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ABSTRACT

In this paper, we consider the use of source codes and chan-
nel codes for asymmetric distributed source coding of non
uniform correlated sources. In particular, we use distributed
arithmetic codes as source codes and syndrome based turbo
codes as channel codes. We compare the advantages and
drawbacks of the two systems for different source probabil-
ities and different compression ratio. We show that prior
knowledge of the source distribution improves the perfor-
mance of both approaches in terms of their distances to the
Slepian-Wolf bound. Turbo codes are better when the punc-
turing is low, while distributed arithmetic codes are less im-
pacted by the change of compression rate.

1. INTRODUCTION

It is well known that the minimum achievable rate of loss-
less compression of correlated sources is their joint entropy.
It has been shown by Slepian and Wolf [1] that two sepa-
rate correlated sources can be compressed at that same rate,
provided that joint decoding is performed and each source is
compressed at most at their conditional entropy rate. That re-
sult affected the work is several domains, including wireless
sensor networks [5] or video compression [6]. A Slepian-
Wolf coder can be based either on a channel code or on a
source code.

Channel codes can achieve the Slepian-Wolf bound as
long as they achieve the capacity of the channel that mod-
els the correlation between the sources. Wyner has indeed
shown the optimality of syndrome approach [4]. The prin-
ciple of syndrome based coding is to partition the space of
the source words into specific bins, or cosets, containing un-
correlated words having the same “syndrome”. Knowing the
syndrome, the decoder searches the closest codeword to the
side information. The efficiency of a code can be measured
as its ability to create cosets which would be as disjoint as
possible.

Here, we consider the turbo-syndrome approach pro-
posed in [7]. Turbo codes are indeed known to be capacity
achieving channel codes [3]. The syndrome trellis of a turbo
code is based on its parity-check polynomials, instead of its
generator polynomials. Therefore, using the syndrome ap-
proach allows us to consider more general turbo codes for
the Slepian-Wolf problem, not only systematic ones as for
the traditional parity approach [8]. The use of LDPC codes
[18, 19] has also been considered, and also relies on the coset
principle.
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Besides techniques based on channel coding, a few au-
thors have also investigated the use of source codes for the
Slepian-Wolf problem. This is motivated by the fact that ex-
isting source coders obviously exhibit nice compression fea-
tures that should be retained, such as the ability to employ
flexible and adaptive probability models, and low encoding
complexity. In [10] the problem of designing a variable-
length distributed source code is addressed; it is shown that
the problem of designing a zero-error coder is NP-hard. In
[11] a similar approach is followed; the authors consider
the problem of designing Huffman and arithmetic distributed
codes for multilevel sources with zero or almost-zero error
probability. The idea is that, if the joint density of the source
and the side information satisfies certain conditions, the same
codeword (or the same interval for the arithmetic coding pro-
cess) can be associated to multiple symbols. This approach
leads to an encoder with a complex modeling stage (NP-hard
for the optimal code, though suboptimal polynomial-time al-
gorithms are provided in [11]), while the decoding process
resembles a classical arithmetic decoder. In [12] an exten-
sion of arithmetic coding (AC), named distributed arithmetic
coding (DAC), has been proposed for asymmetric Slepian-
Wolf coding. The idea is to perform the binary AC process
in such a way as to allow the intervals of symbols “0” and
“1” to overlap to some extent. This introduces an ambiguity
in the description of the source, which lowers the codeword
bit-rate, and requires a correlated side information signal to
be resolved. Moreover, in [13] DAC has been extended to
the case of symmetric distributed coding of two sources at
arbitrary rates within the Slepian-Wolf rate region. A rate-
compatible extension of DAC has been presented in [14].
Similar concepts have been proposed in [15], in which the in-
terval overlap is applied to quasi-arithmetic codes, and [16],
in which sources with memory are considered.

In this paper, we consider non-uniform sources, which is
the case encountered in real systems such as distributed video
coding systems. The authors in [17] were the first to consider
the use of turbo codes for coding non uniform sources. Their
system is based on syndrome formers and inverse syndrome
formers and generalizes the scheme they proposed in [9] for
uniform sources. We first give the Slepian-Wolf bounds for
non uniform sources. We then adapt the turbo syndrome trel-
lis to deal with the non uniformity of the sources. Rate adap-
tation is naturally performed via the puncturing of the syn-
drome bits. The turbo syndrome approach is compared with
a distributed arithmetic code.

2. THEORETICAL BOUNDS

Let X and Y be two binary correlated sources, of respec-
tive probabilities P(X = 1) = px and P(Y = 1) = py. The
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correlation between X and Y is modeled as a Binary Sym-
metric Channel (BSC) of cross-over probability p. Consider
the separate compression of X and Y at respective rates Ry
and Ry; the Slepian-Wolf theorem [1] states that they can
be recovered at the decoder without error as long as the two
sources are jointly decoded, and:

Ry > H(X|Y)
Ry > H(Y[X)
Rx+Ry > H(X.Y)

where H denotes the entropy function. In the case of asym-
metric DSC, one source (say Y, the side “information”) is
compressed at its entropy rate Ry = H(Y'), and the other (X)is
compressed at the conditional entropy rate Ry = H(X|Y).

When the source X is uniform, i.e. px = 0.5, the source
Y is also uniform, and:

But, when the sources are non uniform, i.e. px # 0.5,
py = px(1 —p)+ (1 — px)p and H(X|Y) is different from
H(p). The minimum achievable rate for source X is in this
case given by:

H(X|Y) =H(px)+H(p)—H(pr)

Fig. 1 shows that the capacity of the equivalent BSC be-
tween X and Y increases when px # 0.5. Therefore, knowing
the source distribution, one gets closer to the Slepian-Wolf
bound using the same code.

1

: —C(p) = C(YIX)
ook ---C(Y),p, =07
vvvvvvv C(Y), py = 0.9
0.8 sxxC(X|Y), p, =07 s
IHIHIC(XlY), pX=0.9 3
0.7r - ;
0.6F ¢ “uy ]
. X\ 0 N
g . At :
S 0.5 ‘, of
T » v
O % :
L »
0.4 v v
0.3r
0.2+
L Teay l“‘
LRI ' B
0 i -2 fec=m” “ ,
o 02 04 06 08 1

Figure 1: Capacity of the equivalent channel for px = 0.7 and px = 0.9.

Motivated by the capacity gain when the source distribu-
tion is known, we turn to adapting the existing source and
channel Slepian-Wolf coding schemes to take into account
the knowledge of the source distribution, and to see which
type of codes more benefits from that intrinsic information.

3. SYNDROME BASED TURBO CODING OF
NON-UNIFORM SOURCES

The turbo code we use in this system (Fig. 3) is composed
of two identical convolutional codes, and the decoding is
performed using the syndrome trellis first described in [7].
Instead of generating parity bits, we give syndromes to the
decoder.

3.1 The syndrome trellis

Given the constituent convolutional code of generator ma-
trix G, we build the syndrome trellis based on the parity-
check matrix H, s.t. H-G = 0. This construction is of low
cost in the sense that there is no need to expand the par-
ity check polynomials matrix into a matrix of an equivalent
block code of large dimension. We consider here an example
for an easier explanation. Let H be the parity-check matrix of
the (3,1,4) convolutional code with constraint length L = 4.
Heren=3,n—k=2.

o (11 15 06) B (1001 1101 0110) 0
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In order to efficiently construct the syndrome trellis, we
derive the following diagram from the binary form of H in
equation (1).
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Figure 2: Block diagram for the computation of the syndrome for the rate
3 : 2 convolutional code. The boxes in gray represent the memories.
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The states of the resulting trellis are determined by the
values of the memories in that diagram. The transition be-
tween two states of the trellis is labeled by three input bits
V1 V23 and two output bits ] 03.

3.2 Decoding with the syndrome trellis

The decoder, knowing the syndrome sx, looks for the se-
quence having that syndrome which is closest to y in terms
of their Hamming distance. A modified BCJR is used. The
recurrences for the calculation of the forward state metric,
noted o in the literature, and the backward state metric, f3,
are the same; basically, the only change to bring to the orig-
inal BCJR decoding [2] is the calculation of the branch met-
ric, ¥.

Let (my);=1.r the sequence of states of the trellis cor-
responding to a given block x. Let v{ be the n input bits
and o] * the (n— k) output bits labeling the transition be-
tween the states m,_ and my, as on Fig. 2. Let y| be the
current side information bits and s’l‘*k current syndrome bits.
Let p; be the extrinsic probability P(£; = 1). By definition,
Y =P(my,y,|m—1) is given by:
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where § is the Kronecker’s delta (0o = 1 if bool = true
and O otherwise).

Because the transitions of the trellis that do not match
the syndrome are not followed (since 561,14:{]17;{ = 0), the

search is actually performed in the coset with syndrome sy.
Note that to compress the source, the syndrome has to be
punctured; that changes the term sk _ gk of (2) into the

1
following form:

n—k Spei(s;

1 Pt (s;)
[1 ((Z) (66,»,-)FM<S:->>
i=1

where “Pct(s;)” is the information that bits i of the syn-
drome is punctured. Puncturing the syndrome makes our
code rate compatible for other compression ratio.

The first line in the product of equation (2) formalizes
the information from the side information, the second line
exploits the extrinsic probabilities and the last line exploits
the source probabilities. That last term effectively favours the
transitions which are labeled by inputs v{ which distribution
are statistically close to the source distribution.

3.3 The syndrome trellis framework for coding of non
uniform sources

The source X, having realizations x of length n, is mapped
into its two syndromes sy; and sx», of length (n— k), s.t.

2=k — Ry, Ry > H(X|Y). Then the modified BCJR is used
for each convolutional decoder to estimate X, passing itera-
tively updated soft extrinsic messages between them at each
iteration. The intrinsic information about y and the source
probabilities remain constant over the iterations. The turbo
decoding stops when % matches the two syndromes, or when
a maximum number of iterations is reached.
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Figure 3: Turbo-syndrome scheme for asymmetric coding of correlated
sources.
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4. DISTRIBUTED ARITHMETIC CODING OF
NON-UNIFORM SOURCES

4.1 DAC encoding

Let X be a binary memoryless source emitting symbols X;
with probability px. The classical binary arithmetic coding

process for X uses the probabilities px and 1 — px to partition
the [0, 1) interval into sub-intervals associated to possible oc-
currences of the input symbols. At initialization the current
interval is set to Iy = [0, 1). For each input symbol, the cur-
rent interval [; is partitioned into two adjacent sub-intervals
of lengths (1 — px)|L;| and px|;|, where |I;] is the length of
I;. The sub-interval corresponding to the actual value of X;
is selected as the next current interval ;;1, and this proce-
dure is repeated for the next symbol. After all N symbols
have been processed, the sequence is represented by the fi-
nal interval Iy. The codeword Cx can consist in the binary
representation of any number inside Iy.

DAC is based on the principle of inserting some ambi-
guity in the source description during the encoding process.
This is obtained employing a set of intervals whose lengths
are proportional to the modified probabilities p§ > (1 — py)
and pk > px. In order to fit the enlarged sub-intervals into
the [0, 1) interval, they are allowed to partially overlap. The
encoding procedure is exactly the same as for arithmetic cod-
ing, but employs the modified probabilities. The codeword
Cx 1is shorter, i.e., the bit-rate is smaller, so much so as the
interval overlap is large. The amount of overlap is a param-
eter that can be selected so as to achieve the desired rate,
which should be no less than H(X|Y).

In practice, the DAC encoding process has to be termi-
nated properly in order to avoid clusters of errors at the end
of the block. This can be done in several ways, e.g., encoding
a known termination pattern or end-of-block symbol with a
certain probability or, in the case of context-based AC, driv-
ing the AC encoder in a given context. For DAC, in this paper
termination is obtained by encoding the last T symbols of the
sequence without interval overlap. As T increases, the aver-
age error location tends to move towards the center of the
block, yielding a correct decoder behavior. However, the ter-
mination has a cost in terms of bit-rate, as the last 7 symbols
do not benefit from the Slepian-Wolf bit-rate saving.

4.2 DAC decoding

The DAC decoding process can be formulated as a symbol-
driven sequential search along a proper decoding tree, where
each node represents a state of the sequential arithmetic de-
coder. When the i-th input symbol X; is decoded, if the code-
word lies in overlapped region of the current interval then
the decoder performs a branching. Two alternative paths are
stored in the decoding memory, corresponding to the two al-
ternative decoded symbols X; = 0 and X; = 1 that could be
output at this step. For each new state, the associated branch
metric is updated, and the corresponding interval is selected
for next iteration. In particular, the correlated side informa-
tion Y is employed to compute the Maximum A Posteriori
branch metric P(X|Cx,Y). In order to reduce complexity, af-
ter decoding a new input symbol, the decoder keeps only the
M paths with the best partial metric, and prunes the others;
this is done using the M-algorithm. More details on the DAC
encoding and decoding procedures can be found in [13].
The DAC decoding algorithm is suboptimal, as the M-
algorithm only keeps a limited number of likely decoding
paths. If the correct path is dropped at some point during the
decoding process, decoding will be unsuccessful. Thus, one
would want to keep M very large in order to achieve the best
performance, i.e., the lowest residual error rate. On the other
hand, M heavily affects the decoder complexity, as it directly
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impacts on the size of the search space.

5. EXPERIMENTAL RESULTS

We carry out simulations based on the following conditions.
We consider X with source distributions px = {0.5,0.7}, of
length n = 1000. For each source distribution, we consider
the compression ratio 2 : 1 and 3 : 1 for source X; Y is com-
pressed at its entropy-rate H(Y), which depends on the corre-
lation between the sources. Actually, given the compression
ratio Ry, the source probability px and H(X|Y), we compute
the corresponding p s.t. H(px)+H(p) —H(py) = H(X|Y),
where py = px(1—p) +(1—px)p.

In order to plot comparative curves, we consider differ-
ent values of H(X|Y) and measure the bit error rate (BER)
between % and x. For each value of H(X|Y) at least 107 bits
are simulated. We choose the parameters of the DAC and the
turbo codes so as to obtain the same coding/decoding com-
plexity.

For the system using turbo codes, we utilize constituent
encoders defined by a constraint length L = 4 and by their
octal parity-check matrix H of initial compression 3 : 2, see
equation (1), yielding an initial redundancy ratio of 3 : 4 for
the resulting turbo code. The different compression ratio 2 : 1
and 3 : 1 are obtained with a regular puncturing pattern of
the syndrome. The interleaver is random and generated only
once: the same interleaver is used for all the simulations. At
most 20 decoder iterations are performed for each block of
length n.

For the DAC, the desired compression ratio is achieved
by properly selecting the overlap factor given the probabil-
ity Py, and taking into account the additional overhead gen-
erated by the termination. Throughout the simulations we
employ 7 = 20. The rate achieved by the DAC over each
data block is not always identical, but its deviation from the
nominal value is very small. Over each simulation of 10’
samples, the actual achieved rate is on average 0.2% smaller
than the nominal rate. The value of M for the DAC decoder
has been taken so that the complexity is roughly the same as
the turbo code system. Both programs have been run on a
Linux workstation, performing 200 rounds of encoding and
decoding and measuring the running time. Taking M = 1024
yields similar times; this value has been used for all simula-
tion results reported in this paper. While this procedure only
yields a rough estimate of the complexity of the two systems,
they are so different that an analytical complexity compari-
son is not viable.

Fig. 4 shows the BER achieved with the different meth-
ods, for different source probabilities and for different com-
pression ratio.

For compression rate 2 : 1, the turbo code is consistently
better, except when the conditional entropy is very small.
This is because the DAC decoder is suboptimal, and this is
particularly evident as the correlation decreases. For com-
pression rate 3 : 1, the DAC is consistently better. The rea-
son is that the heavier puncturing makes the syndrome based
turbo code less efficient. The turbo code is still better at low
correlation, as the DAC suffers from the decoder sub opti-
mality.

From px = 0.5 to px = 0.7, both the turbo code and the
DAC improve their distances to the Slepian-Wolf bounds.
They clearly benefit from the prior knowledge of the source
distribution. That gain should increase as the sources become
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Figure 4: BER versus H(X|Y) for DAC and turbo codes. n = 1000, px =
0.5 and px =0.7.

less uniform, as expected from Fig. 1.

Finally, we have studied the DAC performance as the de-
coder complexity M varies. In particular, values of M rang-
ing from 256 to 4096 have been taken. Simulations have
been run for py = 0.5 and compression ratio 2:1. The results
are shown in Fig. 5. As can be seen, between M = 256 and
M = 4096 there is roughly an order of magnitude of BER
difference. Interestingly, the performance gain does not tend
to saturate in this range of M. This indicates that the sequen-
tial decoding process is rather suboptimal, and the perfor-
mance can be improved even more by further increasing M,
although the computation times become prohibitive.
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Figure 5: DAC performance as a function of M. n = 1000, px = 0.5.
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6. CONCLUSION

We have discussed the advantages and the drawbacks of dis-
tributed arithmetic codes and turbo codes when encoding non
uniform distributed correlated sources. Knowing the distri-
bution of the source, both approaches improve their perfor-
mances in terms of their distances to the Slepian-Wolf bound.
The DAC performance gap with respect to the Slepian-Wolf
bound is less impacted than for the turbo codes when the
compression ratio varies. However, the turbo code is clearly
better when the correlation between the sources is low and
when the puncturing is low.
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