
c©978-1-4799-7082-7/15/$31.00 2015 IEEE

SHALLOW SPARSE AUTOENCODERS VERSUS SPARSE CODING ALGORITHMS FOR
IMAGE COMPRESSION

Thierry Dumas, Aline Roumy, Christine Guillemot

INRIA Rennes Bretagne-Atlantique
thierry.dumas@inria.fr, aline.roumy@inria.fr, christine.guillemot@inria.fr

ABSTRACT

This paper considers the problem of image compression with
shallow sparse autoencoders. We use both a T-sparse autoen-
coder (T-sparse AE) and a winner-take-all autoencoder (WTA
AE). A performance analysis in terms of rate-distortion trade-
off and complexity is conducted, comparing with LARS-
Lasso, Coordinate Descent (CoD) and Orthogonal Matching
Pursuit (OMP). We show that, WTA AE achieves the best
rate-distortion trade-off, it is robust to quantization noise and
it is less complex than LARS-Lasso, CoD and OMP.

Index Terms— Image compression, sparse autoencoders,
shallow architectures, complexity.

1. INTRODUCTION

The sparse approximation problem (P0) corresponds to ap-
proximating a signal with the best linear combination of a
small number of atoms from a redundant dictionary. At the
present time, there exist two approaches to this non-linear
approximation. Convex relaxation methods turn (P0) into a
convex program. Greedy methods do a series of locally opti-
mal choices to provide an approximate solution of (P0). The
sparse coding algorithms dedicated to both approaches are
somewhat complex. Over the last ten years, considerable ef-
fort has been devoted to making their implementation more
efficient [1, 2].

Sparse autoencoders also provides a sparse decomposition
of a signal but with a much less complex approach. More pre-
cisely, the coefficients of the sparse decomposition are com-
puted by multiplying the signal with a fixed matrix and then
only the most significant terms are kept. Therefore, sparse au-
toencoders are similar to a decomposition onto a DCT basis,
but here, the matrix is learned from a set of signals. This paper
sets up an image compression experiment that tests two shal-
low sparse autoencoders against three common sparse cod-
ing algorithms by evaluating both rate-distortion trade-off and
complexity. We analyze in detail the sub-optimal form (shal-
low architecture) of sparse autoencoders to figure out whether
general sparse autoencoders can hold promise for image com-
pression. The rate cost is a key criterion. We therefore pay

attention to sparse autoencoders able to create codes contain-
ing zero coefficients. For instance, the type of sparse autoen-
coder used for image denoising in [3, 4] is not relevant for
image compression.

2. SPARSE CODING

This section lays the basic equations of the methods we will
compare and analyze. Let x ∈ Rm represent an image patch.

2.1. Shallow sparse autoencoders

An autoencoder is a neural network that takes x as input and
provides a reconstruction of x.

T-sparse autoencoder (T-sparse AE) [5]. For T ∈ N∗+,
fT : Rn → Rn is the application that keeps the T largest
coefficients in its input vector and sets the rest to 0. Given
x, V ∈ Rn×m and b ∈ Rn, the first layer of T-sparse AE
computes a sparse vector z ∈ Rn, see (1). Then, given z,
Φ ∈ Rm×n and c ∈ Rm, the second layer of T-sparse AE
gives a reconstruction x̃ ∈ Rm of x , see (2).

z = fT (V x+ b) (1)

x̃ = Φz + c (2)

We also introduce a variant of T-sparse AE called T-absolute
AE. It is identical to T-sparse AE except that its application
fT : Rn → Rn keeps the T coefficients in its input vector
which absolute values are the largest and sets the rest to 0.

Winner-take-all autoencoder (WTA AE) [6]. p image
patches x(1), ..., x(p) of dimension m are concatenated into a
matrix Mx ∈ Rm×p. p sparse vectors z(1), ..., z(p) of dimen-
sion n are concatenated into a matrixMz ∈ Rn×p. p copies of
the vector d ∈ Rn are concatenated into a matrix Cd ∈ Rn×p.
p copies of the vector e ∈ Rm are concatenated into a matrix
Ce ∈ Rm×p. For α ∈]0, 1[, gα : Rn×p → Rn×p is the ap-
plication that keeps the α × n × p largest coefficients in its
input matrix and sets the rest to 0. Given Mx, W ∈ Rn×m
and d, the first layer of WTA AE computesMz , see (3). Then,
given Mz , U ∈ Rm×n and e, the second layer of WTA AE
calculates a reconstruction Mx̃ ∈ Rm×p of Mx, see (4).

Mz = gα (WMx + Cd) (3)

Mx̃ = UMz + Ce (4)

2.2. Sparse coding algorithms

LARS-Lasso and Coordinate Descent (CoD) [7]. Given
x, λ ∈ R∗+ and a dictionary D ∈ Rm×n, they both attempt to
solve a relaxed version of (P0) written in (5) to find a sparse
decomposition z ∈ Rn of x over D.

z = min
zv

(
‖x−Dzv‖22 + λ ‖zv‖1

)
(5)

x̃ = Dz (6)

Orthogonal Matching Pursuit (OMP) [8]. OMP is the
canonical greedy algorithm for (P0). Given x, K ∈ N∗+ and
a dictionary D ∈ Rm×n, its goal is to find a vector of coef-
ficients z ∈ Rn with at most K non-zero terms so that Dz
equals to x approximatively.

z = min
zv
‖x−Dzv‖22 st. ‖zv‖0 ≤ K (7)

x̃ = Dz (8)

(1), (3), (5) and (7) illustrate that, unlike T-sparse AE and
WTA AE, LARS-Lasso, CoD and OMP go through optimiza-
tion for encoding.

3. LEARNING FRAMEWORK

Before running any test, T-sparse AE and WTA AE must train
their parameters. Similarly, LARS-Lasso, CoD and OMP
need pre-trained dictionaries.

3.1. Training data extraction

The CALTECH-256 dataset [9] is a set of 256 objects cate-
gories containing 30607 images. The first 200 categories are
dedicated to training which makes a total of 22823 images
for training. The RGB color space is transformed into the
YCbCr color space and we only keep the luminance chan-
nel. N ∈ N∗+ patches of size

√
m ×

√
m are randomly

extracted from the 22823 luminance images. We remove
the DC component from each patch. It yields a bank of
patches S =

{
x(1), x(2), ..., x(N)

}
where, for i ∈ [|1, N |],

x(i) ∈ Rm. We define µj and σj as respectively the mean and
the standard deviation of the jth pixel xj over all the patches
in S. For m ≤ 144 and N ≥ 600000, we have noticed that,
∀j ∈ [|1,m|], µj ≈ 0 and σj ≈ σ ∈ R∗+. This remark must
be kept aside as it will hold importance in section 3.2.

3.2. Shallow sparse autoencoders training

Training T-sparse AE. Given S and T ∈ N∗+, V , b, Φ
and c are optimized to solve (9).

min
V,b,Φ,c

1

N

N∑
i=1

∥∥∥x(i) − x̃(i)
∥∥∥2

2

st. ∀i ∈ [|1, N |],
∥∥∥fT (V x(i) + b

)∥∥∥
0
≤ T

(9)

Training WTA AE. Given S, α ∈]0, 1[and p ∈ N∗+, W ,
d, U and e are optimized to solve (10).

min
W,d,U,e

1

N

Np∑
i=1

∥∥∥M (i)
x −M

(i)
x̃

∥∥∥2

F

st. ∀i ∈ [|1, Np|],
∥∥∥gα (WM (i)

x + Cd
)∥∥∥

0
≤ α× n× p

Np =
N

p

(10)

‖.‖F stands for the Frobenius norm and ‖.‖0 counts the num-
ber of non-zero elements in its input matrix. p must be a divi-
sor of N .

For T-sparse AE and WTA AE, the solver is mini-batch
gradient descent with momentum [10], where all gradients
are computed by backpropagation. [11] gives many tricks to
run backpropagation. In particular, we must be careful that
the mean of each input to a neural network over all training
examples be zero and all inputs have the same standard devia-
tion. As explained in section 3.1, S satisfies this requirement.

3.3. Dictionary learning

We use three different dictionary learning methods tailored to
respectively LARS-Lasso, CoD and OMP.

Learning DλDλDλ for LARS-Lasso. Given S and λ ∈ R∗+,
the algorithm in [1] creates Dλ

1.
LearningDδDδDδ for CoD. Given S and δ ∈ R∗+, algorithm 1

solves (11).

min
Dδ,z

(1),...,z(N)

1

N

N∑
i=1

L
(
x(i), z(i), Dδ, δ

)
L
(
x(i), z(i), Dδ, δ

)
=
∥∥∥x(i) −Dδz(i)

∥∥∥2

2
+ δ

∥∥∥z(i)
∥∥∥

1

(11)

Algorithm 1 alternates between sparse coding steps that in-
volve CoD and dictionary updates that use stochastic gradient
descent. For j ∈ [|1, n|], Dδ,j is the jth column of Dδ .

Algorithm 1
Inputs: S, δ and ε ∈ R∗+.
Dδ is randomly initialized.
For several epochs do:

∀i ∈ [|1, N |], z(i) = min
zv
L
(
x(i), zv, Dδ, δ

)
using CoD.

Dδ ← Dδ − ε
∂L
(
x(i), z(i), Dδ, δ

)
∂Dδ

∀j ∈ [|1, n|], Dδ,j ←
Dδ,j
‖Dδ,j‖2

Output: Dδ .

1Its implementation is the one from the SPAMS library: http://spams-
devel.gforge.inria.fr/.

Learning DoDoDo for OMP. K-SVD [12] is the commonly
used dictionary learning algorithm for OMP. But K-SVD is
too slow for largeN . Unlike K-SVD, algorithm 2 can quickly
generate Do for large N . In section 5.4, we will compare K-
SVD with algorithm 2. Given S and K ∈ N∗+, algorithm 2
solves (12). Note the similarities between (9) and (12).

min
Do,z(1),...,z(N)

1

N

N∑
i=1

G
(
x(i), z(i), Do

)
st. ∀i ∈ [|1, N |],

∥∥∥z(i)
∥∥∥

0
≤ K

G
(
x(i), z(i), Do

)
=
∥∥∥x(i) −Doz(i)

∥∥∥2

2

(12)

Algorithm 2 alternates between sparse coding steps that in-
volve OMP and dictionary updates that use stochastic gradi-
ent descent. For j ∈ [|1, n|], Do,j is the jth column of Do.
Algorithm 2 and K-SVD mainly differ in the scheduling of
dictionary updates. At epoch t, for a given training patch of
S, algorithm 2 updates all the atoms ofDo used in the decom-
position of that patch over Do. At epoch t, K-SVD updates
only one time each atom of the dictionary; each atom update
takes into account the approximation error of all the training
patches of S using that atom in their decomposition.

Algorithm 2
Inputs: S, K and ε ∈ R∗+.
Do is randomly initialized.
For several epochs do:

∀i ∈ [|1, N |], z(i) = min
zv
G
(
x(i), zv, Do

)
st. ‖zv‖0 ≤ K : OMP

Do ← Do − ε
∂G
(
x(i), z(i), Do

)
∂Do

∀j ∈ [|1, n|], Do,j ←
Do,j
‖Do,j‖2

Output: Do.

4. IMAGE COMPRESSION SCHEME

After training in section 3, each competitor undergoes the
same image compression experiment described below.

4.1. Testing data extraction

In the CALTECH-256 dataset, the 250th category gathers 96
images of zebras. We pick them out of the dataset, convert the
RGB color space into the YCbCr color space and only keep
the luminance channel. It yields the bank of luminance im-
ages denoted Γ =

{
X(1), ..., X(96)

}
. We choose the images

of zebras for testing because they have disparate backgrounds.
This makes them difficult to reconstruct. Note that the train-
ing set S does not contain any patches of zebras.

4.2. Performance measures

For each i ∈ [|1, 96|], X(i) passes through the system dis-
played in figure 1. Note that the 96 images in Γ have different
sizes. For i ∈ [|1, 96|], N (i) varies. The quantizer block
applies a scalar uniform quantization on the values of the
non-zero coefficients in the set {z(1), ..., z(N(i))}. The “cod-
ing” part draws on the CODEC in [13]. The set of indexes

{a(j)k }
j∈[|1,N(i)|]
k∈[|1,‖z(j)‖0|]

is encoded using a fixed length code. The

set of quantized values {γ̃(j)k }
j∈[|1,N(i)|]
k∈[|1,‖z(j)‖0|]

is entropy coded
with an Huffman code. We call PSNR (in dB) the average
PSNR over the 96 images in Γ. The mean rate over the 96
images in Γ, denoted R (in bpp), is defined as:

R =
1

96

96∑
i=1

R(i)

R(i) =
(
E(i) + log2(n)

) 1

m×N (i)

N(i)∑
j=1

‖z(j)‖0

For i ∈ [|1, 96|], E(i) refers to the entropy of the distribu-

tion of the set of quantized values {γ̃(j)k }
j∈[|1,N(i)|]
k∈[|1,‖z(j)‖0|]

. Note
that R does not take into account the encoding cost of the
DC components, as this has to be encoded for each evalu-
ated method. R should also include the encoding cost of the
number of non-zero coefficients. Note that, for T-sparse AE
and OMP, ∀j ∈ [|1, N (i)|], ‖z(j)‖0 = ‖z‖0 independent of
both i and j. For WTA AE, LARS-Lasso and CoD, for each
j ∈ [|1, N (i)|], ‖z(j)‖0 varies. However, we neglect this con-
tribution as its cost is small with respect to the cost of en-

coding the set of indexes {a(j)k }
j∈[|1,N(i)|]
k∈[|1,‖z(j)‖0|]

and the set of

quantized values {γ̃(j)k }
j∈[|1,N(i)|]
k∈[|1,‖z(j)‖0|]

.
Moreover, for OMP, R can be further optimized. Indeed,

the coefficients associated to the first iterations of OMP have
larger absolute values than the coefficients associated to the
last iterations of OMP. Therefore, an entropy coding can be
performed per iteration of OMP. For k ∈ [|1, ‖z‖0|], let E(i)

k
be the entropy of the distribution of the set of quantized values
{γ̃(j)k }j∈[|1,N

(i)|]. For OMP only, R becomes Ro.

Ro =
1

96×m

96∑
i=1

‖z‖0∑
k=1

(
E

(i)
k + log2 (n)

)

5. ANALYSIS

5.1. Curves creation

For each value n ∈ N∗+, we start with the training in section
3. N = 600000, m = 144, T = K = 10, p = 20000,
α = 10

n and λ = δ
2 = 0.1. The relationship between λ and

δ comes from the fact that the minimization problem in [1]
differs from (11) by a factor 0.5. We have observed that these
values for T , K, p, α, λ and δ bring to competitors the best
models for section 4.

Fig. 1: Image compression scheme on Γ.

At test time, several values for the sparsity parameters of
T-sparse AE, WTA AE, LARS-Lasso, CoD and OMP are used
to draw figure 2. Note that, at test time, for WTA AE, for
i ∈ [|1, 96|], p = N (i) varies.

5.2. Analysis for 8-bits uniform quantization

The experiments in figure 2 are conducted when LARS-Lasso
uses Dλ, CoD uses Dδ and OMP uses Do. We also ran
other experiments where LARS-Lasso, CoD and OMP shared
a common dictionary. We noticed insignificant differences
from what is displayed in figure 2. The domination of OMP
over LARS-Lasso and CoD has nothing to do with pre-trained
dictionaries. It must be related to the nature of OMP. Note
that this observation coincides with the conclusions of Adam
Coates and al. [14]. Their framework differs from ours as
it is classification. They also suggest that the quality of pre-
trained dictionaries has little impact as long as the dictionaries
express relatively well the diversity of image patches. How-
ever, the sparse coding mechanism matters a lot.

For OMP, we previously compared R with its optimized
variantRo used in figure 2. Over the range of PSNRs in figure
2, R − Ro typically belonged to [0.01, 0.05] dB. It was not
large. The good rate-distortion trade-offs of OMP compared
to those of LARS-Lasso and CoD cannot be attributed to the
fact that the measure of rate for OMP has been optimized.

We observe that, for equivalent rates, the PSNRs provided
by T-sparse AE are below those of OMP. We try to put for-
ward an explanation. The main difference between autoen-
coders and sparse coding algorithms lies in the relation link-

ing an image patch x ∈ Rm to its sparse vector z ∈ Rn. For
autoencoders, this relation simply couples a linear combina-
tion and a point-wise non-linear function, see (1). However,
for sparse coding algorithms, it is an iterative process. Given
x ∈ Rm, autoencoders put more restrictions on the form z can
take. This limited diversity of sparse vectors leads to poorer
reconstruction of image patches.

WTA AE beats all its competitors in terms of rate-
distortion trade-off. This can be explained by the way the
sparsity constraint is handled. For OMP and T-sparse AE, the
number of non-zero coefficients in the sparse decomposition
is fixed per image patch, see (1) and (7). Instead, for WTA
AE, it is fixed per set of patches, see (3). This allows to spread
the ressources over the patches, using less non-zero coeffi-
cients for patches with less complex texture. This WTA AE
approach can be viewed as a suboptimal form of the “block
sparsity selection using a global rate-distortion criterion” for
OMP [13], where the coefficients leading to the largest dis-
tortion decrease are kept. Yet, the approach in [13] is highly
complex.

5.3. Analysis for variable uniform quantization

Unlike OMP, T-sparse AE and WTA AE seem to be rarely
affected by the quantization level. For i ∈ [|1, 96|], the non-
zero coefficients in the set {z(1), ..., z(N(i))} created by OMP
are either positive or negative and most of them gather around
zero. However, T-sparse AE produces a set {z(1), ..., z(N(i))}
whose non-zero coefficients are positive and are spreaded
over a wide range. We assume that the impact of quantization

Fig. 2: Evolution of PNSR with R.

(a) n = 144, 8-bits uniform quantization (b) n = 144, 5-bits uniform quantization

(c) n = 288, 8-bits uniform quantization (d) n = 288, 5-bits uniform quantization

arises from this difference in the distribution of the non-zero
coefficients in the set {z(1), ..., z(N(i))}. To verify this, we
look at the behavior of T-absolute AE. Basically, the only dis-
tinction between T-sparse AE and T-absolute AE comes from
the fact that T-absolute AE generates a set {z(1), ..., z(N(i))}
that contains both positive and negative non-zero coefficients.
Like OMP, the 5-bits uniform quantization harms the PSNRs
in the T-absolute AE curve. For OMP and T-absolute AE, the
quantization operation might cause many confusions between
the small positive and negative non-zero coefficients in the
set {z(1), ..., z(N(i))}. The reconstruction of image patches is
damaged by these confusions.

5.4. Proof of the equivalence K-SVD/algorithm 2

We restart the entire scheme in sections 3 and 4. N = 50000
and n = 288. This way, K-SVD quickly trains a dictionary.

Figure 3 compares two cases: OMP uses the dictionary from
K-SVD and OMP uses the dictionary from algorithm 2.

5.5. Complexity analysis

Table 1 summarizes the complexity per image patch for OMP
based on a fast QR-1 decomposition [2], T-sparse AE and
WTA AE. The basic implementation of LARS-Lasso [15] has
complexity O(n3), assuming that m ≤ n. [1] suggests an ef-
ficient Cholesky-based implementation of LARS-Lasso and
processes batches of η ∈ N∗+ image patches. Using these op-
timizations, LARS-Lasso becomes only slightly slower than
OMP. One iteration of CoD has complexity O(n) [7] and the
number of iterations is related to a threshold. CoD can be
either faster than OMP or much slower depending on this
threshold so we do not show the complexity of CoD. Note
that, in our experiments, CoD is much slower than OMP as

Fig. 3: Evolution of PSNR with R, n = 288, 8-bits uniform
quantization.

Table 1: complexity per image patch assuming that ‖z‖0 �
m ≤ n.

Method Complexity
OMP O (mn ‖z‖0) [2]
T-sparse AE O (mn)
WTA AE O (mn)

we set a low threshold to get the best PSNRs from CoD.
We clarify the complexity of WTA AE displayed in 1.

In (3), given a set of images patches Mx ∈ Rm×p and
W ∈ Rn×m, the complexity of the matrix product WMx

is O(nmp). In (3), gα requires a sorting operation of com-
plexity O(np log (np)). At test time, 200 ≤ p ≤ 8000 so
O(nmp) dominates O(np log (np)). The complexity per im-
age patch of WTA AE is O(nm).

6. CONCLUSION

We show that, for image compression, WTA AE provides the
best rate-distortion trade-off, it is robust to quantization noise
and less complex than LARS-Lasso, CoD and OMP. Interest-
ingly, these first results show that the quadratic complexity of
shallow neural networks together with a specific training can
outperform the classical sparse coding algorithms for image
compression. They are potential avenues to do better image
compression at low complexity.

7. REFERENCES

[1] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo
Sapiro, “Online learning for matrix factorization and
sparse coding,” JMLR, vol. 11(1), pp. 19–60, 2010.

[2] Bob L. Sturm and Mads G. Christensen, “Comparaison
of orthogonal matching pursuit implementations,” Proc.
20th IEEE EUSIPCO, pp. 220–224, 2012.

[3] Junyuan Xie, Linli Xu, and Enhong Chen, “Image de-
noising and inpainting with deep neural networks,” in
NIPS, 2012.

[4] Forest Agostinelli, Michael R. Anderson, and Honglak
Lee, “Adaptive multi-column deep neural networks with
application to robust image denoising,” in NIPS, 2013.

[5] Alireza Makhzani and Brendan Frey, “k-sparse autoen-
coders,” in ICLR, 2014.

[6] Alireza Makhzani and Brendan Frey, “A winner-take-all
method for training sparse convolutional autoencoders,”
in NIPS, 2015.

[7] YingYing Li and Stanley Osher, “Coordinate descent
optimization for l1 minimization with application to
compressed sensing; a greedy algorithm,” Inverse Prob-
lem and Imaging, vol. 3(3), pp. 487–503, 2009.

[8] Joel A. Tropp, “Greed is good: algorithmic results for
sparse approximation,” IEEE Trans Inf. Theory, vol. 50,
no. 10, pp. 2231–2242, 2004.

[9] Greg Griffin, Alex Holub, and Pietro Perona, “Caltech-
256 object category dataset,” Tech. Rep., California In-
stitute of Technology, 2007.

[10] Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton, “On the importance of initialization and
momentum in deep learning,” in Proceedings of the
30th International Conference on Machine Learning,
pp. 1139-1147, 2013.

[11] Yann LeCun, Leon Bottou, Genevieve B. Orr, and
Klaus-Robert Muller, “Efficient backprop,” Neural Net-
works: Tricks of the Trade, pp. 9–50, Springer, 1998.

[12] Ori Bryt and Michael Elad, “Compression of facial im-
ages using the k-svd algorithm,” J. Visual Common. Im-
age Representation, vol. 19, no. 4, pp. 270–283, 2008.

[13] Joaquin Zepeda, Christine Guillemot, and Ewa Kijak,
“Image compression using sparse representations and
the iteration-tuned and aligned dictionary,” IEEE Jour-
nal of Selected Topics in Signal Processing, vol. 5,
September 2011.

[14] Adam Coates and Andrew Y. Ng, “The importance of
encoding versus training with sparse coding and vector
quantization,” in ICML, 2011.

[15] Bradley Efron, Trevor Hastie, Iain Johnstone, and
Robert Tibshirani, “Least angle regression,” The An-
nals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

