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Abstract

In this paper, we consider a coded transmission over a frequency selective channel. We propose to study

analytically the convergence of the turbo-detector using a maximum a posteriori (MAP) equalizer and a MAP

decoder. We show that the densities of the extrinsic Log Likelihood Ratios (LLRs) exchanged during the

iterations are e-symmetric and output-symmetric. Under the Gaussian approximation, this property allows

to perform a one-dimensional (1-D) analysis of the turbo-detector. By deriving the analytical expressions of

the extrinsic LLR distributions under the Gaussian approximation, we prove that the bit error rate (BER)

performance of the turbo-detector converges to the BER performance of the coded Additive White Gaussian

Noise (AWGN) channel at high signal to noise ratio (SNR), for any frequency selective channel.

EDICS:
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1 Introduction

An important source of degradation in high data rate communication systems is the presence of intersymbol

interference (ISI) between consecutive data symbols which is due to the frequency selectivity of mobile radio

channels. To combat the effects of ISI, an equalizer has to be used. The optimal equalizer, in the sense of

minimum sequence error rate (SER) or bit error rate (BER) is based on maximum a posteriori (MAP) detection.

We distinguish two criteria, MAP sequence detection and MAP symbol detection. When no a priori information

on the transmitted data is available, MAP detection turns into maximum likelihood (ML) detection. Efficient

algorithms exist for MAP sequence detection, for example the SER optimizing Viterbi algorithm [8], and MAP

symbol detection, for example the BER optimizing BCJR algorithm [1]. These algorithms are interesting since

their complexity grows linearly rather than exponentially with the sequence size. The performance of both

algorithms is almost the same [2] and it is limited by the frequency selectivity of the channel. At high signal

to noise ratio (SNR), a gap between the Additive White Gaussian Noise (AWGN) channel performance and

the equalizer performance is observed and depends on the minimum distance of the frequency selective channel

(the minimum Euclidean distance between two noise-free channel output sequences).

In order to improve the quality of the transmission, an error correction code is generally used, together

with an equalizer. At the receiver, a solution achieving a good complexity/performance trade-off is to use an

iterative receiver consisting of a soft-input soft-output (SISO) equalizer and a SISO decoder [6], following the

idea of turbo-codes [3]. The basic idea behind iterative processing is to exchange extrinsic information among

the equalizer and the decoder in order to achieve successively refined performance. In this paper, we consider a

turbo-detector composed of an equalizer and a decoder using the symbol MAP criterion [1]. A natural question

concerns the achievable performance of such a turbo-detector. It is believed (due to simulations) that the

scheme converges to the performance without ISI. The aim of this work is to show that the BER performance

of the turbo-detector converges to the BER performance of the coded AWGN channel at high SNR.

To address this question, one needs to characterize analytically the convergence point of an iterative receiver

as the number of iterations goes to infinity and specify the probability of error achieved at this convergence

point. Iterative schemes have been extensively studied. Exact analyses for finite sequence length exist [23, 24]

and show the convergence to a constrained form of sequence MAP receiver. However, the convergence point

cannot be specified analytically. Iterative receivers have also been studied by noticing that they are a special

instance of the message-passing algorithm. The iterative receiver can therefore be analyzed by computing the

2



Evolution of the Densities (DE) of the messages exchanged by the message-passing receiver. This is performed

in [16] under the assumption of infinite sequence length. The DE technique is therefore an infinite-dimensional

dynamical system, for which the closed form expression of the recursion exists when the size of all variables is

two, such that the messages are real numbers (often the Log Likelihood Ratio (LLR) is taken). However, to

determine the asymptotic (in terms of the number of iterations) density, one needs to resort to simulations.

In order to reduce the computational burden of the DE, faster techniques have been proposed that approxi-

mate the DE by a one-dimensional (1-D) dynamical system. The approximate techniques differ in the scalar to

be tracked and in the way to project the density on this scalar. The parameter can be the SNR of the extrinsic

LLRs [5, 7]. It can also be mutual information between the transmitted symbol and the associated LLR [21, 22]

which leads to the extrinsic information transfer (EXIT) charts. All these methods therefore require two more

assumptions:

- the messages are assumed to be independent and identically distributed (i.i.d) Gaussian random variables

(conditioned on the transmitted symbols). Wiberg shows in [25] that the Gaussian approximation is efficient

for the extrinsic LLRs. In [10], it was proved that it is a good approximation for turbo-decoding with infinite

block length. This approximation, with output-symmetry, reduces the dimension of the dynamical system to

two.

- the messages are further assumed to be e-symmetric. A density p is e-symmetric if for x ∈ {+1,−1} and y ∈ R,

pY |X (y|x) = exp(xy)pY |X (−y|x). The e-symmetry in our paper is referred to as symmetry by Richardson and

Urbanke [17]. This reduces the dimension of the dynamical system to one.

The major disadvantage of these methods is that they use Monte Carlo simulations and provide only

numerical results. When the trellis has only two states, closed form expressions of the EXIT functions have

been derived [18]. However, in the case of turbo-decoders or turbo-detectors using the MAP criterion, it is

difficult to study analytically the performance of a MAP equalizer or a MAP decoder having a priori information

and a large number of states.

In our work, we seek a closed form expression of the recursion, analyzing the turbo-detector for large

trellis sizes (more than two states). Note that such expression exists for two concatenated codes under one

more assumption (high SNR) [13]. In the case of linear turbo equalization, analytical studies of the equalizer

performance were performed in [12, 15]. To the best of our knowledge, no closed form expression of the 1-D
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recursion of the turbo-detector using the MAP equalizer exists.

Main contribution of the paper: We prove the convergence of the turbo-detector BER performance to the

coded AWGN channel BER performance for any frequency selective channel. To do this, we derive analytical

expressions of the distributions of the extrinsic LLRs at the output of the equalizer and the decoder. Our

closed form analysis holds under some commonly used assumptions in the 1-D analyses of iterative schemes,

i.e., Gaussianity, e-symmetry and output-symmetry of the extrinsic LLRs, independence of the noise modeling

the extrinsic LLRs (true for infinite block length) and high SNR (to insure the tightness of the bounds on

the error probability). We prove in this paper that the densities of the extrinsic LLRs are e-symmetric and

output-symmetric and that they approach a Gaussian density at high SNR and for infinite block length.

This paper is organized as follows. In Section 2, we describe the system model and the iterative receiver. In

Section 3, we give a proof of the preservation of e-symmetry and output-symmetry under MAP equalization. In

Section 4, we derive analytically asymptotic approximations of the BER achieved by the equalizer and give the

distribution of the extrinsic LLRs at its output. In Section 5, we derive analytical expressions of the distribution

of the extrinsic LLRs at the output of the MAP decoder with a priori information. In Section 6, we perform the

convergence analysis of the turbo-detector and give the proof of convergence to the AWGN case. Throughout

this paper, deterministic quantities and random variables are lower and upper case, respectively. Vectors and

matrices are underlined and double underlined, respectively. The operator (.)T denotes the transposition and

IN is the N ×N identity matrix.

2 General framework

We consider a coded data transmission system over a frequency selective channel as depicted in Figure 1. The

input information bit sequence is first encoded with a nonrecursive nonsystematic convolutional encoder with

rate rc. The output of the encoder is interleaved and mapped to symbol alphabet A. For simplicity, we will

consider only BPSK modulation (A = {+1,−1}). We assume that transmissions are organized into bursts of

T symbols. The channel is assumed to be invariant during the transmission. The received baseband signal

sampled at the symbol rate at time k is

xk =
L−1
∑

l=0

hlsk−l + nk (1)

where L ≥ 1 is the channel constraint length and sk, for 1 − L ≤ k ≤ T − 1, are the transmitted symbols.

The channel memory is L − 1 with 2L−1 possible states. In this expression, nk are modeled as independent
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samples from a random variable with normal probability density function (pdf) N (0, σ2) where σ2 = N0/2 and

N (α, σ2) denotes a Gaussian distribution with mean α and variance σ2. The term hl is the lth tap gain of the

channel and is assumed to be real valued with
∑L−1

l=0 h2
l = 1.

The optimal receiver for this coded system performs joint equalization and decoding treating the concate-

nation of the encoder and the ISI channel as one code. However, the complexity of this receiver is in general

prohibitive, especially when an interleaver is used. A solution achieving a good complexity/performance trade-

off is to use an iterative receiver consisting of a soft-input soft-output (SISO) equalizer and a SISO decoder

[6]. As shown in Figure 2, we consider the iterative receiver consisting of SISO processors, the equalizer
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Figure 2: Receiver structure

and the decoder. We consider only the MAP approach for both equalization and decoding, using the BCJR

algorithm [1]. We assume that the channel is perfectly known at the receiver. The MAP equalizer computes the

a posteriori probabilities (APPs) on the coded bits, PSk|X(s|x), s ∈ A, 1−L ≤ k ≤ T − 1, x = (xT−1, ..., x0)
T ,

and outputs the extrinsic Log Likelihood Ratios (LLRs) [22]:

leqk = log
PSk |X(+1|x)

PSk |X(−1|x)
− log

PSk
(+1)

PSk
(−1)

(2)

which are the a posteriori LLRs minus the a priori LLRs provided by the decoder. At the first receiver

iteration, the a priori LLRs, log
PSk

(+1)

PSk
(−1) , are equal to zero since no a priori information is available. The

extrinsic LLRs leqk are then deinterleaved and provided to the decoder as input a priori information in order to

refine its calculations. The MAP decoder computes the APPs PSk |E(s|e), e =
(

leqT−1, · · · , l
eq
1−L

)T
, and outputs

the extrinsic LLRs

ldec
k = log

PSk|E(+1|e)
PSk|E(−1|e) − log

PSk
(+1)

PSk
(−1)

.

These LLRs are then interleaved and provided to the equalizer as a priori LLRs at the next iteration. After
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some iterations, hard decisions are taken on the information bits by the decoder.

In the rest of the paper, we want to prove the convergence of the MAP turbo-detector BER performance to

the coded AWGN channel BER performance.

3 Properties of the extrinsic LLRs

We assume that the extrinsic LLRs are independent. This assumption holds for large block length with good

and randomly chosen interleavers. Wiberg shows in [25] that the distribution of the extrinsic LLRs in iterative

decoding approaches Gaussian like distribution as the number of iterations increases. In [10], it was proved

that this is a good approximation for turbo-decoding with infinite block length. We will prove in Section 4 that

this approximation holds for MAP equalization. This approximation reduces the dimension of the dynamical

system to four (the means and variances of the distributions of the extrinsic LLRs for symbols equal to +1

and to -1). In [17], Richardson et.al show that output-symmetry and e-symmetry are preserved under MAP

decoding. In this section, we propose to generalize this result to MAP equalization. The output-symmetry

reduces the dimension of the dynamical system to two (the distributions of the extrinsic LLRs for symbols

equal to +1 and to -1 have the same variance and opposite means). The e-symmetry reduces the dimension of

the dynamical system to one (the variance is twice the absolute value of the mean).

3.1 Symmetry

We first recall some definitions of the symmetry.

Definition 1 A density p is e-symmetric if pY |X (y|x) = exp(xy)pY |X (−y|x) for all x ∈ {+1,−1} and y ∈ R.

Definition 2 A density p is said to be output-symmetric if pY |X (y|x) = pY |X (−y| − x). A channel with input

x and output y is said output-symmetric if its transition probability is output-symmetric.

Equalizer
MAP

x

Extrinsic LLRs
on s

LLRs

k

(output−symmetric) a priori 

(output−symmetric)

s

r
Channel2

Channel1

Figure 3: Transmission scheme

Proposition 3 Suppose that the information sequence s of BPSK symbols is transmitted over an output-

symmetric channel, Channel 1. The received sequence is denoted x. Assume that a sequence of a priori LLRs

is available at the output of an output-symmetric channel with input s, Channel 2, and also provided to the
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MAP equalizer (see Figure 3). Then, the density of the a posteriori LLRs at the output of the MAP equalizer,

having at its input x and the a priori LLRs, is both e-symmetric and output-symmetric.

We give the proof of Proposition 3 in Appendix I.

Remark: Since Channel 2 is output-symmetric, the a priori LLRs have an e-symmetric and output-symmetric

density [17] (see Figure 3).

Corollary 4 Assuming that Channel 1 and Channel 2 are independent and Channel 2 is memoryless, the

density of the extrinsic LLRs at the output of the MAP equalizer, having at its input x and the a priori LLRs,

is e-symmetric and output-symmetric.

We give the proof of Corollary 4 in Appendix II.

Remark: Proposition 3 holds for any output-symmetric channels. There is no need to further assume that

the channels are independent and memoryless. However, the assumptions in Corollary 4 are needed for the

e-symmetry of the extrinsic LLRs to hold.

Corollary 5 Assuming that the equivalent channel at the output of the decoder (Channel 2) is an AWGN

channel and that the interleaver has infinite length, the densities of the extrinsic LLRs exchanged between the

MAP equalizer and the MAP decoder in the turbo-detector of Figure 2 are e-symmetric and output-symmetric.

Proof of Corollary 5:

We use in the following notations of Proposition 3. As shown in Figure 1, the information sequence is transmitted

over a frequency selective channel with AWGN (Channel 1) which is an output-symmetric channel. At the first

iteration of the receiver, no a priori information is available at the input of the equalizer. It is a particular case

where we can apply Proposition 3. Hence, the densities of the extrinsic LLRs at the output of the equalizer

are e-symmetric and output-symmetric. Since e-symmetry and output-symmetry are preserved under MAP

decoding [17], the densities of the extrinsic LLRs at the output of the decoder are e-symmetric and output-

symmetric at the first iteration. Moreover, since the interleaver has infinite length, Channel 1 and Channel

2 are independent. Since Channel 2 is an AWGN channel, it is also memoryless. Then, the equalizer in the

turbo-detector is equivalent to the MAP equalizer of Corollary 4. Notice that the MAP equalizer and the

MAP decoder in the turbo-detector use the independence assumption which is not verified for short length

interleavers.
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Given the property of e-symmetry and output-symmetry preservation under MAP decoding [17] and MAP

equalization (Corollary 4), we can prove by induction that the densities of the extrinsic LLRs exchanged during

the next iterations between the equalizer and the decoder are also e-symmetric and output-symmetric.

3.2 Gaussian approximation

In [10], it was shown that for a convolutional code (in a turbo-code) with an infinite block size, if the received

signal is subject to AWGN and the a priori LLRs at the input of the decoder have a Gaussian density, then the

density of the extrinsic LLRs at its output can be well approximated by a Gaussian density. The proof given

in [10] cannot be generalized to the case of MAP equalization since the received signal is not only subject to

AWGN but also to ISI. In Section 4, we will prove the convergence of the distribution of the extrinsic LLRs at

the output of the equalizer to a Gaussian distribution at high SNR and for infinite block size.

The LLRs leqk and ldec
k are samples of random variables Leq

k and Ldec
k , respectively. In the following, we want

to derive the distributions of the extrinsic LLRs Leq
k and Ldec

k at the output of the equalizer and the decoder.

We have shown that the densities of the extrinsic LLRs are e-symmetric and output-symmetric. Since they are

well approximated by a Gaussian density, the variance is the double of the absolute value of the mean [5, 7].

This allows us to perform a 1-D analysis of the turbo-detector.

4 Analysis of the equalizer

The performance of the Viterbi equalizer in the presence of AWGN was studied by Forney in [8]. This study

assumed that no a priori information is provided to the equalizer. In the following, we propose to study

analytically the impact of the a priori information on the MAP equalizer. The study will be done here for the

equalizer using the MAP sequence criterion. We assume that this study holds for the MAP symbol equalizer

using the BCJR algorithm [1] since the two equalizers have almost the same performance at high SNR as

observed in [2, page 814]. We first derive analytically asymptotic approximations of Pe, the BER based on

the a posteriori LLRs at the output of the equalizer fed with a priori information. Then, we derive analytical

expressions of the distribution of the extrinsic LLRs Leq
k .

4.1 Upper bound and asymptotic approximations of the BER

In [8, 2], an upper bound was derived on the symbol error probability achieved by the Viterbi equalizer for an

ISI channel when no a priori information is available. Here, we propose to follow the reasoning of [8, 2] to

derive an upper bound on Pe when the MAP sequence equalizer is fed with a priori LLRs. Based on this upper
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bound, we derive asymptotic approximations of Pe.

We assume that the a priori observations at the input of the MAP equalizer are modeled as the outputs of

an AWGN channel with zero mean and variance σ2
eq,in. The a priori LLRs are then modeled as independent

and identically distributed (i.i.d) samples from a random variable with the conditional pdf N (
2skµ2

eq,in

σ2 ,
4µ2

eq,in

σ2 ),

where µeq,in
∆
= σ

σeq,in
. We consider an error event as it is defined in [8, 2]. We define a state at time k as

σk = (sk−1, , ..., sk−L+1). An error event is said to extend from time k1 to k2 if the estimated states and the

correct states are equal at times k1 and k2 and are different for k1 < k < k2. Let se be the vector of transmitted

symbols and ŝe be the estimated vector corresponding to the error event. Let e = ŝe − se be the vector of

symbol errors. Let E be the set of all nonzero error events, m(e) the number of decision errors in e and P (e)

the probability of e to occur. The overall probability of error is given by

Pe =
∑

e∈E

m(e)P (e).

Let A(e) be the event that the transmitted sequence se of data symbols is compatible with the occurrence

of e (ŝe = se + e is an allowable input sequence). Then, e occurs if A(e) occurs and ŝe = se + e has a MAP

sequence metric better than any other possible sequence of symbols, including se. Thus, the probability of e

can be upper bounded as follows:

P (e) ≤ Pse,ŝe
P (A(e))

where Pse,ŝe
is the probability that ŝe=se + e has a MAP sequence metric better than se.

We showed in [19] that the pairwise error probability that the MAP sequence equalizer with a priori

information chooses ŝe instead of se is given by

Pse,ŝe
= Q





√

‖d(e)‖2 + 4m(e)µ2
eq,in

2σ



 ,

where Q(α) = 1√
2π

∫∞
α

exp(−y2

2 )dy, d(e) is the convolution of e with the channel and µeq,in
∆
= σ

σeq,in
.

Then,

Pe ≤
∑

e∈E

m(e)P (A(e))Q





√

‖d(e)‖2 + 4m(e)µ2
eq,in

2σ



 . (3)

We define αmin as

αmin = min
e∈E

√

‖d(e)‖2 + 4m(e)µ2
eq,in.
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Let Emin be the set of all e achieving this minimum value αmin. When the SNR is high, because of the

exponential decrease of the Gaussian distribution function, Pe can be approximated by the term involving the

minimum value αmin as:

Pe ≃ ψminQ
(αmin

2σ

)

where ψmin =
∑

e∈Emin
m(e)P (A(e)) .

Proposition 6 Suppose we are given a frequency selective channel with L taps and AWGN with variance σ2.

Assume that the a priori observations at the input of the MAP equalizer are modeled as the outputs of an

AWGN channel with zero mean and variance σ2
eq,in. Then, at high SNR, the overall probability of error Pe at

the output of the equalizer is approximated as:






















Pe ≃ ψminQ

(
q

d̃2
min+4mminµ2

eq,in

2σ

)

, if d̃2
min < 4 and µeq,in < µeq,lim

Pe ≃ Q

(
q

1+µ2
eq,in

σ

)

, if d̃2
min ≥ 4 or (d̃2

min < 4 and µeq,in ≥ µeq,lim)

(4)

where µeq,in
∆
= σ

σeq,in
,
(

mmin, d̃min

)

= arg minm(e)≥2,‖d(e)‖
√

‖d(e)‖2 + 4m(e)µ2
eq,in and ψmin =

∑

e∈Emin
m(e)P (A(e)) .

When d̃2
min < 4, µeq,lim =

√

4−d̃2
min

4(mmin−1) .

Proof of Proposition 6:

In order to derive the asymptotic approximate expressions of the BER, we have to give a precise expression

of αmin depending on the channel and on the a priori information characteristics. We distinguish two cases:

the case of unreliable a priori information (µeq,in is low) and the case of reliable a priori information (µeq,in is

high).

We first consider the case of unreliable a priori information. Generally, in the MAP equalizer, errors occur

in bursts. This is still true here since the a priori information is not very reliable. Thus, we do not consider

isolated errors since they occur rarely and we assume that m(e) ≥ 2. Let

(

mmin, d̃min

)

= arg min
m(e)≥2,‖d(e)‖

√

‖d(e)‖2 + 4m(e)µ2
eq,in.

Thus,

αmin =
√

d̃2
min + 4mminµ2

eq,in. (5)

When µeq,in is high, most of the a priori observations are very reliable and have more influence on the detection

than the channel observations. Since the a priori information are independent, errors will not occur in bursts.
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Actually, in this case, isolated errors corresponding to the few non reliable a priori observations will occur and

will dominate the overall probability of error. Thus, αmin is achieved for m(e) = 1 and ‖d(e)‖2 = 4,

αmin = 2
√

1 + µ2
eq,in. (6)

We first assume that d̃2
min < 4. Let µeq,lim be the value of µeq,in giving equality between (5) and (6):

µeq,lim =

√

4 − d̃2
min

4 (mmin − 1)
. (7)

We can easily show that when µeq,in < µeq,lim (unreliable a priori information), the minimum value of
√

‖d(e)‖2 + 4m(e)µ2
eq,in is achieved for m(e) = mmin and ‖d(e)‖2 = d̃2

min and when µeq,in > µeq,lim (reliable a

priori information), it is achieved for m(e) = 1 and ‖d(e)‖2 = 4.

When µeq,in < µeq,lim, the overall probability of error is approximated at high SNR by

Pe ≃ ψminQ





√

d̃2
min + 4mminµ2

eq,in

2σ



 , (8)

where ψmin =
∑

e∈Emin
m(e)P (A(e)) .

When µeq,in > µeq,lim (reliable a priori information), since the modulation used is BPSK, Emin = (±2). We

have A(+2) = −1 and A(−2) = +1, and then ψmin = 1
2 + 1

2 = 1. Hence, the overall probability of error is

approximated at high SNR by:

Pe ≃ Q





√

1 + µ2
eq,in

σ



 . (9)

If d̃2
min ≥ 4, αmin is always achieved for m(e) = 1 and ‖d(e)‖2 = 4. Thus, Pe is approximated as in (9) for all

µeq,in.

4.1.1 Simulation results

We propose to verify by simulations the tightness of the asymptotic expressions given in (4). In the simulations,

we do not use channel coding and the turbo-detector yet. We consider Channel 5 and Channel 7 with impulse

responses (0.289;0.499;0.579;0.499;0.289) and (0.179; 0.318; 0.477; 0.527; 0.477; 0.318; 0.179), respectively. In the

case of unreliable a priori information, for Channel 5, αmin is achieved for mmin = 2 and d̃min = 1.035 [20],

giving µeq,lim = 0.855. Notice that in this case, d̃min is equal to the channel minimum distance [20]. Therefore,

the same sequences will achieve the minimum value αmin and the channel minimum distance. By contrast, for

Channel 7, αmin and the channel minimum distance are achieved by different sequences. More precisely, αmin

is achieved for mmin = 2 and d̃min = 0.796 giving µeq,lim = 0.917, whereas the channel minimum distance is
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0.724, obtained by error sequences of length 6 [20]. For both channels, when µeq,in < µeq,lim, the set of error

sequences achieving αmin is Emin = {(2,−2) , (−2, 2)}. Since A (+2,−2) = (−1,+1) and A (−2,+2) = (+1,−1),

ψmin = 2.14 + 2.14 = 1. We provide the equalizer with Gaussian a priori LLRs with the conditional pdf

N (
2skµ2

eq,in

σ2 ,
4µ2

eq,in

σ2 ), for a given µeq,in = σ
σeq,in

. In Figures 4 and 5, we plot the BER curves with respect to the

SNR, for different values of the ratio µeq,in, respectively for Channel 5 and Channel 7. Here, SNR= Es/N0

where Es is the energy per transmitted symbol and N0 = 2σ2. Each curve is obtained while the ratio µeq,in

is kept constant. The solid lines indicate the BER performance based on the a posteriori LLRs obtained by

simulations. The dotted lines are obtained by considering the analytical expressions given in Proposition 6. We

notice that the analytical curves approximate well the curves obtained by simulations when the BER is less

than 10−2. The approximation is less accurate when µeq,in is close to µeq,lim. Indeed, in this case, isolated errors

and double errors occur and have almost equal probabilities. The error probability then becomes a combination

of the probabilities of these two types of error events and the approximate expressions become less accurate.

However, as will be shown in the following, the approximation is still satisfactory to predict the distribution of

the extrinsic LLRs at the output of the equalizer.
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Figure 4: BER versus SNR: comparison of the equalizer BER performance (solid curves) and the asymptotic

approximation (dotted curves), when the detection is based on the a posteriori LLRs, for Channel 5.

4.2 Gaussian approximation at the output of the equalizer

In [9, 2], a lower bound was derived on the symbol error probability achieved by the Viterbi equalizer for an ISI

channel when no a priori information is available. By following the reasoning of [9, 2], we can derive expressions

of tight lower bounds on the BER of the a posteriori LLRs at the output of the MAP sequence equalizer when
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Figure 5: BER versus SNR: comparison of the equalizer BER performance (solid curves) and the asymptotic

approximation (dotted curves), when the detection is based on the a posteriori LLRs, for Channel 7.

it is fed with a priori LLRs. We can show that























Pe ≥ ϕminQ

(
q

d̃2
min+4mminµ2

eq,in

2σ

)

, if d̃2
min < 4 and µeq,in < µeq,lim

Pe ≥ Q

(
q

1+µ2
eq,in

σ

)

, if d̃2
min ≥ 4 or (d̃2

min < 4 and µeq,in ≥ µeq,lim),

(10)

where ϕmin =
∑

e∈Emin
P (A(e)) .

The error probability is upper bounded by (3) and lower bounded by (10). The upper bound is dominated

by the term involving the minimum value αmin, at high SNR. Thus, at high SNR, there exists constants A,

B and C such that AQ(αmin

2σ
) ≤ Pe ≤ BQ(αmin

2σ
) + C where A and B are defined in (10) and (4) and C is

the term of the upper bound negligible at high SNR. Notice that the influence of A and B becomes negligible

at high SNR. Since the error probability achieved for LLRs with a Gaussian density is given by the function

Q(.), we conclude that at high SNR and for infinite block length, the density of the a posteriori LLRs at

the output of the MAP equalizer with a priori information converges to a Gaussian density. Notice that

when d̃2
min ≥ 4 or µeq,in ≥ µeq,lim, A = B = 1 and Pe is well approximated by Q(αmin

2σ
). Then, the Gaussian

approximation becomes more accurate in this case.

4.3 Extrinsic LLR modeling

Proposition 7 Suppose we are given a frequency selective channel with L taps and AWGN with variance

σ2. Assume that the a priori observations at the input of the MAP equalizer are modeled as the outputs of
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an AWGN channel with zero mean and variance σ2
eq,in. Then, at high SNR, the extrinsic LLRs Leq

k on the

transmitted symbols sk at the output of the MAP equalizer are modeled as random variables with the conditional

pdf N (
2skµ2

eq,out

σ2 ,
4µ2

eq,out

σ2 ) where















µ2
eq,out = feq(µ

2
eq,in)

∆
=

d̃2
min+4(mmin−1)µ2

eq,in+4γσ2

4 , if d̃2
min < 4 and µeq,in < µeq,lim

µ2
eq,out = feq(µ

2
eq,in)

∆
= 1, if d̃2

min ≥ 4 or (d̃2
min < 4 and µeq,in ≥ µeq,lim),

(11)

where µeq,in = σ
σeq,in

, µeq,lim =

√

4−d̃2
min

4(mmin−1) , γ = −2 log (ψmin) and ψmin =
∑

e∈Emin
m(e)P (A(e)) .

Remark: Notice that when µeq,in ≥ µeq,lim (good a priori information) or d̃2
min ≥ 4, the extrinsic LLRs

at the equalizer output are modeled as random variables with the conditional pdf N (2sk

σ2 ,
4
σ2 ) and are then

equivalent to the LLRs corresponding to the AWGN channel with zero mean and variance σ2, as though the

effects of the ISI were eliminated. In a turbo-detector, the equalizer provides the decoder with the extrinsic

LLRs leqk at each iteration. Hence, if the a priori information becomes reliable or d̃2
min ≥ 4, the BER of the

decoder on the information bits (which is also the BER of the turbo-detector) is equivalent to the BER of the

coded AWGN channel. In Section 6, we will give the proof of the convergence of the BER performance of the

turbo-detector to the BER performance of the coded AWGN channel for any frequency selective channel.

Proof of Proposition 7:

We first consider the case where d̃2
min < 4. When the a priori information are unreliable (µeq,in < µeq,lim), the

BER at the output of the MAP equalizer is approximated by

Pe ≃ ψminQ





√

d̃2
min + 4mminµ2

eq,in

2σ



 . (12)

Since Q (
√
z) e−

y
2 ≥ Q (

√
z + y) [2], we obtain

Pe >∼ Q





√

d̃2
min + 4mminµ

2
eq,in + 4γσ2

2σ



 (13)

where γ = −2 log (ψmin) .

At high SNR, the BER can be approximated by:

Pe ≃ Q





√

d̃2
min + 4mminµ

2
eq,in + 4γσ2

2σ



 . (14)
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We know that the BER for BPSK modulation, for an AWGN channel with zero mean and variance σ2
1 is

Pe = Q

(

1

σ1

)

. (15)

Comparing (14) and (15), we can conclude that the BER performance of the MAP equalizer when it is provided

with a priori information is equivalent to the BER performance achieved for an AWGN channel with zero mean

noise and variance σ2
1 = 4σ2

d̃2
min+4mminµ2

eq,in+4γσ2
. Hence, the a posteriori LLRs at the output of the MAP equalizer

can be modeled as i.i.d samples from a random variable with pdf N (2sk

σ2
1
, 4

σ2
1
).

Using (2) and assuming that the a priori LLRs and the extrinsic LLRs are independent thanks to the

interleaver [11], we obtain

Leq
k ∼ N

(

sk

(

2

σ2
1

−
2µ2

eq,in

σ2

)

,

(

4

σ2
1

−
4µ2

eq,in

σ2

))

.

Therefore,

Leq
k ∼ N

(

sk

(

d̃2
min + 4 (mmin − 1)µ2

eq,in + 4γσ2

2σ2

)

,

(

d̃2
min + 4 (mmin − 1)µ2

eq,in + 4γσ2

σ2

))

. (16)

When the a priori LLRs are reliable (µeq,in > µeq,lim) or d̃2
min ≥ 4, the BER can be approximated at high SNR

by

Pe ≃ Q





√

1 + µ2
eq,in

σ



 . (17)

In this case, the BER of the MAP equalizer is equivalent to the BER of an AWGN channel with zero mean and

variance σ2
2 = σ2

(1+µ2
eq,in)

(note that the BER is independent from the channel). Hence, the a posteriori LLRs at

the output of the MAP equalizer can be modeled as i.i.d samples from a random variable with pdf N (2sk

σ2
2
, 4

σ2
2
).

Assuming that the a priori LLRs and the extrinsic LLRs are independent [11], we obtain

Leq
k ∼ N

(

sk

(

2

σ2
2

−
2µ2

eq,in

σ2

)

,

(

4

σ2
2

−
4µ2

eq,in

σ2

))

.

Hence,

Leq
k ∼ N

(

sk

(

2

σ2

)

,
4

σ2

)

. (18)

By analogy with the model of a priori LLRs, we define µeq,out such that the extrinsic LLRs Leq
k are random

variables with the conditional pdf N (
2skµ2

eq,out

σ2 ,
4µ2

eq,out

σ2 ). Using (16) and (18), we can write the quantity µ2
eq,out

as a function of µ2
eq,in:















µ2
eq,out = feq(µ

2
eq,in)

∆
=

d̃2
min+4(mmin−1)µ2

eq,in+4γσ2

4 , if d̃2
min < 4 and µeq,in < µeq,lim

µ2
eq,out = feq(µ

2
eq,in)

∆
= 1, if d̃2

min ≥ 4 or (d̃2
min < 4 and µeq,in ≥ µeq,lim).

(19)
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4.4 Simulation results

We consider the same simulation conditions as in Section 4.1.1. We do not use channel coding. We con-

sider two channels: Channel 3 and Channel 5 respectively with impulse responses (0.499; 0.708; 0.499) and

(0.289; 0.499; 0.579; 0.499; 0.289). For Channel 3, mmin = 2 and d̃min = 1.5307. By using (7), we obtain that for

Channel 3, µeq,lim = 0.644. For both channels, when µeq,in < µeq,lim, the set of error sequences achieving αmin is

Emin = {(2,−2) , (−2, 2)}. Thus, ψmin = 2.14 + 2.14 = 1. We provide the equalizer with Gaussian a priori LLRs

with the conditional pdf N (
2skµ2

eq,in

σ2 ,
4µ2

eq,in

σ2 ), for a given µeq,in = σ
σeq,in

. Figures 6 and 7 show µ2
eq,out versus

µ2
eq,in respectively, for Channels 3 and 5. The dotted curves are obtained by simulations for different values of

the SNR= Es/N0. We indicate on the figure the corresponding values of BER at the output of the equalizer

when no a priori information is available at its input. The solid curves are the analytical curves obtained

using (11). Notice that the analytical curves do not depend on the SNR since ψmin = 1. We can see that the

analytical curves approximate well the curves given by simulations as the SNR increases and for relatively high

BER (BER=0.0023 for Channel 3 and BER=0.03 for Channel 5). We notice that for µeq,in >> µeq,lim and

µeq,in << µeq,lim, the analytical curves approximate well the curves obtained by simulations. As in Section 4.1.1

and for the same reasons, around the limit value µeq,lim, the approximation is less accurate. We also notice that

the approximation is better for Channel 3 which is less difficult to equalize than Channel 5.
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Figure 6: Equalizer analysis for Channel 3: µ2
eq,out versus µ2

eq,in.

5 Analysis of the decoder

In order to perform the whole analysis of the turbo-detector, we have to find a closed form expression for the

distribution of the extrinsic LLRs at the output of the decoder.
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Figure 7: Equalizer analysis for Channel 5: µ2
eq,out versus µ2

eq,in.

Proposition 8 Assume that a priori observations at the input of the MAP decoder are available and modeled

as the outputs of an AWGN channel with zero mean and variance σ2
dec,in. Then, at high SNR, the extrinsic

LLRs Ldec
k on the coded symbols sk at the output of the decoder, are random variables with the conditional pdf

N (
2skµ2

dec,out

σ2 ,
4µ2

dec,out

σ2 ) where

µ2
dec,out = fdec(µ

2
dec,in)

∆
= µ2

dec,in(dfree − 1) + βσ2, (20)

with µdec,in
∆
= σ

σdec,in
, dfree is the code minimum distance, β = −2 log (mcdfree), mc = k0

dfree
rc, k

0
dfree

being the

number of codewords of weight dfree caused by information sequences whose first one occurs at time 0, and rc

is the code rate.

The proof of Proposition 8 is given in Appendix III.

Simulation results

The information data are encoded using the rate rc = 1/2 convolutional code having 4 states and generator

polynomials (7, 5) in octal. For this code, mc = rc = 1/2. We provide the decoder with Gaussian a priori

LLRs with the conditional pdf N (
2skµ2

dec,in

σ2 ,
4µ2

dec,in

σ2 ), for a given µdec,in = σ
σdec,in

. Figure 8 shows µ2
dec,out versus

µ2
dec,in. The dotted curves are obtained by simulations for different values of the SNR. Here SNR=Eb/N0 where

Eb is the energy per information bit and N0 = 2σ2. The solid curves are the theoretical curves obtained using

(20). Simulations show that the analysis of the decoder holds for high SNR values and is less accurate for

low SNR values. Hence, we will use (20) in the asymptotic convergence analysis in the next section, for high
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SNR values. This will allow us to prove, without relying on simulations, the convergence to the coded AWGN

channel performance at high SNR. For low SNR values, we will perform a simulation of the decoder.
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Figure 8: Decoder analysis: µ2
dec,out versus µ2

dec,in, for the convolutional code with generator polynomials (7, 5).

6 Convergence analysis

In our turbo-detector, equalization and decoding steps are iterated by passing the extrinsic LLRs leqk and ldec
k

between the equalizer and the decoder. The mechanism of turbo-detection can be described by the evolution of

the density of the extrinsic LLRs. Under Gaussian and independence approximations (and thanks to e-symmetry

and output-symmetry preservation), the density of the extrinsic LLRs can be described by a single parameter,

µ2
eq,out at the output of the equalizer and µ2

dec,out at the output of the decoder. Hence, the density evolution can

be approximated by the changes of µ2
eq,in to µ2

eq,out = feq(µ
2
eq,in) and µ2

dec,in to µ2
dec,out = fdec(µ

2
dec,in). At the

first iteration, there is no a priori information at the input of the equalizer, thus µ2
eq,in = 0. Then, the extrinsic

output LLRs leqk described by µ2
eq,out = µ2

dec,in are fed into the decoder yielding extrinsic LLRs ldec
k described

by µ2
dec,out = µ2

eq,in which are fed back to the equalizer and so forth.

In this paper, our analysis differs from the conventional EXIT charts in two aspects. Firstly, conventional

EXIT charts [12, 21, 22] are based on the evolution of the mutual information whereas our analysis is based on

the evolution of the parameters µ2
eq,out = µ2

dec,in and µ2
dec,out = µ2

eq,in. We choose this representation because

it follows naturally from our analysis and allows us to use it easily to prove the convergence to the AWGN

case. Secondly, we give a closed form expression for the evolution of these parameters at high SNR (there is no

need for simulations). When the MAP equalizer is used, classical analyses generating EXIT functions [22] rely
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on extensive computer simulations. To the best of our knowledge, analytical studies exist only when a linear

equalizer is used [12, 15]. Notice that the study is more complicated in the case of the MAP equalizer since it

is not a linear processor.

In the following, we consider two cases: the case of low SNR and the case of high SNR.

6.1 Semi analytical analysis

We consider here the case of low SNR. In this case, as shown by simulations in Section 5, the analytical

expression (20) in Proposition 8 is not very accurate. Thus, µ2
dec,out is obtained here by performing only one

simulation while varying σ2
dec,in, as performed in conventional EXIT charts [21, 22]. The analytical expression

(20) will be used in the asymptotic analysis (high SNR) in Section 6.2 to prove analytically the convergence to

the coded AWGN channel performance.

Simulation results

We propose to test for the validity of the convergence analysis of the turbo-detector. We consider the whole

system with the channel coding at the transmitter and the turbo-detector at the receiver. In the simulations,

the modulation used is BPSK. The information data are encoded using the rate rc = 1/2 convolutional code

with generator polynomials (7, 5) or (23, 35) in octal. The interleaver is randomly chosen and its size is 2048.

Figures 9 and 10 represent µ2
eq,out = µ2

dec,in versus µ2
dec,out = µ2

eq,in at SNR=6dB respectively for Channels 3

and 5. We plot the iterative trajectory obtained by using simulations when the turbo-detector of Figure 2 is

considered (we simulate a whole turbo-detector without using any artificial a priori LLRs). The solid curves for

the equalizer (Equalizer analysis) are obtained by using the theoretical analysis (Proposition 7). The curves for

the decoder (Decoder conventional method) are obtained as in conventional methods [5, 7, 21, 22] by simulations

using artificial Gaussian a priori LLRs with the pdf N (
2skµ2

dec,in

σ2 ,
4µ2

dec,in

σ2 ) at its input, when the codes used

have generator polynomials (7, 5) or (23, 35). We notice that the convergence points are well predicted by our

analysis. These points are on the curve of the coded AWGN channel corresponding to µ2
eq,out = µ2

dec,in = 1.

As in Figures 6 and 7, we notice that the analytical curves for the equalizer give an accurate approximation

of the curves obtained by simulations for µeq,in >> µeq,lim and µeq,in << µeq,lim and less accurate around the

limit value µeq,lim. We also notice that the approximation is better when Channel 3 is considered. This can be

explained by the fact that Channel 3 is easier to equalize than Channel 5 (the minimum distance of Channel

3 is greater than the one of Channel 5). The dashed curves for the equalizer (Equalizer conventional method)

are obtained as in conventional methods by simulations using artificial Gaussian a priori LLRs with the pdf
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N (
2skµ2

eq,in

σ2 ,
4µ2

eq,in

σ2 ) at its input. These curves give a better approximation than the curves obtained by the

analysis. However, they require a simulation of the equalizer for each value of the couple
(

σ2, σ2
eq,in

)

, whereas

our analysis does not need any simulation of the equalizer.
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Figure 9: Convergence analysis at SNR=6dB for Channel 3: µ2
eq,out = µ2

dec,in versus µ2
dec,out = µ2

eq,in.
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Figure 10: Convergence analysis at SNR=6dB for Channel 5: µ2
eq,out = µ2

dec,in versus µ2
dec,out = µ2

eq,in.

6.2 Asymptotic analysis

Proposition 9 For any frequency selective channel, under the Gaussian approximation, the BER performance

of the MAP turbo-detector converges at high SNR to the BER performance of the coded AWGN channel.

Proof of Proposition 9:

We consider the asymptotic case of high SNR. We use here the closed form expression (20) in Proposition 8
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describing the extrinsic LLRs at the output of the decoder, which becomes accurate. We want to prove that the

BER performance of the turbo-detector converges to the BER performance of the coded AWGN channel. The

asymptotic convergence point of the turbo-detector is represented by the fixed point of feq ◦ fdec. To have the

convergence of the turbo-detector performance to the AWGN channel BER performance, the fixed point needs

to be in the region of reliable a priori information at the equalizer input such that (18) is valid. This is always

the case when d̃2
min ≥ 4. When d̃2

min < 4, this means that the value of µ2
dec,out in (20) such that µ2

dec,in = 1

must be greater than µ2
eq,lim =

4−d̃2
min

4(mmin−1) . The condition can be rewritten as:

µ2
dec,out = µ2

dec,in(dfree − 1) + βσ2|µ2
dec,in

=1 = dfree − 1 + βσ2 ≥ 4 − d̃2
min

4 (mmin − 1)
.

This leads to

dfree ≥ 1 +
1

(mmin − 1)
− βσ2 − d̃2

min

4 (mmin − 1)
. (21)

Since σ is low (high SNR), we can neglect the term βσ2 and we obtain:

dfree ≥ 1 +
1

(mmin − 1)
− d̃2

min

4 (mmin − 1)
. (22)

Since mmin ≥ 2, we have 1 + 1
(mmin−1) ≤ 2. Since dfree is greater than 2 for a convolutional code, except the

identity code, the condition (22) is always verified.

In the following, we validate by simulation this asymptotic analysis by comparing it with the convergence

of a turbo-detector for finite block length.

Simulation results

We use here the same simulation conditions as in Section 6.1. The SNR is now equal to 9dB (high SNR). Figures

11 and 12 represent µ2
eq,out = µ2

dec,in versus µ2
dec,out = µ2

eq,in respectively for Channels 3 and 5. We notice that

the analysis of the equalizer becomes accurate here. As in Section 6.1, the curves of the decoder (Decoder

conventional method) obtained by using artificial Gaussian a priori LLRs give an accurate approximation of

the decoder behavior. We also plot in Figures 11 and 12 the curves obtained by using (20) in Proposition 8

(Decoder analysis) which predict well the decoder performance since the SNR is high. Thus, the behavior of the

turbo-detector is accurately predicted by our analysis at high SNR. The simulations show that the performance

of the turbo-detector converges to the BER performance of the coded AWGN channel as proved by the analysis.

To confirm this result, we plot in Figure 13 the BER performance curves on the information bits at the

output of the turbo-detector for one to four iterations, for Channel 3 and for one to six iterations, for Channel
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5. The convolutional code has generator polynomials (7, 5). Figure 13 also shows the BER performance of the

coded AWGN channel. We notice that for moderate to high SNR (SNR≥ 4dB for Channel 3 and SNR≥ 6dB for

Channel 5), the BER performance at the output of the turbo-detector reaches the BER performance obtained

for the coded AWGN channel as predicted by the analysis. For lower SNR values, the BER performance of

the turbo-detector does not converge to the BER performance of the coded AWGN channel. In this case, our

analysis does not predict the convergence point of the turbo-detector since the expressions of the extrinsic LLRs

distributions we derived are not close enough in this case (as explained in Sections 4 and 5) and the Gaussian

approximation is not very accurate.
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Figure 11: Convergence analysis at SNR=9dB, µ2
eq,out = µ2

dec,in versus µ2
dec,out = µ2

eq,in, for Channel 3
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Figure 12: Convergence analysis at SNR=9dB, µ2
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Figure 13: BER performance of the turbo-detector for Channel 3 (solid curves) and Channel 5 (dotted curves).

6.3 Validity of the Gaussian approximation

In [10], it was shown that for a convolutional code with an infinite block size, the density of the extrinsic LLRs at

the decoder output can be well approximated by a Gaussian density. In Section 4, we proved the convergence

of the distribution of the extrinsic LLRs at the output of the MAP equalizer to a Gaussian distribution at

high SNR and for infinite block size. We want now to test for the validity of the Gaussian approximation by

simulation for a turbo-detector with finite block length. Figures 14 and 15 show the Kullback Leibler distance

[4] of the distribution of the extrinsic LLRs, when the transmitted symbol is equal to +1, to the Gaussian

distribution with the same mean and variance, respectively at the output of the equalizer and the decoder

versus the iteration number of the iterative receiver for SNR∈ {3, 6, 9}. We consider here Channels 3 and 5. We

use the convolutional code with generator polynomials (7, 5). The solid curves are obtained when Channel 3 is

used and the dotted curves are obtained when Channel 5 is used. Figures 14 and 15 show that as the number of

iterations and the SNR increase, the Kullback Leibler distance decreases. Thus, the pdf of the extrinsic LLRs

approaches a Gaussian pdf when the SNR is moderately high and as the number of iterations increases (the

a priori information becomes reliable). We notice that on average the values of the Kullback Leibler distance

obtained for Channel 5 are higher than those obtained for Channel 3. Thus, the Gaussian approximation is

better verified for Channel 3. This can be explained by the fact that Channel 3 is easier to equalize than

Channel 5. We also notice that the distribution of the extrinsic LLRs at the output of the decoder is less

close to a Gaussian distribution than the distribution of the extrinsic LLRs at the output of the equalizer (the

Kullback Leibler distance is higher).
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Figure 14: Kullback Leibler distance of the distribution of the extrinsic LLRs at the output of the equalizer

when the transmitted symbol is equal to +1 to the Gaussian distribution with the same mean and variance,

versus the iteration number of the iterative receiver for SNR∈ {3, 6, 9}, for Channel 3 (solid curves) and for

Channel 5 (dotted curves).

7 Conclusion

In this paper, we considered a coded transmission over a frequency selective channel. We proposed to study

analytically the convergence of the turbo-detector using a MAP equalizer and a MAP decoder. We showed that

as for MAP decoding [17], e-symmetry and output-symmetry are preserved under MAP equalization. Using

the i.i.d Gaussian approximation, we showed that the BER performance of the turbo-detector converges to

the BER performance of the coded AWGN channel at high SNR. Simulations showed that our analysis allows

one to accurately predict the turbo-detector behavior at high SNR and the performance of the convergence

stationary points.

Appendix I: Proof of Proposition 3

As shown in Figure 3, we consider the transmission of a sequence s = (sT−1, ..., s1−L)T of BPSK symbols

over an output-symmetric channel, Channel 1. The output sequence is called x. We assume that a set of

a priori LLRs with an output-symmetric density is also available. These a priori LLRs are associated with

an output-symmetric channel, Channel 2, with input s [17] (see Figure 3). Let r = (rT−1, ..., r1−L)T be the

sequence of a priori observations at the output of Channel 2. Let y = (xT , rT )T . Since Channel 1 and Channel
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Figure 15: Kullback Leibler distance of the distribution of the extrinsic LLRs at the output of the decoder

when the transmitted symbol is equal to +1 to the Gaussian distribution with the same mean and variance,

versus the iteration number of the iterative receiver for SNR∈ {3, 6, 9}, for Channel 3 (solid curves) and for

Channel 5 (dotted curves).

2 are output-symmetric, pY |S
(

y|s
)

= pY |S
(

−y| − s
)

.

The received sequence y is then fed to the MAP equalizer (see Figure 3). The MAP equalizer computes

the a posteriori probabilities on the transmitted symbols si, PSi|Y (s|y), for s ∈ {+1,−1} . Using Bayes rule, we

obtain

PSi|Y (s|y) =
pY |Si

(y|s)PSi
(s)

pY (y)
.

Thus,

log

(

PSi|Y (+1|y)
PSi|Y (−1|y)

)

= log

(

pY |Si
(y| + 1)

pY |Si
(y| − 1)

)

+ log

(

PSi
(+1)

PSi
(−1)

)

= log

(

pY |Si
(y| + 1)

pY |Si
(y| − 1)

)

since PSi
(+1) = PSi

(−1) = 1/2.

Let pLi|Si
(z|s) be the density of the a posteriori LLRs Li = log

(

pY |Si
(Y |+1)

pY |Si
(Y |−1)

)

conditioned on Si = s ∈

{+1,−1} .We want to show that the density of these LLRs is e-symmetric and output-symmetric, i.e., pLi|Si
(z|s) =

pLi|Si
(−z|s) exp (sz) and pLi|Si

(z|s) = pLi|Si
(−z| − s).
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First, notice that

pY |Si
(y|s)

pY |Si
(y| − s)

=

∑

s:si=s pY |S
(

y|s
)

∑

s:si=−s pY |S
(

y|s
)

=

∑

s:si=s pY |S
(

−y| − s
)

∑

s:si=−s pY |S
(

−y| − s
)

=

∑

s:si=−s pY |S
(

−y|s
)

∑

s:si=s pY |S
(

−y|s
)

=
pY |Si

(−y| − s)

pY |Si
(−y|s) . (23)

Define N as the length of y and l−1
i (z) as the set of all y ∈ RN such that log

(

pY |Si
(y|+1)

pY |Si
(y|−1)

)

= z. From (23), we

have li
(

y
)

= log
(

pY |Si
(y|+1)

pY |Si
(y|−1)

)

= log

(

pY |Si
(−y|−1)

pY |Si
(−y|+1)

)

= −li
(

−y
)

, thus

y ∈ l−1
i (z) ⇔ −y ∈ l−1

i (−z).

Let y = (xT , rT )T = (y0, y1, · · · , yN−1)
T . In order to express the density pLi|Si

(z|s) , we want to perform the

change of variable y towards z. Thus, we introduce g= (y0, y1, · · · , yN−2, z)
T = (g0, g1, · · · , gN−1)

T . Let d be the

N×N matrix with the element on the kth row and jth column dk,j = ∂gk

∂yj
, for 0 ≤ k ≤ N−1 and 0 ≤ j ≤ N−1,

defined as






























dk,j = 1, for 0 ≤ k ≤ N − 2, 0 ≤ j ≤ N − 2 and k = j

dk,j = 0, for 0 ≤ k ≤ N − 2, 0 ≤ j ≤ N − 1 and k 6= j

dk,j = ∂z
∂yj

=

„

∂pY |Si
(y|+1)

∂yj

«

pY |Si
(y|+1) −

„

∂pY |Si
(y|−1)

∂yj

«

pY |Si
(y|−1) , for k = N − 1 and 0 ≤ j ≤ N − 1

(24)

Let α
(

y
)

be the inverse of the determinant of the matrix d. Since li
(

y
)

= −li
(

−y
)

, we obtain, for all 0 ≤ j ≤

N − 1,
∂li(y)
∂yj

= −∂li(−y)
∂yj

and then α
(

y
)

= −α
(

−y
)

.

Using change of variables, we can then write,

pLi|Si
(z|s)

pLi|Si
(−z|s) =

∫

yi,i6=N−1

∑

y∈l−1
i

(z) pY |Si
(y|s)

∣

∣α
(

y
)∣

∣ dy0dy1 · · · dyN−2
∫

yi,i6=N−1

∑

y∈l−1
i (−z) pY |Si

(y|s)
∣

∣α
(

y
)∣

∣ dy0dy1 · · · dyN−2

=

∫

yi,i6=N−1

∑

y∈l−1
i (z) pY |Si

(y|s)
∣

∣α
(

y
)∣

∣ dy0dy1 · · · dyN−2
∫

yi,i6=N−1

∑

y∈l−1
i (z) pY |Si

(−y|s)
∣

∣α
(

−y
)∣

∣ dy0dy1 · · · dyN−2
, since l−1

i (z) = −l−1
i (−z)

=

∫

yi,i6=N−1

∑

y∈l−1
i (z) pY |Si

(y|s)
∣

∣α
(

y
)∣

∣ dy0dy1 · · · dyN−2
∫

yi,i6=N−1

∑

y∈l−1
i (z) pY |Si

(−y|s)
∣

∣α
(

y
)∣

∣ dy0dy1 · · · dyN−2
, since α

(

y
)

= −α
(

−y
)

= exp (sz)

where the last step follows from
pY |Si

(y|s)
pY |Si

(−y|s) =
pY |Si

(y|s)
pY |Si

(y|−s) = exp(sz) for all y ∈ l−1
i (z). Thus, the density of the a
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posteriori LLRs is e-symmetric. We can also write,

pLi|Si
(−z| − s) =

∫

yi,i6=N−1

∑

y∈l−1
i (−z)

pY |Si
(y| − s)

∣

∣α
(

y
)∣

∣ dy0dy1 · · · dyN−2

=

∫

yi,i6=N−1

∑

y∈l−1
i (z)

pY |Si
(−y| − s)

∣

∣α
(

−y
)∣

∣ dy0dy1 · · · dyN−2

=

∫

yi,i6=N−1

∑

y∈l−1
i (z)

pY |Si
(y|s)

∣

∣α
(

y
)∣

∣ dy0dy1 · · · dyN−2

= pLi|Si
(z|s) .

Thus, the density is also output-symmetric.

Appendix II: Proof of Corollary 4

The extrinsic LLR on the transmitted symbol si is given by

lext
i = log

(

pY |Si
(y| + 1)

pY |Si
(y| − 1)

)

− log

(

pRi|Si
(ri| + 1)

pRi|Si
(ri| − 1)

)

= log

(
∑

s:si=1 pY |S
(

y|s
)

∑

s:si=−1 pY |S
(

y|s
)

)

− log

(

pRi|Si
(ri| + 1)

pRi|Si
(ri| − 1)

)

.

Since Channel 1 and Channel 2 are independent and Channel 2 is memoryless, we obtain

lext
i = log









∑

s:si=1 pX|S (x|s)
(

QT−1
j=1−L

pRj |Sj
(rj |sj)

pRi|Si
(ri|+1)

)

∑

s:si=−1 pX|S (x|s)
(

QT−1
j=1−L

pRj |Sj
(rj |sj)

pRi|Si
(ri|−1)

)









= log

(
∑

s:si=1 pỸ |S(ỹ|s)
∑

s:si=−1 pỸ |S(ỹ|s)

)

, where ỹ = y\{ri} and Ỹ = Y \{Ri}

= log

(

pỸ |Si
(ỹ| + 1)

pỸ |Si
(ỹ| − 1)

)

,

ỹ = y\{ri} denotes y deprived of ri.

In order to show that the density of the extrinsic LLRs Lext
i = log

(

pY |Si
(Y |+1)

pY |Si
(Y |−1)

)

− log
(

pRi|Si
(Ri|+1)

pRi|Si
(Ri|−1)

)

is

e-symmetric and output-symmetric, we can use the same proof as in Appendix I, by replacing y by ỹ and Y by

Ỹ .

Appendix III: Proof of Proposition 8

Let c = (c0, · · · , cT−1)
T be the sequence of coded bits that are transmitted. The BER on the coded bits can

be upper bounded using a union bound technique [2, 14] by

Pe ≤
∞
∑

d=dfree

kdd

T
Q

( √
d

σdec,in

)

where kd is the number of codewords of size T and weight d and dfree is the code minimum distance.
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At high SNR, the BER can be approximated by the term involving dfree as

Pe ≃
kdfree

dfree

T
Q

(

√

dfree

σdec,in

)

= mcdfreeQ

(

√

dfree

σdec,in

)

,

where kdfree
is the number of codewords of weight dfree and mc =

kdfree

T
.

When T is large enough, as is the case in this paper, if the convolutional code has k0
dfree

codewords of weight

dfree caused by information sequences whose first one occurs at time 0, then limT→+∞
kdfree

T
= k0

dfree
rc [14].

Since Q (
√
z) e−

y
2 ≥ Q (

√
z + y) [2], we obtain

Pe >∼ Q

(√

dfree

σ2
dec,in

+ β

)

(25)

where β = −2 log (mcdfree) .

This bound is tight at high SNR and the overall probability of error can then be approximated by

Pe ≃ Q





√

dfreeµ
2
dec,in

σ2
+ β



 . (26)

This is equivalent to the BER performance of an AWGN channel with a noise having a zero mean and variance

σ2
3

∆
= σ2

dfreeµ2
dec,in

+βσ2 . Hence, the a posteriori LLRs at the output of the decoder can be modeled as i.i.d samples

from a random variable with pdf N (2sk

σ2
3
, 4

σ2
3
).

Assuming that the a priori and extrinsic LLRs are independent [11], we obtain

Ldec
k ∼ N

(

sk

(

2

σ2
3

−
2µ2

dec,in

σ2

)

,

(

4

σ2
3

−
4µ2

dec,in

σ2

))

.

Hence

Ldec
k ∼ N



sk





2
(

µ2
dec,in(dfree − 1) + βσ2

)

σ2



 ,
4
(

µ2
dec,in(dfree − 1) + βσ2

)

σ2



 . (27)

As for the equalizer, we can define µ2
dec,out such that the extrinsic LLRs Ldec

k are random variables with the

conditional pdf N (
2skµ2

dec,out

σ2 ,
4µ2

dec,out

σ2 ). The quantity µ2
dec,out is a function of µ2

dec,in and is defined as

µ2
dec,out = fdec(µ

2
dec,in)

∆
= µ2

dec,in(dfree − 1) + βσ2. (28)
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