% of bit-rate saving compared to the optimized tiling
approach.

Notation: Upper case letters denote either a source or a ran-
dom variable. bxc and dxe denotes rounding x to the nearest
integer less than, greater than or equal to it, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the joint optimization problem of the com-
pression efficiency and random access is derived. First, the
source model and the encoding scheme are presented. Then,
storage and transmission costs are formally defined. These two
quantities form the cost function to be optimized, and this
leads to the problem formulation.

A. Source model, coding scheme, and source delivery

The data is modeled as the realizations of N correlated
sources that can be represented by an N -dimensional vector
of random variables denoted (X1, . . . , XN ), where each Xn

is a multivariate variable of dimension d.

Xn

(source)

•

• Intra Coding

• Predictive Coding

Xn−1

Fig. 1. Predictive coding scheme: each source is either intra coded or
predicted.

The sources are first compressed according to a predictive
scheme, meaning that a source is encoded either independently
of the other sources (the source is then said to be a reference
or to be intra-coded) or by exploiting the knowledge of the
previous one, see Fig. 1 (the source is then said to be predicted
or inter-coded). In the following, I ⊂ {1, ..., N} denotes
the index set of the reference sources. To handle the case
of the first source X1, we introduce the initialization source
X0, which models the memory state at the encoder when the
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encoding starts. For instance, X0 can be the all zero source,
or XN . In the latter case, the encoding is said to be cyclic.

For this predictive coding scheme, and given the index set
I, we first derive the contribution of the source Xn to the
global encoding cost. Encoding of the source Xn leads to a
cost rn (in bits) if the source is intra-coded and αnrn if it
is predicted. Note that compression can be either lossless, or
lossy. αn corresponds to the reduction that can be achieved
with the prediction of the source Xn. Therefore, given the
index set of references I, the global cost of encoding the
source Xn is

cost(Xn|I) = rn1I(n) + αnrn(1− 1I(n)) ∀ n ∈ [1, N ]
(1)

where 1I is the characteristic function of the set I. For
example, if optimal lossless compression is performed, then
the rates can be expressed as rn = H(Xn), and αnrn =
H(Xn|Xn−1), where H(Xn) and H(Xn|Xn−1) denote the
entropy and conditional entropy respectively. The case of lossy
compression is studied in Sec. V.

a) X1 X2 X3 X4 X5 X6 X7 X8 · · ·

b) X1 X2 X3 X4 X5 X6 X7 X8 · · ·

reference

predicted

/ request

/ additional source sent

Fig. 2. Serving a request in the predictive coding scheme. Sources selected
as a reference are depicted with a square. Predicted sources are depicted
with a circle. An arrow from a square/circle to another circle means that
the source depicted by the square/circle at the beginning of the arrow is
used to predict the other source. A request to a set of sources is depicted
as filled gray squares/circles. The set of sources which are effectively sent,
includes the requested but also additional sources (dotted square/circle) to
allow decoding. The decoding process is shown with dotted arrows. Two
examples of request are shown: either the requested sources (X2, X3, X4)
are included in a single group of source and only one reference needs to be
sent (a), or the requested sources (X3, X4, X6) are spread over two groups
of source and two references need to be sent (b).

Once the compression is performed, all sources are stored
on a server. Then, random access to the sources is allowed
in the sense that a client may request any set of sources. The
coding and request principles are shown in Fig. 2.

B. Problem description and challenges

The goal of the paper is to optimize the predictive coding
scheme by minimizing a cost that depends on two criteria:
• the storage cost: the encoding cost of the data (1),

averaged over all sources,
• the transmission cost: the amount of transmitted data per

requested source, averaged over all possible requests.
Classically, in the context of video coding [1], [9], [21],
[23], [24], the two criteria are not differentiated. This is a
consequence of the fact, that in classical 2D video coding,
long consecutive sequences of sources (frames) are requested,
such that both criteria are almost equal.

As for the optimization of the predictive coding scheme,
the design parameters considered here is the location of the
references, described by I.

C. Problem formulation

Given a sequence of sources (X1, ..., XN ) and the pre-
dictive coding scheme detailed in Section II-A with source
initialization X0 and reference index set I, the storage cost is
completely determined by the cost to encode each source (1)

S(I) =
1

N

N∑
n=1

cost(Xn|I). (2)

The users make requests to the database, where a request
can be any subset V ⊂ {1, . . . , N}. Given the index set of
the reference sources I, and upon request of the sources with
index V , the server delivers a set of compressed sources with
index S such that the requested sources can be recovered (see
Fig. 2). More precisely, it is necessary that for each requested
source, a reference source and all its successors are sent.
Therefore, for a given requested set V , the index set S of
the sent sources must satisfy

∀v ∈ V,∃i ∈ I : {i, i+ 1, . . . , v} ⊂ S (3)

which expresses the coding dependency chain. Then, the
transmission cost corresponds to the cost to send all sources
with index in S, where this cost is averaged over the number
of requested sources. Finally, the minimum transmission cost
is obtained by optimizing over the set of sent sources and is
given by (4). Although the requests from users are unknown
in advance and are therefore random, they can be collected
and classified into a limited number of typical requests char-
acterized by some popularity distribution. More precisely, we
suppose that there exists M typical index sets of requested
sources, denoted by {V1, . . . , VM}. This may result from an
analysis of the video based on saliency analysis, or change
of scene. The cardinality |Vm| is denoted as `m, for every
m ∈ [1,M ]. The vector p = (p1, . . . , pM ) represents the
popularity distribution, where pm stands for the probability
that the set Vm has been requested. In the following, we
assume that all sources might be requested with a non-zero
probability. In other words, we assume that pm > 0,∀m ∈
{1, . . . ,M}, and ∪m∈{1,...,M}Vm = {1, . . . , N}. This leads
to the minimum averaged transmission cost (5)

The reference set selection problem consist in finding

I∗ ∈ argmin
I⊂{1,...,N}

S(I) + λR(I) (6)

where the storage S(I) and the transmission R(I) costs
are defined in (2) and (5) respectively, λ ∈ (0,+∞) is a
weighting parameter between the storage and the transmission
rate. The difficulty of the problem is twofold. First, a double
optimization needs to be performed, one to determine the
set of sent sources Sm for each request m, and the second
one to determine the reference index set I. This leads to a
quadratic cost function that results from the multiplication
of the functions 1I and 1Sm . Second, the constraint (5b)
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R(V|I) = min
S⊂{1,...,N}

1

|V|
N∑

n=1

rn
(
1I(n) + αn(1− 1I(n))

)
1S(n) (4a)

subject to ∀v ∈ V,∃i ∈ I : {i, i+ 1, . . . , v} ⊂ S (4b)

R(I) =

M∑
m=1

pm
|Vm|

min
Sm⊂{1,...,N}

N∑
n=1

rn
(
1I(n) + αn(1− 1I(n))

)
1Sm(n) (5a)

subject to ∀m ∈ [1,M ],∀v ∈ Vm,∃i ∈ I : {i, i+ 1, . . . , v} ⊂ Sm. (5b)

introduces a complex dependence between the optimization
variables: Sm,∀m ∈ [1,M ] and I.

Remark: The formulation (6) is quite general. First, it
includes the optimization of the weighted metric γS(I) +
µR(I). This weighted metric can for instance be the time
to serve a request (in this case γ represents the time per bit to
read a memory, and µ the time to send and receive a bit), or the
energy cost to maintain a service, or the price to deploy such a
service. Moreover, the solution to the problem (6) allows one
to solve the two following constrained problems:

min
I⊂{1,...,N}

S(I) subject to R(I) ≤ RC (7a)

min
I⊂{1,...,N}

R(I) subject to S(I) ≤ SC (7b)

where RC and SC are global cost constraints. Indeed, we will
show in Sec. III that (6) is a linear programming problem. All
terms (S(I),R(I)) including the constraint (5b) are linear.
Therefore, the derivations of Sec. III imply that the two
constrained problems (7a) and (7b) are equivalent to integer
linear programming problems.

III. AN EQUIVALENT INTEGER LINEAR PROGRAMMING
PROBLEM

In this section, we show that the reference selection problem
(6) can be cast into an integer linear programming problem.
The first step consists in turning the quadratic cost func-
tion into a linear cost function by introducing the vectors
y, z0,m, z1,m such that, ∀n ∈ [1, N ]

yn = 1I(n), (8a)

z0,m
n = 1I(n)1Sm(n), ∀m ∈ [1,M ] (8b)

z1,m
n = (1− 1I(n))1Sm(n), ∀m ∈ [1,M ] (8c)

where yn, z
0,m
n , z1,m

n stand for the nth entry of the vectors
y, z0,m, z1,m. These vectors belong to the set {0, 1}N . More-
over, to be compatible with the definition of the characteristic
functions 1I and 1Sm , these vectors must satisfy the following
constraints

z0,m
n ≤ yn, ∀n (9a)

z1,m
n ≤ 1− yn, ∀n (9b)

where (9a) follows from (8a) and (8b) and (9b) follows from
(8a) and (8c).

With this change of variable, the cost function in Problem
(6) becomes (10)

1

N

N∑
n=1

rn (1− αn) yn + λ

M∑
m=1

pm
|Vm|

min
(z0,m,z1,m)

N∑
n=1

rn
(
z0,m
n + αnz

1,m
n

)
(10)

which is indeed linear, as well as the additional constraints
(9).

We now turn to the constraint (5b) and show that the search
space of the optimal index set Sm can be reduced without
modifying the value of the cost function at the optimum.
More precisely, the sent sources (with index in Sm) must
contain the information necessary for decoding each requested
source. This is the meaning of the constraint (5b). In particular,
for each requested source of index v ∈ Vm, a reference
source with index i ≤ v needs to be sent. However, it is
sufficient to send the reference source that is closest to v.
All other reference sources with index smaller will lead to
an unnecessary extra rate. Therefore, the constraint (5b) can
be rewritten as a new decodability constraint (11), without
modifying the value of the cost function at its optimum

∀m ∈ [1,M ], S∗m(I) =
⋃

v∈Vm
{iv, iv + 1, . . . , v} (11a)

where iv = max
j∈I,j≤v

j. (11b)

We now show that the decodability constraint (11) can be
expressed in terms of linear equations. The proof consists of
several steps.

Step 1. (11)⇒(12) The decodability constraint (11) im-
plies that at least one source has to be a reference. This
can be written as

∃n s.t. 1I(n) = 1⇔
N∑

n=1

yn ≥ 1 (12)

Step 2. (11)⇒(13)⇔(14)⇔(15). We now show that the
decodability constraint (11) induces a backward recursive
construction of the set of sent sources. First, a source is
sent if its index n belongs to the request (13a). Then, if
the source of index n is not requested, and if the source
n+ 1 is not a reference, then the fact that the source of
index n + 1 is sent, implies that the previous source of
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index n must also be sent (13b). This implies a backward
recursion, and the recursion stops when a previous source
is a reference. (

n ∈ Vm
)
⇒
(
n ∈ Sm

)
(13a)

(n /∈ Vm) ∧ (n+ 1 ∈ Sm) ∧ (n+ 1 /∈ I)⇒
(
n ∈ Sm

)
(13b)

This is equivalent to

1Sm(n) = 1∀n ∈ Vm (14a)
1Sm(n) = 1Sm(n+ 1) (1− 1I(n+ 1)) ∀n /∈ Vm

(14b)

and, using the change of variable (8), this can be rewritten
as

z0,m
n + z1,m

n = 1 ∀n ∈ Vm (15a)

z0,m
n + z1,m

n = z1,m
n+1 ∀n /∈ Vm (15b)

Step 3. (12)(13)⇒(11) Conversely, from (13a) or equiv-
alently (14a), all requested sources belong to the set of
sent sources. If the source with index v is a reference,
then from (14b), the previous and all other previous
sources are not sent. If instead, the source with index
v is not a reference, then from (14b), the previous and
all other previous sources are sent. The recursion stops
when a reference source has been found. Moreover, from
(12), there exists at least one reference source. Therefore,
∀v ∈ Vm, the index set {i, i + 1, . . . , v} (where i ∈ I)
belongs to the index set of sent sources Sm. In other
words, the sent sources (with index in Sm) are sufficient
to decode any requested source in Vm.

In conclusion, the new expressions of the cost function
(10) and of the constraints (9), (12) and (15), lead to a
new formulation of the overall reference selection problem
as written in (16), where z0 =

(
z0,m
n

)
1≤n≤N,1≤m≤M and

z1 =
(
z1,m
n

)
1≤n≤N,1≤m≤M . We observe that this problem

is indeed a linear integer programming problem, that can be
solved by standard optimizer as [16]. In this paper, we employ
the Integer Linear Programming (ILP) Matlab toolbox1.

IV. A CASE WHERE THE PERIODIC PLACEMENT OF THE
REFERENCE SOURCES IS OPTIMAL

A classical approach in video coding [9], [21], [24] is to
place references periodically [23]. In this section, we derive
sufficient conditions under which this periodic placement is
optimal. More precisely, we study the reference selection
problem (6) under the hypothesis that all sources have the same
distribution and that requests to consecutive sources are done.
In that case, we show that periodic placement of the reference
sources is optimal, and we derive a closed-form expression for
the optimal period. More formally, the hypotheses considered
here are:

1available at https://fr.mathworks.com/help/optim/ug/intlinprog.html

Assumption 1. The encoding cost of all the sources in (1) are
constants i.e.,

∀ n ∈ [1, N ] , αn = α, rn = r,

Assumption 2. The family of request sets consists of all
possible sets of ` consecutive indices, each request has the
same probability, i.e.

∀ m ∈ [1,M ] , `m = `, and pm =
1

M
.

Assumption 3. The weighting parameter λ between the stor-
age and the transmission rate equals 1.

Proposition 4. Consider a set of N sources (N → +∞)
that satisfy Assumption 1. Further consider that the requests
satisfy Assumption 2, and that the cost function satisfies
Assumption 3. The optimal positioning of the reference sources
that minimizes the optimization problem (6) is periodic.

Proof. The proof for this Proposition can be found in Ap-
pendix A.

In the previous proposition, considering N →∞ allows one
to neglect the boundary effect of the last group of sources.

Proposition 5. Consider a set of N sources (N → +∞)
that satisfy Assumption 1. Further consider that the requests
satisfy Assumption 2, and that the cost function satisfies
Assumption 3. The reference index set is periodic of period
k. The storage (2) and the transmission cost (5) only depend
on this period and are given by

S(k) =
r

k
[(k − 1)α+ 1], (17)

R(k) =
r

k`

(
k + `− 1 +

α

2
(k − 1) (k + 2`− 2)

)
(18)

Proof. The proof for (17) directly derives from the definition
of the storage (2). The proof for the transmission cost is more
involved as it requires to solve an optimization problem. It is
given in Appendix B

Theorem 6. Consider a set of N sources (N → +∞)
that satisfy Assumption 1. Further consider that the requests
satisfy Assumption 2, and that the cost function satisfies
Assumption 3. The optimal positioning of the reference sources
that minimizes problem (6) is periodic of period k∗

k∗ = arg min k ∈
{⌊
k
⌋
,
⌈
k
⌉}

F (k) (19)

where

k̄ =

√
2(1− α)(2`− 1)

α
.

Proof. k∗ is the value that minimizes the function F (k) =
S(k)+R(k). Details of the proof can be found in Appendix C.

https://fr.mathworks.com/help/optim/ug/intlinprog.html
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(y∗, z0,∗, z1,∗) = argmin
(y,z0,z1)∈R(2M+1)N

1

N

N∑
n=1

rn(1− αn)yn + λ

M∑
m=1

βm

N∑
n=1

rn
(
z0,m
n + αnz

1,m
n

)

s.t.



(yn, z
0,m
n , z1,m

n ) ∈ {0, 1}3 ∀ (n,m) ∈ [1, N ]× [1,M ]∑N
n=1 yn ≥ 1

−yn + z0,m
n ≤ 0 ∀ (n,m) ∈ [1, N ]× [1,M ]

yn + z1,m
n ≤ 1 ∀ (n,m) ∈ [1, N ]× [1,M ]

z0,m
n + z1,m

n = 1 ∀ (n,m) ∈ [1, N ]× [1,M ] and n ∈ Vm,
z0,m
n + z1,m

n − z1,m
n+1 = 0 ∀ (n,m) ∈ [1, N − 1]× [1,M ] and n /∈ Vm

(16)

V. OPTIMAL REFERENCE PLACEMENT IN THE CASE OF
LOSSY COMPRESSION

A. Equivalent integer linear programing problem with in-
creased search space dimension

In section IV, for lossless coding, we choose prediction
chains which minimize the source rate. Such optimal predic-
tion chains allow us to solve our problem by integer linear
programming. In this section, we extend the reference selec-
tion problem to the case of lossy compression. We assume that
the quantization step size is fixed for all the sources, and, as
in the lossless case, we only optimize the reference placement
(no rate-distortion allocation). The difference between the two
cases lies in the fact that in the lossy case, the rate needed
to transmit a source can depend on the distance between
this source and its previous reference. Therefore, in this part,
we also assume that the distance between two consecutive
references is not greater than T . Under these assumptions,
we express the cost function in the lossy case, and show
that minimizing this cost function is, as before, equivalent to
solving an integer linear programming problem.

For a sequence of sources (X1, . . . , XN ), the global cost
for the lossy encoding of the source Xn satisfies, for every
n ∈ [1, N ],

cost∗(Xn|I) = rn1I(n) + αn,t∗rn (1− 1I(n)) , (20a)
with t∗ = arg max

t∈I∩Tn
t, (20b)

and where Tn = [max{1, n−T + 1},max{1, n− 1}] for n ∈
[1, N ]. In (20), rn stands for the rate to encode the reference
source Xn, and αn,trn is the rate to encode the source Xn

from Xn−1, given that the source Xt is a reference source
(with t ∈ Tn). The difficulty in (20b) is that the optimization is
performed over indices, whereas, in the optimization problem,
the cost function (20a) is homogeneous to a rate. Therefore,
we rewrite (20) into (21) assuming that the rate needed to
compress a source increases with the distance to the reference.

cost∗(Xn|I) = rn1I(n) +

(
min

t∈I∩Tn
αn,t

)
rn (1− 1I(n)) .

(21)

Now, (21), which depends on index t, can be equivalently
reformulated as (22) which depends on the set Jn of all
possible values for t. This formulation allows us to introduce
a combination of indicator functions, which facilitates the

linearization of the problem. Note that if n ∈ I, both cost
functions (21) and (22) are equal, and if n ∈ [1, N ] \ I, we
have

cost∗(Xn|I) =

(
min
Jn⊂I

∑
t∈Tn

αn,t1Jn(t)

)
rn (23a)

s.t.
∑
t∈Tn

1Jn
(t) = 1. (23b)

We now formulate the optimization problem in the lossy
case. As for the lossless case, the storage cost is given by

S(I) =
1

N

N∑
n=1

cost∗(Xn|I) (24)

and the minimum averaged transmission cost required to
deliver the M sets of requested sources {V1, . . . , VM} is
obtained by
Therefore, in this case, the reference set selection problem
consists of finding an index set I∗ such that

I∗ ∈ argmin
I⊂{1,...,N}

S(I) + λR(I) (26)

The following proposition shows that, as in the lossless case,
finding a solution for (26) is equivalent to solving a integer
linear programming problem.

Proposition 7. The reference selection problem (26) can be
cast into an integer linear programming problem.

Proof. See Appendix D.

The integer linear programming problem stated in Sec-
tion III for the lossless case involves N(1 + 2M) binary vari-
ables to optimize. In the lossy case, the linear programming
problem of Proposition 7 involves (N +

∑N
n=1 |Tn|)(1 +M)

binary variables. In the lossy case, the number of variables is
thus increased by a factor approaching T , which can be large.
In the next section, we consider a source model for which the
optimization problem for the lossy case can be simplified into
the optimization problem for the lossless case.

B. Reduction of the search space dimension

A way to reduce the dimension of the optimization problem
(25) is to break the dependency chain thanks to some assump-
tions, as it is done in other applications such as bit allocation
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cost∗(Xn|I) = rn1I(n) +

(
min
Jn⊂I

∑
t∈Tn

αn,t1Jn
(t)

)
rn (1− 1I(n)) , (22a)

s.t. 1I(n) +
∑
t∈Tn

1Jn(t) (1− 1I(n)) = 1. (22b)

R(I) =

M∑
m=1

pm
|Vm|

min
Sm⊂{1,...,N}

N∑
n=1

cost∗(Xn|I)1Sm(n) (25a)

subject to ∀m ∈ [1,M ],∀v ∈ Vm,∃i ∈ I : {i, i+ 1, . . . , v} ⊂ Sm (25b)

in a video stream [14], [26] or packet scheduling on a lossy
channel [6].

In the following, we show an example of drastic simplifi-
cation, such that (1) still holds, i.e., the cost function depends
on two instead of T parameters as in (21). Consider the first
order autoregressive model

Xn = AXn−1 + Zn, (27)

where Xn models the source, Zn is an innovation process, A
is a fixed d×d matrix, and all vectors are of dimension d. For
ease of presentation, we assume that all processes are centered.
Moreover, we do not account for any correlation between the
components of Xn

2. Now, the compression scheme consists in
first building a linear prediction X̂n, with the d×d matrix H ,
then computing a residue En. Each component of En is scalar
quantized leading to a quantization error ∆n and entropy
coded. The coded data are sent to the decoder. Finally, the
decoder computes the quantized residue Ẽn, and reconstructs
the data X̃n from the prediction and the quantized residue:

X̂n = HX̃n−1 (28a)

En = Xn − X̂n (28b)

Ẽn = En + ∆n (28c)

X̃n = X̂n + Ẽn. (28d)

One has

X̃n = Xn − En + Ẽn = Xn + ∆n. (29)

Assume that each component En,i of the residue En is entropy
coded, without exploiting the temporal dependencies (along
the index n). The rate Rn,i required to represent En,i with
a distortion Dn,i = E[∆2

n,i] and the correlation between the
components of En is then

Rn,i =
1

2
log

(
cn,i
Dn,i

E[E2
n,i]

)
, (30)

where cn,i is a constant which depends on the quantizer
type, and the distribution of the residue. The rate-distortion
characterization (30) for a wide class of distributions [22, Sec.
4], but also for all distributions in the high resolution regime
[22, Sec. 5.2.3 and Sec. 5.2.6], provided that we apply a scalar

2This model does not account for the spatial correlation that may be found
in resudial images. We thus obtain a memoryless R-D characterization

quantization with a variable-length code that does not exploit
dependencies.

The residue satisfies (31),
where (31b) uses the fact that we apply the optimal linear
predictor, which minimizes the residue energy E[ET

nEn], i.e.,
H = A [17, Chap. 11] [22, Sec. 6], and where (31d) follows
from the fact that Zn is an i.i.d. process (this implies that Zn is
independent of the past quantization error ∆n−1). Therefore,
the variance E[E2

n,i] of the ith component of the residue, only
depends on the characteristics of the source (A and E[ZnZ

T
n ])

and on the quantization error statistics E[∆n−1∆T
n−1]. In other

words, given the source model, E[E2
n,i] only depends on the

quantization applied at time n − 1, and does not depend on
the position of the previous reference, which we summarize as
E[E2

n,i] = fi(Dn−1,1, . . . , Dn−1,d). Finally, the cost to encode
the source Xn, is

d∑
i=1

Rn,i =
1

2

d∑
i=1

log

(
cn,i
Dn,i

fi(Dn−1,1, . . . , Dn−1,d)

)
.

(32)

To summarize, if the sources follow a first-order autore-
gressive model, if the quantization steps are fixed for all
the sources, if the components of the prediction residual are
scalar quantized and entropy coded without exploiting the
dependencies, then the rate to encode a source does not depend
on the position t of the reference, i.e.,

αn,t = αn,∀t (33)

and the general cost function (22) boils down to the cost
function derived in the lossless case (1).

VI. EXPERIMENTAL RESULTS

In this section, we aim at evaluating the performance of
the proposed method for either constant or variable source
encoding cost αn in (1). More precisely, the αn for every
n ∈ [1, N ] are chosen in ]0, 1[ or obtained from real mea-
surements (video, meteorological data, occupancy measure of
self-service terminal). Each of these experiments is considered
with or without taking into account the popularity of the
request pm, (m ∈ [1,M ]). Then, for each choice in this input
parameter set, different request lengths are considered. The
weighting parameter λ is set to 1. In Fig. 4-8, the labels (ix)
in each subfigure indicate:
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En = Zn +AXn−1 −HXn−1 −H∆n−1 (31a)
En = Zn −A∆n−1 (31b)

E[EnE
T
n ] = E[ZnZ

T
n ]− 2E[Zn∆T

n−1A
T ] +AE[∆n−1∆T

n−1]AT (31c)

= E[ZnZ
T
n ] +AE[∆n−1∆T

n−1]AT (31d)
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Fig. 3. Optimal placement of the reference for constant predictive coding cost
α and constant popularity p (test condition 1): y∗ solution to Problem (16),
where 1 stands for a reference source. Test for four different combinations of
values of α and of the size of request `. (a) α = 0.9 and ` = 1; (b) α = 0.1
and ` = 10; (c) α = 0.1 and ` = 1; (d) α = 0.9 and ` = 10.

• i: the test condition
• x: the set of parameters used for this test condition

(specified in the figure’s caption) or the quantity that is
plotted for this test condition (specified in the figure’s
caption)

The four test conditions are:
(1) all requests have the same popularity and the sources have

the same encoding cost
(2) all requests have different popularities and all the sources

have the same encoding cost
(3) all requests have the same popularity and the sources have

different encoding costs
(4) all requests have different popularities and the sources

have different encoding costs.

A. Results on the synthetic dataset

In all the simulations on the synthetic dataset, rn, the intra
coding cost of each source is considered constant.
� Test condition (1): all requests have the same popularity and
the sources have the same encoding cost. More precisely αn =

α,∀n ∈ [1, N ] and pm = 1/M,m ∈ [1,M ]. Moreover, the
total number N of sources is set to 100, and cyclic encoding
is performed.

Request size `
1 2 3 4 5 6 7 8 9 10

Pa
ra

m
et

er
α

0.1 4 7 10 11 13 14 15 16 18 19
0.2 3 5 6 8 9 9 10 11 12 12
0.3 2 4 5 6 7 7 8 8 9 9
0.4 2 3 4 5 5 6 6 7 7 8
0.5 2 3 3 4 4 5 5 6 6 6
0.6 1 2 3 3 4 4 4 5 5 5
0.7 1 2 2 3 3 3 3 4 4 4
0.8 1 1 2 2 2 2 3 3 3 3
0.9 1 1 1 1 2 2 2 2 2 2

TABLE I
OPTIMAL REFERENCE PERIOD k∗ , SOLUTION DERIVED IN THEOREM 6
FOR A DATASET OF N = 100 SOURCES, α ∈ {0.1, 0.2, . . . , 0.9}, AND

` = {1, 2, . . . , 10}.

Fig. 3 shows the optimal reference placement y∗ obtained
by solving the integer linear programming problem (16). First,
we observe that, even if the assumption of Proposition 4 is
not satisfied (N is finite), the optimal positioning is periodic.
We denote τ∗ this period. Second, the more the sources are
correlated (small α), the larger the period of the Group Of
Sources (GOS), as intuition suggests.

Tab. I reports the optimal period k∗ derived by Theorem 6
i.e., obtained in the asymptotic case N → ∞ to neglect
the effect of the last GOS. We note that, for all tested
cases (α ∈ {0.1, 0.9} and ` ∈ {1, 10}), both optimization
solutions (closed-form under asymptotic assumption k∗ and
solution to the optimal τ∗) lead to the same result except
when ` = 10, α = 0.1, where τ∗ = 20 and k∗ = 19. This
difference occurs because the number of GOS (k∗/N ) is very
small (< 5) so that the incomplete GOS affects the solution.
In other words, neglecting the effect of the incomplete last
GOS does not affect the placement of the references except
when the number of GOSs is small.

Fig. 4 illustrates the importance to perform the reference
placement optimization (16). Indeed, the storage costs S,
(top figures) and the transmission costs R (middle figures)
are compared when the period has been overestimated by
only 1 with respect to the optimal one k∗. More precisely,
we compare these costs for k∗ and for k� = k∗ + 1. Then,
the excess rate of the sum cost F = S + R is computed
and the proportional excess rate ((F � − F ∗)/F ∗) is shown
(bottom figures in Fig. 4). Interestingly, an overestimation of
the period by only 1 may lead to a significant increase of the
sum rate F by up to 20%.

� Test condition (2): all requests have different popularities
and all the sources have the same encoding cost. More pre-
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Fig. 4. Comparison of the storage (S), transmission (R) and sum costs (F = S+R) obtained either with the optimal reference placement y∗ (line with star)
or when the period has been overestimated by only 1 i.e. y� (dotted line with diamond). (1e): when ` = 1 and α ∈ {0.1, . . . , 0.9}. (1f): when α = 0.9 and
` ∈ {1, . . . , 10}. From top to bottom: storage costs, transmission costs and the ratio (F � − F ∗)/F ∗ where F � and F ∗ correspond to the function values
at y∗ and y�, respectively.
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Fig. 5. Optimal placement of the reference for constant predictive coding
cost α and variable popularity shown in the top figure (test condition 2): y∗
solution to Problem (16), where 1 stands for a reference source. Test for four
different cases of α and size of request `: (2a) α = 0.9 and ` = 1; (2b)
α = 0.1 and ` = 10; (2c) α = 0.1 and ` = 1; (2d) α = 0.9 and ` = 10.

cisely αn = α (n ∈ [1, N ]) and the probability of popularity
of request Vm is pm for every m ∈ [1,M ]. This popularity
probability distribution has been chosen to mimic the case,
where a video contains two popular instants, and users access

the video around these key events for variable time durations.
If every source in the request set has the same probability, we
can then compute the probability of request for each source,
denoted (πn)1≤n≤N , which defines the vector π and is given
by

∀n ∈ [1, N ] , πn =
∑

{m∈[1,M ] : vn∈Vm}

pm
`m

(34)

Moreover, the total number of sources is N = 100, and cyclic
encoding is performed.

Fig. 5 shows the popularity of each source (top figure)
and the resulting optimal reference placement. Interestingly,
references correspond to popular sources as intuition suggests.
But this is not the only criterion. Indeed, references are also
rather positioned at the beginning of a burst of popular sources.
Fig. 6 illustrates the importance to perform the reference
placement optimization (16). A naive reference placement y�

is performed, where the references correspond to the most
popular sources. Then, y� is compared to the optimal one y?

under the hypothesis that both reference placement strategies
have the same number of references.

Fig. 6 compares the costs (Storage S, Transmission R,
and the sum cost F = S + R as proposed in [3]) for
both strategies (optimal vs most popular selection). In this
experiment, we choose to show two results of (2e) fixed
` = 0.7 with α ∈ {0.1, 0.2, . . . , 0.9}, and (2f) fixed α = 0.7
with ` ∈ {1, 2, . . . , 10}. In both cases, the storage costs of
both y∗ and y� are equal, however again there are significant
differences between the transmission costs (R∗ and R�).
Finally, the naive placement strategy leads to a significant
increase of the sum rate F by up to 20%.

B. Real dataset: video

We now test our optimal placement method on real datasets.
Here, we consider seven CTC sequences which are presented
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Fig. 6. Comparison of the storage (S), transmission (R) and sum costs (F = S + R) obtained either with the optimal reference placement y∗ (line with
star) or when the references correspond to the most popular sources i.e. y� (dotted line with diamond). (2e): when ` = 7 and α ∈ {0.1, . . . , 0.9}. (2f):
when α = 0.7 and ` ∈ {1, . . . , 10}. From top to bottom: storage rates, transmission rates and the ratio (F � − F ∗)/F ∗ where F � and F ∗ correspond to
the function values at y∗ and y�, respectively.
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Fig. 7. Optimal placement of the reference sources for variable predictive coding cost αn (obtained from RitualDance sequence) and fixed (test condition 3)
or variable (test condition 4) popularity. In the top figures, the dashed curve represents the popularity whereas the solid line curve represents the predictive
encoding cost (αn). The bottom figures represent the solution y∗ to Problem (16), where 1 stands for a reference source. Each test condition are tested for
two different cases of size of request `: (3b) and (4a) ` = 1; (3c) and (4c) ` = 60.

in Tab. II and available at ftp://ftp.tnt.uni-hannover.de. We use
the reference software of the Versatile Video Coding (VVC)
[5] scheme, known as VVC Test Model (VTM) version 6.2,
to estimate the encoding costs and therefore the parameters
(rn, αn)n∈[1,N ]. For each video frame of time index n, rn
corresponds to the intra coding cost, and αn is the ratio
between the predictive coding cost and the intra coding cost.
The resulting αn are shown in the top figures of Fig 7 (black
line).

� Test conditions: variable source encoding costs αn, n ∈

[1, N ] and equal (3) or variable request popularities (4)
pm,m ∈ [1,M ]. The labels (3) and (4) correspond to the label
used in Fig. 7 and 8. The two types of popularity are shown
as dashed lines in the top figures of Fig. 7: constant request
popularity in the left column and variable request popularity in
the right column. In [4], the authors show that the popularity
in terms of the number of viewers who watched a segment in
videos exhibit a log-normal distribution. Therefore, we use
a log-normal distribution with parameters µ = 0.016 and
σ = 1.35 to generate the request popularity for the case (4).

ftp://ftp.tnt.uni-hannover.de
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Fig. 8. Comparison of the storage (S), transmission (R) and sum costs (F = S+λR, with λ = 1) obtained either with the optimal reference placement y∗
(line with star) or with the naive solution i.e. y� (line with diamond). Tested on the RitualDance sequence over four different values of QP ∈ {22, 27, 32, 37}
and with the request length ` = 60. The request popularity is either uniform (top, labeled (3)) or varies (bottom, labeled (4)). From left to right: storage (d),
transmission cost (e) and the sum cost (f), respectively.

Here, we observe that most of the references are placed where
αn is high. This is because, when αn is close to 1, the costs
to encode a source as a reference or as a predicted source are
almost the same. Therefore, the source Xn can be encoded as
a reference without significantly increasing the total storage
and transmission costs. In the right column of Fig. 7, variable
popularity is added. Then, many references are concentrated
at positions where sources are very popular between 30 and
160.

These observations suggest a naive reference placement
strategy y�, where the references correspond to the higher
values of αn. In Fig. 8, this naive placement y� is compared
to the optimal one y?. However, for the sake of fairness, the
number of references kept in the naive approach is optimized
in order to take into account both storage and transmission
costs. More precisely, the average conditional encoding cost
is computed ᾱ =

∑N
i=1 αn, and the placement optimization

for this average cost is performed (Theorem 6). From this
solution, a number of references can be computed, and is used
as the number of references to keep in the naive approach.
In Fig. 8, we show the results obtained for the RitualDance
sequence, for four different values of QP ∈ {22, 17, 32, 37}
and for the requested length ` = 60. We compute the costs
(Storage S, Transmission R, and the sum cost F = S+λR as
proposed in [3]) for both strategies (optimal and naive). The
naive placement strategy leads to a significant increase of the
sum rate F between 0.036 Mbps and 0.189 Mbps for uniform
request popularity (test condition 3), and between 0.049 Mbps
and 0.219 Mbps for variable request popularity (test condition
4).

We conduct the experiments described above for differ-
ent sequences from the MPEG common test conditions. We

evaluate the rate-distortion performance for the two schemes
(naive and proposed) and compare them by computing the
Bjontegaard Delta (BD-rate) bit rate saving as classically done
in video compression. For each sequence, the performance is
averaged over four QP values ∈ {22, 27, 32, 37}. Results are
reported in Tab. II for two request lengths ` ∈ {60, 90}. We
see that our approach leads to impressive gains of about −17%
and −24% on average for the global F .

We also compare our approach to a more sophisticated
technique [12] that consists in optimizing the partitioning
of the video set. The difference between partitioning and
reference frame positioning as proposed in this paper is that
partitioning cuts the video into several segments of optimized
size, and at the transmission, it is considered that the whole
segment is transmitted. Note that these segments are generally
coded with a PC scheme as considered here, which implies that
if there are not useful, the transmission of the last frames of a
segment could be avoided. To evaluate the benefits of taking
into account this partial transmission in the optimization as
we propose in this paper, we optimize the reference frame
positioning using [12] and our method and we compare the
rate-distortion performance. Results are shown in Tab. III. We
see that the advantage of our method is still significant (around
−3% in average for F ), which demonstrates that the reference
frame positioning approach proposed in this paper is more
accurate than an approach, which does not take into account
the possible partial transmission of a segment.

C. Real dataset: time series measurement

In this experiment, we consider lossless compression of
two time series measurements. The first one corresponds to
temperature data measured on the European territory by the
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Class Sequence name Requested length ` = 60 Requested length ` = 90

BD-rate (S) BD-rate (R) BD-rate (F) BD-rate (S) BD-rate (R) BD-rate (F)

B RitualDance 2.379 -44.226 -29.502 1.973 -36.951 -23.128

D

BasketballPass 1.556 -45.468 -30.853 1.101 -39.942 -26.088
BlowingBubbles 5.051 -48.988 -34.495 3.482 -37.274 -23.881
BQSquare -1.229 -37.800 -27.395 -0.733 -28.861 -19.774
Flowervase 7.420 -7.005 -1.816 0.622 -0.805 -0.187
Keiba 0.104 -34.909 -22.973 0.164 -22.072 -13.238
Mobisode2 4.016 -29.537 -17.798 3.897 -23.195 -12.431
RaceHorses 1.803 -41.929 -28.513 1.541 -35.248 -22.505

Average class D 2.675 -35.091 -23.406 1.439 -26.771 -16.872
Average 2.638 -36.233 -24.168 1.506 -28.043 -17.654

TABLE II
COMPARISON OF THE BD RATE OF THE STORAGE (S), TRANSMISSION (R) AND SUM COSTS (F = S +R) OBTAINED EITHER WITH THE OPTIMAL

REFERENCE PLACEMENT y∗ WITH THE NAIVE SOLUTION y� . THESE RESULTS PRESENTED IN THIS TABLE, FOR EACH SEQUENCE ARE AVERAGED OVER
FOUR DIFFERENT VALUES OF QP ∈ {22, 27, 32, 37}.

Class Sequence name Requested length ` = 60 Requested length ` = 90

BD-rate (S) BD-rate (R) BD-rate (F) BD-rate (S) BD-rate (R) BD-rate (F)

B RitualDance -4.439 0.919 -1.612 -3.749 0.159 -1.721

D

BasketballPass -3.967 0.302 -1.694 -3.558 -0.073 -1.719
BlowingBubbles -7.901 -0.179 -3.648 -7.818 -0.637 -3.959
BQSquare -6.964 0.814 -2.235 -6.136 0.415 -2.259
Flowervase -15.636 -2.963 -8.36 -19.250 -8.098 -13.210
Keiba -4.701 -0.048 -2.167 -3.963 -1.037 -2.403
Mobisode2 -3.819 -1.319 -2.445 -4.286 -1.389 -2.777
RaceHorses -4.148 -0.291 -2.033 -3.960 -1.078 -2.412

Average class D -6.734 -0.526 -3.226 -7.000 -1.700 -4.106
Average -6.447 -0.346 -3.024 -6.590 -1.467 -3.808

TABLE III
COMPARISON BETWEEN PROPOSED METHOD AND THE PROPOSED METHOD WITH ADDITIONAL CONSTRAINTS IN [12], CALLED [12]♦ . IN THIS TABLE,

THE TRANSMISSION COSTS FOR [12]♦ RESULTS ARE RECOMPUTED IN ORDER TO SATISFY ALL THE REQUESTS. THESE RESULTS PRESENTED IN THIS
TABLE, FOR EACH SEQUENCE ARE AVERAGED OVER FOUR DIFFERENT VALUES OF QP ∈ {22, 27, 32, 37}.

network MESONET3. It consists in 341 temperature sensors
recording temperature every 3 hours during 4 months, i.e, from
June to September (976 frames of 341 temperature values in
the METAR format). The second corresponds to the occupancy
measure of a self-service bike terminal (Velib) in Paris. It con-
sists in an occupancy value measured every 20 minutes during
10 days on 1188 terminals. In both experiments, the vector Xn

models the measurements acquired simultaneously at time n.
From the database, we evaluate αn as the correlation between
Xn and Xn−1, and we observed that the rn are constant
over time. The request popularity for both data is generated
using a Gaussian mixture distribution. For temperature data,
it simulates the evolution of, for example, tourists’ interest to
meteorological data over time (e.g., higher in the summer). For
the Velib data, it simulates the evolution of consumers’ interest
in bicycle renting over time (e.g., higher before/after working
hours). We compare our method with the naive approach,
where the references correspond to the most popular sources.
Results are shown in Tab. IV (for meteorological data) and in
Tab. V (for Velib data). We can see that the global cost function
F is significantly lower with our approach than with the naive
one (about -10% to -20% saving). The naive approach favors
the storage cost S, whereas our approach optimize the global
cost F .

3https://mesonet.agron.iastate.edu

VII. CONCLUSION

In this paper, the tradeoff between compression efficiency
and random access to sequentially processed data has been
studied. More precisely, the data were processed with a
predictive coding scheme. First an optimization problem has
been formulated to solve this tradeoff. In particular, it was
shown that solving this trade off is a question of determining
the placement of the references. Second, this problem has
been shown to be equivalent to an integer linear programming
problem, for which classical solvers exist. Then, a classical
and heuristic approach has been studied: the case of periodic
placement of the references. Sufficient conditions under which
this periodic placement is optimal, have been derived. Finally,
experiments performed on synthetic but also real datasets
(video sequences and the time series measurement: meteoro-
logical and self-service bicycles data) showed the benefits ot
the proposed method.

APPENDIX A
PROOF OF PROPOSITION 4

Let I∗ be the optimal reference index set of Problem (6).
First we prove the following statement: a) For every three
consecutive references in I∗, denoted (i1, i2, i3) ∈ I∗, then i2
is in the middle between i1 and i3 i.e. i2 ∈ {

⌈
i1+i3

2

⌉
,
⌊
i1+i3

2

⌋
}.

Proof by contradiction: assume that the above statement is not
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aaaaaaaaaa
Request length

Bit rate
S� S∗ R� R∗ F � F ∗

` = 7 0.613 0.622 0.970 0.801 1.584 1.423
` = 14 0.604 0.610 0.900 0.736 1.500 1.346
` = 21 0.600 0.605 0.853 0.708 1.454 1.313
` = 28 0.599 0.603 0.800 0.691 1.399 1.294

TABLE IV
EVALUATION OF STORAGE (S), TRANSMISSION (R) AND SUM COSTS (F = S +R) OBTAINED WITH THE OPTIMAL REFERENCE PLACEMENT y∗ AND

WITH THE NAIVE SOLUTION y� FOR METEOROLOGICAL DATA.

aaaaaaaaaa
Request length

Bit rate
S� S∗ R� R∗ F � F ∗

` = 30 0.873 0.885 1.221 0.930 2.094 1.815
` = 60 0.867 0.876 1.119 0.908 1.986 1.784
` = 90 0.865 0.872 1.060 0.896 1.925 1.768

TABLE V
EVALUATION OF STORAGE (S), TRANSMISSION (R) AND SUM COSTS (F = S +R) OBTAINED WITH THE OPTIMAL REFERENCE PLACEMENT y∗ AND

WITH THE NAIVE SOLUTION y� FOR SELF-SERVICE BIKE TERMINAL OCCUPANCY DATA.

satisfied, i.e., i2 /∈ {
⌈
i1+i3

2

⌉
,
⌊
i1+i3

2

⌋
} , and let I� be the

set I∗, where i2 is replaced by the index in the middle. More
precisely, I� = I∗\{i2}∪{̃i2} where ĩ2 ∈ {

⌈
i1+i3

2

⌉
,
⌊
i1+i3

2

⌋
}.

This implies that

ĩ2 + i2 6= i1 + i3 (35)

We now aim to show that R(I�) < R(I∗).
Let Vm = {m, . . . ,m+ `− 1} be an arbitrary request set.

To ensure the reconstruction of the requested sources at the
decoder (11), the indices of the sent sources must be either
S∗m = {i∗m, . . . ,m + ` − 1} or S�m = {i�m, . . . ,m + ` − 1}
for the reference index set I∗ or I�, respectively, where
i∗m = maxj≤m,j∈I∗ j and i�m = maxj≤m,j∈I� j. Let i2 =
min

(
i2, ĩ2

)
and i2 = max

(
i2, ĩ2

)
. Moreover, from the defini-

tion of I∗ and I�, we deduce that i∗m = i�m, ∀m ∈ [i2, i3−1].
The computations in (36) show that R(I∗) ≥ R(I�) with
equality if and only if i2 ∈ {

⌈
i1+i3

2

⌉
,
⌊
i1+i3

2

⌋
} (from (35)),

which contradicts the initial assumption. This proves statement
(a).

We now prove that b) for a fixed number of references K
and if N = Kq with q ∈ N, then the optimal positioning
for these K references is periodic. Let us denote a group of
sources (GOS) a sequence of consecutive sources between two
intra coded sources. More specifically, the GOS contains all
sources between index n and m such that n and m + 1 are
intra coded, and all other sources with indices between n+ 1
and m are predicted. Note that the difference of GOS sizes
between two arbitrary consecutive GOSs is zero or one. This is
a consequence of assumption (a). Moreover, if the difference
of GOSs sizes is one i.e. i1+i3

2 /∈ N, there are two possible
positions for i2 ∈ {

⌈
i1+i3

2

⌉
,
⌊
i1+i3

2

⌋
}, and both give the same

rate (from the equality case in (36)). It implies that for any
three consecutive GOSs, at least two of them have the same
size. Without changing the rate of the encoding scheme, we
can shift the references such that all the GOSs with the same
size are placed at the beginning of the list of the sources. With
the latter positioning of the references, there are at most two

values of GOSs sizes, denoted by k and k + 1. Let q > 0 be
the number of references that starts a GOS of size k. We have
that the total number of sources satisfies

N = qk + (K − q)(k + 1) = Kk +K − q

Since by assumption N is a multiple of K, it follows that
K − q = 0 i.e. there is no GOS of size k + 1 i.e. all GOS
have the same size. Hence the proof of statement (b).

Finally, if N is not a multiple of K, there exists r ∈ N such
that N = Kk + r and 1 ≤ r ≤ K − 1. However, when N →
+∞, we have r → 0. Hence the proof of this proposition.

APPENDIX B
PROOF OF PROPOSITION 5

As we consider only the requests of ` consecutive sources in
a predictive encoding scheme which has periodic reference po-
sitions, then the per-source transmission rate over all requests
can be computed from the k first requests. We can simplify
(5) as follows:

R(k) = K
r

M`

(
(1− α)

k∑
m=1

1S∗
m∩I(n)

+ α

k∑
m=1

N∑
n=1

1S∗
m

(n)

)
(37)

where S∗m = {im, . . . ,m+ `−1}, and im = maxj≤m,j∈I j.
Then

k∑
m=1

N∑
n=1

1S∗
m

(n) =

k∑
m=1

(m+ `− i1) =
k(k + 1)

2
+ k(`− 1)

(38)
Let q ∈ N and r ∈ N be such that ` = qk+ r with q ≥ 0 and
1 ≤ r ≤ k. One can observe that depending on the request
set, it may require the transmission of more than one GOS.
More precisely, when m ≤ k − r + 1 the requested sources
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R(I∗)−R(I�)

=
r

M`

i3−1∑
m=i2

N∑
n=1

(
1I∗(n)1S�

m
(n)− 1I�(n)1S∗

m
(n)
)

(1− α) +
(
1S∗

m
(n)− 1S�

m
(n)
)
α

=
r

M`

i3−1∑
m=i2

((
1S�

m
(i2)− 1S∗

m
(̃i2)
)

(1− α) +

N∑
n=1

(
1S∗

m
(n)− 1S�

m
(n)
)
α

)

=
r

M`
α

 ī2−1∑
m=i2

N∑
n=1

(
1S∗

m
(n)− 1S�

m
(n)
)

+

i3−1∑
m=ī2

N∑
n=1

(
1S∗

m
(n)− 1S�

m
(n)
)

=
r

M`
α
(
i2 − i2

) (
i1 + i3 − (i2 + i2)

)
≥ 0 ∀ i2 ∈ {i1 + 1, . . . , i3 − 1} (36)

Vm are spread over either q + 1 or q + 2 GOSs. This means
that

k∑
m=1

1S∗
m∩I(n) =

k−r+1∑
m=1

1S∗
m∩I(n) +

k∑
m=k−r+2

1S∗
m∩I(n)

=

k−r+1∑
m=1

q +

k∑
m=k−r+2

(q + 1)

= (k − r + 1)(q + 1) + (r − 1)(q + 2) (39)

Using (38) and (39), the formula (37) becomes

R(k) =
K

M

r

`

(
(1− α) (k + kq + r − 1)

+ α

(
k(k + 1)

2
+ k(`− 1)

))
=

r

k`

(
k + `− 1 +

α

2
(k − 1) (k + 2`− 2)

)
where the last expression follows from the fact that N →

+∞. Indeed, since the request size ` is finite, we have that
M → +∞ and this implies that K/M → 1/k when N →
+∞. This concludes the proof.

APPENDIX C
PROOF OF THEOREM 6

We aim to find the minimizer of the following cost function

F (k) =
r

k
[(k − 1)α+ 1]

+
r

k`

(
k + `− 1 +

α

2
(k − 1) (k + 2`− 2)

)
(40)

Minimizing F (k) is equivalent to minimizing the function
F̃ (k):

F̃ (k) =(1− α)
(2`− 1)

`

1

k
+
α

2`
k + 2α+

1

`

(
1− 3

2
α

)
.

Moreover,

(1− α)
(2`− 1)

`

1

k
+
α

2`
k ≥

√
(1− α)

(2`− 1)

`

α

2`

with equality if and only if

(1− α)
(2`− 1)

`

1

k
=

α

2`
k. (41)

Therefore

k̄ =

√
2(1− α)(2`− 1)

α
. (42)

Finally, the minimizer of F (k) belongs to
{⌊
k
⌋
,
⌈
k
⌉}

. Hence,
the proof of Theorem 6.

APPENDIX D
PROOF OF THEOREM 7

Let us define the binary vectors y0,y1,t, z0,m, and z1,m,t

which n-th components are

y0
n = 1I(n) (43a)

y1,t
n = 1Jn(t)(1− 1I(n)), ∀t ∈ Tn (43b)

z0,m
n = 1I(n)1Sm(n), ∀m ∈ [1,M ] (43c)

z1,m,t
n = 1Jn

(t) (1− 1I(n))1Sm(n), ∀t ∈ Tn,m ∈ [1,M ]
(43d)

where n = 1, 2, . . . , N . We aim to show that the reference
selection problem (26) can be cast into an integer linear
programming problem with respect to the binary vectors
y0,y1,t, z0,m, and z1,m,t.
First, with the change of variables introduced in (43), the
quadratic cost function in Problem (26) can be rewritten as
(44) and becomes linear in the optimization variables.
Second, the vectors y0,y1,t, z0,m, z1,m,t, introduced in (43),
must satisfy the following additional linear constraints to be
compliant with the definition of the characteristic functions
1I ,1Jn and 1Sm .

y1,t
n ≤ y0

t , ∀n ∈ [1, N ], t ∈ Tn

(45a)

y0
n +

∑
t∈Tn

y1,t
n = 1, ∀n ∈ [1, N ]

(45b)

z0,m
n ≤ y0

n, ∀n ∈ [1, N ],m ∈ [1,M ]
(45c)

z1,m,t
n ≤ y1,t

n , ∀n ∈ [1, N ],m ∈ [1,M ], t ∈ Tn.
(45d)

where (45a) follows from (43a) and (43b), (45b) follows
from (22b), and (45c) and (45d) follow from (43a-d).
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1

N

N∑
n=1

rn

(
y0
n + min

y1,t

∑
t∈Tn

αn,ty
1,t
n

)
+ λ

M∑
m=1

pm
|Vm|

min
(z0,m,z1,m,t)

N∑
n=1

rn

(
z0,m
n +

∑
t∈Tn

αn,tz
1,m,t
n

)
(44)

Finally, we show that the decodability constraint for lossy
compression (25b) can be expressed in terms of linear equa-
tions. The proof follows similar steps as in the lossless
compression case. Indeed, the constraint in the lossless case
(5b) and lossy case (25b) are the same. Therefore, as in the
lossless case, (11) and (25b) are equivalent. We now show that
the decodability constraint (11) can be expressed in terms of
linear equations of the new variables introduced in (43). The
proof consists of several steps.

Step 1. (11)⇒(46). There must be at least one reference
source, i.e.

N∑
n=1

y0
n ≥ 1 (46)

Step 2. (11)⇒(47). If an index source n belongs to a
request then it must be sent, i.e.

z0,m
n +

∑
t∈Tn

z1,m,t
n = 1 ∀n ∈ Vm (47)

(11)⇒(48). If the source of index n is not requested,
and if the source n+ 1 is not a reference, then the fact
that the source of index n + 1 is sent, implies that the
previous source of index n must also be sent, i.e.

z0,m
n +

∑
t∈Tn

z1,m,t
n =

∑
t∈Tn

z1,m,t
n+1 ∀n /∈ Vm (48)

Step 3. (46), (47), (48)⇒(11). This converse is the same
as Step 3 derived in Sec. III for the lossless case.

In conclusion, the new expressions of the cost function (44)
and of the constraints (45), (46), (47) and (48), lead to a new
formulation of the overall reference selection problem which
is indeed a linear integer programming problem.
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