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Abstract—In the context of Distributed Source Coding, we
propose a low complexity algorithm for the estimation of the
cross-over probability p of the Binary Symmetric Channel (BSC)
modeling the correlation between two binary sources. The coding
is done with linear block codes. We propose a novel method to
estimate p prior to decoding and show that it is the Maximum
Likelihood estimator of p with respect to the syndromes of the
correlated sources. The method can be utilized for the parameter
estimation for channel coding of binary sources over the BSC.

Index terms — Source coding, Channel coding, Parameter
estimation, Binary sequences.

I. INTRODUCTION

The Distributed Source Coding (DSC) problem was intro-
duced by Slepian and Wolf (SW) [1]; the aim is to achieve
lossless compression of correlated sources X and Y . They
state [1] that no additional rate is needed when encoding the
two sources separately, with respect to the joint encoding
solution, provided that the decoding is performed jointly and
that the compression rates are greater than H(X|Y ) and
H(Y |X) respectively. Here, H(·) stands for the entropy. We
now consider the case of binary variables where the correlation
between the sources is modeled as a virtual Binary Symmetric
Channel (BSC) of cross-over probability p. It is shown in
[2] that linear block codes can achieve the SW bound, pro-
vided that they achieve the capacity of the underlying BSC.
Therefore, practical DSC solutions are based on channel codes,
like Convolutional codes [3], Turbo codes [4] or Low-Density-
Parity-Check (LDPC) codes [5].

In the literature, to perform the sum-product decoding in
[3], or [5], the BSC parameter is assumed to be available at
the decoder. However, in practice, it is necessary to estimate
this parameter on-line. In channel coding, Simons et. al
propose an estimator of the BSC parameter in [6], [7]. They
observe the output of the BSC, and deduce p based on the
assumption that certain finite sequences appear rarely in the
input; this method is only efficient when the source distribution
is known. In the DSC setup, [4], [8] propose to estimate p
with an expectation-maximization (EM) algorithm. However,
no initialization of the estimate is proposed, and the estimation
accuracy depends on the quality of the initialization, especially
for low correlation between the sources (large p). It is proposed
in [9] to use the Log-Likelihood Ratio, propagated during the
sum-product decoding of LDPC codes, to observe a function
of p; this method is only efficient for high correlation between
the sources. Particle filtering and LDPC codes are used in [10]
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to iteratively update the estimate p̂; the method can be used
to pursue slow changes of p, but it needs a large number of
iterations to converge. The performance of all these methods
[4], [8], [9], [10] closely depends on the initialization of p̂,
and is efficient when the sources are highly correlated.

In the sequel, we propose a low complexity estimator
that performs well for all value of p. It is performed prior
to decoding and can serve as an initialization for the EM
algorithm proposed in [4], [8]. The trick is that our solution
is the Maximum Likelihood (ML) estimator for p with respect
to a subset of the data available at the decoder. It therefore
provides an efficient estimate of p that can be refined with the
EM algorithm that exploits all the data available at the decoder
(namely the side-information (SI) Y ). More precisely, in the
channel coding approach to solve the SW problem, the decoder
is fed with the source Y and the syndrome of the source X .
Our solution only uses the syndromes of both sources and
estimates the distribution of the syndrome of the difference
between the sources. From this, we deduce the distribution of
the difference between the sources, that is p.

II. ASYMMETRIC DSC USING LINEAR BLOCK CODES

Let X , Y be two correlated binary sources, and x, y their
realizations of length N . x and y differ by some noise z,
which is the realization of a Bernoulli random variable Z of
parameter p ∈ [0, 0.5] (noted Z ∼ B(p)), s.t. Y = X ⊕ Z,
and P(X 6= Y ) = P(Z = 1) = p. In asymmetric DSC [1],
the source X is compressed at a rate greater than H(X|Y ),
while the source Y is compressed at a rate greater than
H(Y ) allowing the decoder to retrieve it error-free. A way
to compress the source X consists in sending the syndrome
sx = Hx of length (N −K), where H is the (N −K)×N
parity check matrix of an (N, K) linear block code. Wyner [2]
shows that if the linear block code achieves the capacity of the
underlying BSC, then it also achieves the SW bound H(X|Y ).
The decoder finds the best estimate x̂ as the closest sequence
to y with syndrome sx: x̂ = arg minx s.t.Hx=sx d(x,y) =
arg minx s.t.Hx=sx P(x|y). For LDPC codes, this search is
efficiently approximated by the sum-product algorithm [11],
that requires knowledge of the parameter p.

III. ML ESTIMATOR OF p WITH RESPECT TO sx AND sy
The sum-product decoder is fed by the syndrome sx and the

SI realization y. In the following, we derive an estimate for p
based on the knowledge of the syndromes sx and sy. Without
loss of generality, we consider regular block codes. Regular
block codes have the same number of ones, noted dc, in every



2

row of H. In the following, dc is called “check degree”. We
first characterize the distribution of the syndrome of z.

Lemma 1. Let H be the matrix of a regular linear block code
in which all the rows are linearly independent. Let z be the
realization of Z ∼ B(p), p ∈ [0, 0.5]. Let sz = Hz.

The syndrome sz can be seen as the realization of an i.i.d.
Bernoulli random process SZ of parameter q, s.t.

q(p) =

dc∑
( i=1

i odd)

pi(1− p)dc−i

(
dc

i

)
(1)

Proof: First, since the rows of H are linearly independent,
the syndrome symbols are independent. Now, let szm be the
mth element of sz and let q be the probability of szm being a
one. Since Z is an i.i.d. process of law B(p), and since szm is
the sum of dc elements of Z, q(p) is given by Equation (1) and
is the same for all the symbols (szm)(N−K)

m=1 . Therefore, the
syndrome symbols are independent and identically distributed
realizations of an (iid) binary source, i.e. a Bernoulli source,
noted SZ , of parameter q.

Now, that we have characterized the process SZ , we can
derive an estimate of its Bernoulli parameter q. This is stated
in the following corollary.

Corollary 1. The ML estimator of q with respect to sz is the
estimate q̂ of the mean of the i.i.d. Bernoulli process SZ; i.e:

q̂ =
1

N −K

N−K∑
m=1

szm (2)

Proof: Since sz is the realization of an i.i.d. Bernoulli
process S ∼ B(q) (from Lemma 1),

∑N−K
m=1 szm is a sufficient

statistic for the estimation of q with respect to sz, and the mean
of SZ , in (2), is the ML estimator of q.

Let us return to the DSC problem, where sx and y are
available at the decoder; the following Theorem gives the ML
estimator of p with respect to sx and sy = Hy, i.e. parts of
the available data.

Theorem 1. Let H be the matrix of a regular linear block
code in which all the rows are linearly independent and
contain the same number of ones. Let x be the realization
of the binary source X , and let sx = Hx be its syndrome.
Let Y be another binary source which is correlated to X
in the following manner: ∃Z ∼ B(p) s.t. p ∈ [0, 0.5] and
Y = X ⊕ Z. Let y be a realization of Y , and let sy be its
syndrome. Let f : p→ q(p), where q(p) is given in (1).

The Maximum Likelihood estimator for p with respect to
(sx, sy) is:

p̂ = f−1(q̂) (3)

where q̂ is given in (2), and f−1 is the inverse of f .

Proof: Let sx = (sxm)(N−K)
m=1 and sy = (sym)(N−K)

m=1 .
From Lemma 1, the joint probability of sx and sy can be
factored as P(sx, sy) = P(sx) · P(sx ⊕ sy)

= P(sx) · q

(
N−K∑
m=1

sxm⊕sym

)
(1− q)

(
(N−K)−

N−K∑
m=1

sxm⊕sym

)
From [12, Theorem 5.1],

∑N−K
m=1 sxm ⊕ sym is a sufficient

statistic for the estimation of q. The ML estimator of q,
with respect to (sx, sy), is q̂ = 1

N−K

∑N−K
m=1 sxm ⊕ sym. We

denote f(p) = q(p) for clarity of notation.

f is a strictly increasing one-to-one function of p in [0, 0.5],
and we denote f−1 its inverse, s.t. p = f−1(q). It follows from
[12, Theorem 7.2], that the ML estimator of p, with respect
to (sx, sy), is p̂ = f−1(q̂).

Note that this ML estimator p̂ does not depend on the
estimates of the source X as in the EM algorithm (see [4],
[8] and equation (4)). It can therefore be performed prior to
decoding. Moreover, it does not depend on the distribution of
X and Y as in [6], [7] and is therefore more general. Finally,
our estimate p̂ is asymptotically unbiased and asymptotically
efficient (since it is the ML estimator). However it is biased
since q̂ is unbiased and f is non-linear.

IV. IMPROVED ESTIMATION WITH THE EM ALGORITHM

The ML estimator presented in Section III only uses the
information from sx and sy, which is not optimal since the
information from y is not fully exploited. In this Section, an
EM algorithm [13] is used to improve the estimator p̂. The
EM is an optimization procedure that updates p̂ through the
decoding iterations, convergence is acquired since it improves
the estimator’s likelihood at each iteration. Let l be the label of
the current decoding iteration, and pl be the current estimate.
Then the next estimate is the solution to the maximization
problem p(l+1) = arg max

p

(
EX|SX,Y,pl

[
log (Pp(sx,y,x))

])
and is

p(l+1) =
1
N

N∑
n=1

|yn − Pn| (4)

where Pn is the a posteriori probability Ppl(Xn = 1|sx,y)
from the sum-product algorithm. This update rule is the same
as presented in [4, Equation 3]. However, our EM algorithm
differs from [4] since it is initialized with our efficient estimate
p0 = f−1(q̂), see (3).

V. GENERALIZATION OF THE ESTIMATOR

The method can be used for parameter estimation in channel
coding over the BSC, since the channel decoder is a particular
case of the DSC decoder, with sx = 0. Moreover, for
unsupervised learning of motion vectors in Distributed Video
Coding [14], our estimator can be used to initialize the motion
field M relating the unknown frame X to its SI Y , knowing its
syndrome S. More precisely, for each sub-block B in X , the
syndromes of the candidates in Y can be computed and used
to estimate their respective correlation with B. Then, the most
correlated one can be used as SI for B. The motion estimation
can be performed in pixel or transform domain (see [14]).

VI. SIMULATION RESULTS

A. Precision of the estimator

We implement two DSC systems using LDPC codes of
rates R = 0.5 and R = 0.7, which have the variable degree
distribution Λ(x) = 0.483949x+0.294428x2 +0.085134x5 +
0.074055x6 + 0.062433x19 and the check degree distribution
Φ(x) = 0.741935x7 + 0.258065x8. Each row of H is lin-
early independent of one another. We consider two codes of
respective lengths N = 1000 and N = 10000. The sources
are uniform Bernoulli, and we test the estimation for p greater
than 0.05. We show the means of the estimated p̂ in Fig. 1
for N = 1000 and N = 10000. On the same Figure, we also
show the estimated parameters from the EM algorithm.
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Fig. 1. Means of the estimated p̂ in function of N and R

It can be seen in Fig. 1 that the precision of the estimator
improves with the code length and with the code rate. The
improvement brought by the EM is only minimal, since the
first estimate is already very good. Note that we could assess
the performance of the estimator for the whole range of p ∈
[0, 0.5], but we limit the experiment to p < 0.11 for code rate
0.5 (resp. to p < 0.19 for code rate 0.7), because the estimated
X̂ must be sufficiently reliable. Actually, for the SW setup, the
maximum value of p that yields reliable X̂ verifies H(p) = 0.5
(resp. H(p) = 0.7), i.e. p = 0.11 (resp. p = 0.19) for the code
of rate 0.5 (resp. 0.7). For efficient estimation of higher values
of p, a code allowing higher compression rates must be used.
B. Convergence speed to the Cramer-Rao lower bound

For our estimation problem, a bound of the Cramer-Rao
Lower Bound (CRLB) can be derived by considering the
Minimum Variance Unbiased (MVU) estimator of p know-
ing the realization z of length N . This MVU estimator is
p̂ = 1

N

∑N
n=1 zn and its Mean Square Error (MSE), which

corresponds to the bound of the CRLB, is p(1−p)
N . For the code

of length N = 10000 and rate R = 0.5, we have assessed the
number of iterations needed by the EM to reach the CRLB
in function of p using our estimation method. The results are
presented in Fig. 2.
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Fig. 2. Comparison of the MSE of our estimator with the CRLB.

First, note that the MSE of the first estimate is already very
small (< 10−4) before applying the EM algorithm. 4 iterations
of the EM are sufficient to reach the CRLB for p < 0.055, and
30 iterations are sufficient to reach the CRLB for p < 0.085.
C. Comparison with genie-aided SW decoder

We have implemented a SW codec where p̂ is initialized
with the ML estimator (3). In Fig. 3, we observe the BERs of

X for decoding iteration numbers 2, 4, 8, 15, 30 and 60 (solid
lines); they are compared to the BERs yielded by the SW
codec in which the initialization of the EM is done with the
fixed value p0 = 0.2 (dashed lines), and with the genie-aided
SW codec (which knows the true p, in dotted lines). The same
update rule (4) is used for the two systems that need to estimate
the parameter p.
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Fig. 3. Comparison of the BER of X for different iterations of the EM.

We see from Fig. 3 that the decoder initialized with our ML
estimator is far more efficient than the one initialized with the
fixed value p0 = 0.2, beside it performs as well as the genie-
aided decoder (the solid lines and the dotted lines are almost
merged together, for all the iterations).

VII. CONCLUSION

We have proposed a novel and simple ML estimator of
the cross-over parameter of the BSC modeling the correla-
tion between two arbitrary binary sources. The estimation is
performed prior to decoding, and only depends on the degree
distribution of the matrix representing the DSC code. We
also presented an EM algorithm that improves the estimation
variance. The method can be extended to channel coding of
binary sources over the BSC.
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