
LOWER BOUNDS ON THE PERFORMANCE OF THE MAP EQUALIZER WITH A PRIORI
OVER MIMO SYSTEMS

Chaabouni Sihem

ISECS, Route Menzel Chaker km 0.5

BP 868, 3018 Sfax, Tunisia

chaabouni sihem@yahoo.fr

Noura Sellami

ISECS, Route Menzel Chaker km 0.5

BP 868, 3018 Sfax, Tunisia

sellami noura@yahoo.fr

Aline Roumy

IRISA-INRIA, Campus de Beaulieu

35042 Rennes Cedex, France

aline.roumy@irisa.fr

ABSTRACT

In this paper, we consider a transmission of Quadrature Phase
Shift Keying (QPSK) symbols over a frequency selective Multiple
Input Multiple Output (MIMO) channel. We propose to study an-
alytically the impact of a priori information (provided for instance
by a decoder in a turbo equalizer) on the maximum a posteriori
(MAP) equalizer performance. We derive analytical expressions
of tight lower bounds on the bit error probability at the output
of the equalizer. Simulations show that the analytical expressions
approximate well the bit error rate (BER) at the output of the MAP
equalizer.

1. INTRODUCTION

The high data rate communication systems are impaired by inter-
symbol interference (ISI). To combat the effects of ISI, an equal-
izer has to be used. The optimal soft-input soft-output equalizer,
in the sense of minimum bit error rate (BER), is based on the max-
imum a posteriori (MAP) criterion. In this paper, we consider the
case where the MAP equalizer has a priori information on the
data. The a priori information are provided by another module
in the receiver, for instance a decoder in a turbo-equalizer [1]. In
a turbo-equalizer, the equalizer and the decoder exchange extrin-
sic information and use them as a priori in order to improve their
performance.
In [2], the authors studied analytically the impact of a priori infor-
mation on the MAP equalizer performance in the case of Binary
Phase Shift Keying (BPSK) modulation for single input single
output (SISO) systems. The aim of our paper is to generalize the
study to the case of Multiple Input Multiple Output (MIMO) sys-
tems with Quadrature Phase Shift Keying (QPSK) modulation.
To do this, we derive analytical expressions of tight lower bounds
on the MAP equalizer BER performance. Simulations show that
these expressions approximate well the BER at the output of the
MAP equalizer.
This paper is organized as follows. In section 2, we give the sys-
tem model. In section 3, we derive analytical expressions of tight
lower bounds on the BER at the output of the MAP equalizer. In
section 4, we give simulation results.
Throughout this paper matrices are upper case and vectors are un-
derlined lower case. The operator (.)T denotes transposition, the
operator (.)H denotes Hermitian and IN represents the N × N
identity matrix.

2. SYSTEM MODEL

We consider a data transmission system over a frequency selec-
tive MIMO channel with P transmit antennas and N receive an-
tennas. We assume that transmissions are organized into bursts
of T symbols per transmit antenna and the channel is invariant
during one burst. The channel between each transmit antenna
and each receive antenna has a memory of L. The input infor-
mation bit sequence b = (b

(1)

2(1−L), ..., b
(1)

(2(T−1)+1), b
(2)

2(1−L), ...,

b
(2)

(2(T−1)+1), ...., b
(P )

2(1−L), ..., b
(P )

(2(T−1)+1))
T , is mapped to a se-

quence of QPSK symbols with Gray mapping from the alphabet
A = {−1 − j;−1 + j; +1 − j; +1 + j}. The baseband signal
received by the nth antenna sampled at the symbol rate at time k
is:

y
(n)
k =

P∑
p=1

L−1∑
i=0

h
(p,n)
i x

(p)
k−i + q

(n)
k , (1)

where h
(p,n)
i , represents the ith channel tap between the pth trans-

mit antenna and the nth receive antenna, for 1 ≤ p ≤ P and
1 ≤ n ≤ N , x

(p)
k , for 1 − L ≤ k ≤ T − 1, are the symbols

transmitted by the pth transmit antenna, q
(n)
k are modeled as in-

dependent random variables of a complex white Gaussian noise
with zero mean and variance σ2, with normal probability density
function (pdf) NC

(
0, σ2

)
. The equation (1) can be rewritten as

follows:
y = Hx + q, (2)

where x = (x
(1)
1−L, ..., x

(1)
T−1, x

(2)
1−L, ..., x

(2)
T−1, ...., x

(P )
1−L, ...,

x
(P )
T−1)

H is the vector of symbols transmitted by all transmit an-

tennas, q = (q
(1)
0 , ..., q

(1)
T−1, q

(2)
0 , ..., q

(2)
T−1, ...., q

(N)
0 , ..., q

(N)
T−1)

H

is the complex Gaussian noise vector, y = (y
(1)
0 , ..., y

(1)
T−1, y

(2)
0 ,

..., y
(2)
T−1, ...., y

(N)
0 , ..., y

(N)
T−1)

H is the output vector received by
the receive antennas and H is a NT × P (T + L − 1) matrix
defined as:

H =


H(1,1) H(2,1) · · · H(P,1)

H(1,2) · · · H(P,2)

: :

H(1,N) H(2,N) · · · H(P,N)

 , (3)

where H(p,n), for 1 ≤ p ≤ P and 1 ≤ n ≤ N , is the chan-
nel matrix between the pth transmit antenna and the nth receive
antenna, which is a T × (T + L − 1) Toeplitz matrix having the
following expression:

H(p,n) =


h

(p,n)
L−1 . . . h

(p,n)
0 0 . . . 0

0 h
(p,n)
L−1 . . . h

(p,n)
0

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 h
(p,n)
L−1 . . . h

(p,n)
0

 .

(4)

We note that all channels are normalized:
L−1∑
i=0

∣∣∣h(p,n)
i

∣∣∣2 = 1, for

1 ≤ p ≤ P and 1 ≤ n ≤ N .
First, we consider the case where no a priori information is pro-
vided to the equalizer. The data estimate according to the MAP
sequence criterion (or to the Maximum Likelihood (ML) crite-
rion, since there is no a priori) is given by :

x̂ = arg min
u

(∥∥y − Hu
∥∥ : u ∈ AP (T+L−1)

)
. (5)



Let x(p) =
(
x

(p)
1−L, ..., x

(p)
T−1

)H

and x̂(p) = (x̂
(p)
1−L, ..., x̂

(p)
T−1)

H

be respectively the subvectors of x and x̂ corresponding to the pth

transmit antenna. For each transmit antenna p, we suppose that
there exists an interval of size mp such that all the symbols of
x̂(p) are different from the corresponding symbols of x(p) while
the preceding symbol and the following one are the same. Let
emp = x̂mp

− xmp
be the subvector of errors corresponding

to this interval, where xmp
and x̂mp

are respectively the corre-

sponding subvectors of x(p) and x̂(p). A subevent ξm of the er-

ror event is that “x̂m =
(
x̂m1

, x̂m2
, ..., x̂mP

)H

is better than

xm =
(
xm1

, xm2
, ..., xmP

)H

” in the sense of the ML metric:

ξm :
∥∥∥y

m
− Hmx̂m

∥∥∥ ≤ ∥∥∥y
m

− Hmxm

∥∥∥ , (6)

where m =
P∑

p=1

mp, y
m

and Hm are respectively the subvector

of y and the subblock of H corresponding to the error interval.
We consider the case where the receiver has side information
(from a genie) that one of the two sequences xm or x̂m was trans-
mitted. When the genie aided equalizer is provided with a priori
information, the pairwise error probability that it chooses x̂m in-
stead of xm is given by [3]:

Pxm,x̂m
= Q

( ‖εm‖
2σ

)
, (7)

where εm = Hmem, em is the (m+P (L − 1))×1 error vector

and Q (α) = 1√
2π

∞∫
α

exp
(
− y2

2

)
dy.

Let Eem
be the set of all em achieving the minimum value of

‖εm‖. Let πem
be the probability that the input sequence xm

will be such that x̂m = xm + em is an allowable input sequence
for some em in Eem

. Then, the probability that the genie aided
equalizer chooses an allowable sequence x̂m instead of xm is

πem
Q

(
min
em

‖εm‖
2σ

)
. When the equalizer has no side information,

the probability of an error event of length m is lower bounded by
the probability achieved by the genie aided equalizer:

P (ξm) ≥ πem
Q

min
em

‖εm‖
2σ

 . (8)

Let lem
be the length of the error sequence. The overall probabil-

ity of error Pe is lower bounded by:

Pe ≥ lem
πem

Q

min
em

‖εm‖
2σ

 . (9)

Our goal is to find analytical expressions of tight lower bounds on
the BER at the output of the MAP equalizer with a priori infor-
mation.

3. LOWER BOUNDS ON THE BER

In this section, we propose to derive the expressions of tight lower
bounds on the BER at the output of the MAP equalizer with the a
priori information for a MIMO system with QPSK modulation.
We consider here QPSK modulation with Gray mapping. We
choose this mapping since it leads to a linear and simple relation-
ship between bits and symbols, which will be used to calculate the

lower bounds. The relationship between BPSK bits
(
b
(p)
2k , b

(p)
2k+1

)
and QPSK symbols x

(p)
k is the following:

x
(p)
k =

[
1 j

] [ b
(p)
2k

b
(p)
2k+1

]
. (10)

The study will be done here for the equalizer using the MAP se-
quence criterion. It holds for the MAP symbol equalizer using the
BCJR algorithm [4] since the two equalizers have almost the same
performance as shown in [5, page 814]We assume that channels
are perfectly known at the receiver. Moreover, we suppose that
a priori observations at the input of the equalizer are modeled
as outputs of an additive white Gaussian noise (AWGN) channel.
This assumption is generally considered in the analyses of iter-
ative receivers [6]. These a priori observations on bits b

(p)
j , for

2(1 − L) ≤ j ≤ (2(T − 1) + 1) and 1 ≤ p ≤ P , are:

z
(p)
j = b

(p)
j + w

(p)
j , (11)

where w
(p)
j are independent random variables of a real white Gaus-

sian noise with zero mean and variance σ2
a
2

with normal pdf N(0,
σ2

a
2

). Then, the a priori Log Likelihood Ratios (LLRs) are:

LLR
(
b
(p)
j

)
= Ln

P
(
z
(p)
j /b

(p)
j = 1

)
P
(
z
(p)
j /b

(p)
j = −1

) =
4

σ2
a

z
(p)
j . (12)

Thus, these LLRs can be modeled as independent and identically

distributed random variables with the conditional pdf N(
4b

(p)
j

σ2
a

,
8

σ2
a
).

Proposition 1 We consider the case where the receiver has side
information (from a genie) that one of the two sequences xm or
x̂m of length m was transmitted. When the genie aided equalizer
is provided with a priori information, the pairwise error proba-
bility that it chooses x̂m instead of xm is:

Pxm,x̂m
= Q


√

‖εm‖2 + 4mµ2

2σ

 . (13)

where εm = Hmem, em is the error vector and µ = σ
σa

.

The proof of proposition 1 is given in the Appendix.

Let Eem
be the set of all em achieving the minimum

value min
em

√
‖εm‖2 + 4mµ2, πem

be the probability that the in-

put sequence xm will be such that x̂m = xm +em is an allowable
input sequence for some em in Eem

. Then the probability that the
genie aided equalizer chooses an allowable sequence x̂m instead

of xm is πem
Q

(
min
em

√
‖εm‖2

+4mµ2

2σ

)
.

Corollary 2 The overall probability of error at the output of the
MAP equalizer without genie, using the a priori information is
lower bounded:

Pe ≥ lem
πem

Q

min
em

√
‖εm‖2 + 4mµ2

2σ

 , (14)

lem
is the length of the error sequence

Proof of corollary 2: For the MAP equalizer without genie, the
probability of an error event ξm of length m is lower bounded by
the probability achieved by the genie aided equalizer:

P (ξm) ≥ πem
Q

min
em

√
‖εm‖2 + 4mµ2

2σ

 . (15)

Since lem
is the length of the error sequence, we deduce that the

overall probability error is lower bounded as in (14).



We will consider, in the following, different cases according to the
value of µ to determine the expressions of the lower bounds on
Pe given in equation (14). For clarity of the presentation, we will
focus on the case of MIMO systems with two transmit antennas
and two receive antennas.

Corollary 3 In the case of unreliable a priori information, the
overall probability of error is lower bounded:

Pe ≥ 1

2
∗ Q

(√
d2
1 + 16µ2

2σ

)
. (16)

where d1 = min
em,m=4

‖εm‖.

Proof of corollary 3: Generally, when the a priori information
at the input of the MAP equalizer are unreliable, errors occur in
bursts. Thus, we do not consider isolated errors since they occur
rarely and we obtain mp ≥ 2 for p ∈ {1, 2}. Thus, the mini-
mum value of m = m1 + m2 is 4. A lower bound on the error
probability is then obtained by replacing m by 4 and ‖εm‖ by d1.
Hence, lem

= 4 and an exhaustive search by simulations shows
that πem

is equal to 1/8.

Corollary 4 When the a priori information are reliable, the over-
all probability of error is lower bounded:

Pe ≥ 3

2
∗ Q

(√
d2
2 + 8µ2

2σ

)
. (17)

where d2 = min
em,m=2

‖εm‖.

Proof of corollary 4: In the case of reliable a priori information,
a priori observations have more influence on the detection than
channel observations. Since the a priori information are indepen-
dent, the errors will not occur in bursts. Then, a lower bound on
the error probability is obtained for isolated errors by replacing
m = m1 + m2 by 2 and ‖εm‖ by d2. Hence, lem

= 2 and an
exhaustive search by simulations shows that πem

is equal to 3/4.
Let

µlim =

√
d2
2 − d2

1

8
, (18)

when d2 > d1.
We can easily show that when µ ≤ µlim (unreliable a priori

information), min
em

√
‖εm‖2 + 4mµ2 is reached for m = 4 and

‖εm‖ = d1 and when µ ≥ µlim (reliable a priori information),

min
em

√
‖εm‖2 + 4mµ2 is reached for m = 2 and ‖εm‖ = d2.

When d2 < d1, the minimum value is reached for m = 2 and
‖εm‖ = d2 for all µ.

4. SIMULATION RESULTS

In this section, we propose to give simulation results to validate
the analytical study.
We use a MIMO system with two transmit antennas and two re-
ceive antennas. The impulse responses of the channels between
the transmit and receive antennas are: h(1,1) = (0.5, 0.71, 0.5),
h(1,2) = (0.9, 0.5, 0.29), h(2,1) = (0.29, 0.9, 0.5) and h(2,2) =
(0.5, 0.6, 0.7). The modulation used is the QPSK. We provide the
MAP equalizer with a priori information on the transmitted bits
b
(p)
j modeled as independent and identically distributed random

variables with the conditional pdf N(
4b

(p)
j

σ2
a

, 8
σ2

a
). For the consid-

ered MIMO channel, we have d2
1 = 2.7232 and d2

2 = 1.4862.
Then, since d1 > d2, we use the expression given in corollary
3 for all values of µ, because it gives the minimum value of√

‖εm‖2 + 4mµ2.
On figure 1, we plot the BER with respect to the signal to noise

ratio (SNR), for different values of µ = σ
σa

. Each curve is ob-
tained while the ratio µ is kept constant. The solid lines indicate
the equalizer performance given by simulations. The dotted lines
indicate the theoretical lower bounds calculated in the previous
section. We notice that the theoretical curves approximate well
the BER. This approximation becomes better at high SNR (for
low values of BER).
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Fig. 1. BER versus SNR: comparison of the equalizer per-
formance (solid curves) and the theoretical performance (dotted
curves).

5. CONCLUSION

In this paper, we consider a transmission of QPSK symbols over
a frequency selective MIMO system. We propose to study ana-
lytically, in this case, the impact of a priori information on the
MAP equalizer performance. We give expressions of tight lower
bounds on the error probability. Simulation results show that the
analytical expressions give a good approximation of the equalizer
performance. This work is a first step in the convergence analysis
of iterative receivers with MAP equalization for MIMO systems.

6. APPENDIX: PROOF FOR PROPOSITION 1

We recall that the output of the MIMO channel during a burst is
the NT × 1 vector y = (y

(1)
0 , ..., y

(1)
T−1, y

(2)
0 , ..., y

(2)
T−1, ...., y

(N)
0 ,

..., y
(N)
T−1)

H defined as:

y = Hx + q, (19)

where x = (x
(1)
1−L, ..., x

(1)
T−1, x

(2)
1−L, ..., x

(2)
T−1, ...., x

(P )
1−L, ...,

x
(P )
T−1)

H is the P (T + L − 1) × 1 vector of transmitted sym-

bols, q = (q
(1)
0 , ..., q

(1)
T−1, q

(2)
0 , ..., q

(2)
T−1, ...., q

(N)
0 , ...q

(N)
T−1)

H is
the complex Gaussian noise vector and H is the NT ×
P (T + L − 1) channel matrix given by (3).
In addition, using (10) and (11), the a priori observations on sym-
bols x

(p)
k are given by :

c
(p)
k = x

(p)
k + g

(p)
k , (20)

where g
(p)
k = (w2k + jw2k+1) ∼ NC

(
0, σ2

a

)
, for 1 − L ≤ k ≤

T − 1 and 1 ≤ p ≤ P .
Taking into account the a priori information, the a posteriori
probability of the sequence x is given by:

P
(
x|y, c

) ∝ exp

(
−
∥∥y − Hx

∥∥2
σ2

)
exp

(
−‖c − x‖2

σ2
a

)
,

(21)



where c = (c
(1)
1−L, ..., c

(1)
T−1, c

(2)
1−L, ..., c

(2)
T−1, ...., c

(P )
1−L, ..., c

(P )
T−1)

H

is the P (T + L − 1) × 1 vector of a priori observations on the
symbols. The data estimate according to the MAP sequence cri-
terion is then given by:

x̂ = arg min
u

(
∥∥y − Hu

∥∥2 +
σ2

σ2
a

‖c − u‖2 : u ∈ AP (T+L−1)).

(22)
As in the case of no a priori information, we consider an error
event ξm of length m. This error event is that x̂m is better than
xm in the sense of the MAP sequence metric:

ξm :
∥∥∥y

m
− Hmx̂m

∥∥∥2 + σ2

σ2
a
‖cm − x̂m‖2 ≤

∥∥∥y
m

− Hmxm

∥∥∥2 +
σ2

σ2
a

‖cm − xm‖2 , (23)

where m =
P∑

p=1

mp, y
m

, Hm and cm are respectively the subvec-

tor of y, the subblock of H and the subvector of c corresponding
to the error interval.
Let r =

(
yH , µcH

)H
, M =

(
HH , µIP (T+L−1)

)H
and s =(

qH , µgH
)H

, with g = (g
(1)
1−L, .., g

(1)
T−1, g

(2)
1−L, .., g

(2)
T−1, ....,

g
(P )
1−L, .., g

(P )
T−1)

H . Using (19) and (20), we can write:

r = Mx + s. (24)

Then, the data estimate according to the MAP sequence criterion
is given by:

x̂ = arg min
u

(
‖r − Mu‖2 : u ∈ AP (T+L−1)

)
. (25)

Hence, (23) is equivalent to:

ξm : ‖rm − Mmx̂m‖2 ≤ ‖rm − Mmxm‖2 , (26)

rm is the (m+(m + P (L − 1)))×1 subvector of r and Mm =(
HH

m , µI(m+P (L−1))

)H
is the subblock of the matrix M corre-

sponding to the error interval.

We consider the case where the receiver has side information
(from a genie) that one of the two sequences xm or x̂m was trans-
mitted. When the genie aided equalizer is provided with a priori
information, the pairwise error probability that it chooses x̂m in-
stead of xm is given by:

Pxm,x̂m
= Q

( ‖dm‖
2σ

)
, (27)

where dm = Mmem. We can write:

‖dm‖2 = ‖εm‖2 +
∥∥µI(m+P (L−1))em

∥∥2 , (28)

where εm = Hmem, em is the error vector having m first compo-
nents equal to ±2 or ±2j and the others are equal to zero. Then,
using (27) and (28), we obtain:

Pxm,x̂m
= Q


√

‖εm‖2 + 4mµ2

2σ

 . (29)
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