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ABSTRACT

We consider distributed linear transceivers for sending a second-
order wide-sense stationary process observed by two noisy sensors
over a Gaussian multiple-access channel (MAC). We derive the min-
imum mean-square error (MSE) distributed linear transceiver. The
optimal linear transmitter exploits bandwidth expansion by repeat-
ing transmission and the transmitters at the two sensors arethe same
except for a constant factor. When the source is white, uncoded
transmission is the best linear code for any SNR. But for a col-
ored source, whitening transmit filter is sub-optimal. In high SNR
regime, the magnitude response of the optimal transmissionfilter is
inversely proportional to fourth-root of the power spectrum of the
process (while that for the whitening filter is inversely proportional
to the square-root of the spectrum). In the special case of a single
sensor with Gaussian source, we also quantify the performance loss
of linear source-channel codes with respect to the Shannon limit.

Index Terms— Colored source, linear codes, joint source-channel
coding, multiaccess communications, sensor networks

1. INTRODUCTION

Motivated by applications in sensor networks, several researchers
are considering the transmission of dependent sources overmultiple-
access channels. The problem is particularly interesting because the
source-channel separation theorem does not hold in general([1]). In
fact, it is known that separation can be exponentially worsethan joint
source-channel coding ([2]). In this paper, we look at linear (over the
real field) joint source-channel codes. Our motivation is two-fold.
First, linear processing is simple to implement and by now there is
vast experience in efficient hardware implementation of linear pro-
cessing. This is important to keep the sensors simple and reduce their
cost. Second, it has recently been shown that for transmitting memo-
ryless, bivariate Gaussian sources over the Gaussian MAC, uncoded
transmission is optimal below a certain SNR threshold ([3]). The
class of linear transmitters includes uncoded transmission, and it is
insightful to understand the nature of the best linear transmitters. We
note that there is extensive literature on linear transceiver optimiza-
tion for sending independent, memoryless sources over the MAC
(see [4] and references therein). In [4], the problem is formulated
as a semi-definite program, and numerical algorithms are proposed
for the same. In contrast, in this paper we consider a single colored
source being observed by two sensors with independent noises and

∗This research was partly funded by French National ResearchAgency
(ANR) under the Essor project.

derive closed-form solution to the optimal linear transceiver. The
problem of distributed source coding of multiple independently cor-
rupted copies of a source is commonly referred to as the CEO prob-
lem ([5]). Thus in this paper we consider linear joint source-channel
codes for the CEO problem over a Gaussian MAC.

Our goal is to find the performance limit of linear source-channel
codes for a colored source. So we consider non-causal transceivers,
which may be viewed as the limit of block transceivers as the block
size goes to infinity. Our results show that bandwidth expansion is
exploited by the optimal transmitter by repeating the transmission.
Moreover the two sensors employ the same transmit filter (except for
a scale factor), which in effect reduces the two sensor case to a single
sensor case. In the high SNR regime, the optimal transmitterfilter
has magnitude response inversely proportional to the fourth-root of
the power-spectrum (while that for the whitening filter is inversely
proportional to the square-root of the spectrum). We also provide an
expression for the least MSE in the high SNR regime, which shows
that the MSE is proportional to the integral of the square-root of the
spectrum. In the case of a single sensor with Gaussian source, we
also quantify the loss with respect to the Shannon limit. Forexam-
ple, in the high SNR regime, for a Gaussian first-order Markovpro-
cess with correlation sequence0.7|k|, the optimal linear transceiver
is about 1.4 dB from Shannon limit but it is 1.5 dB better than the
whitening filter.

The remainder of this paper is organized as follows: the precise
problem definition is given in Section 2, the main results aregiven
in Section 3, and the conclusion in Section 4.

Notation: All vectors are column vectors. SuperscriptT denotes
transpose and superscriptH denotes conjugate transpose. The mini-
mum MSE achievable using linear codes is denoted by MSE∗, while
that achievable usinganycode is denoted by MSE∗∗.

2. PROBLEM DEFINITION

Consider a stationary second-order stochastic process{st}∞t=−∞ with
zero mean and covariance functionc(t), c(0) = 1. We assume that
c(t) is integrable, and this implies that the process has a continu-
ous bounded spectral densityφ(ω), ω ∈ (−π, π] ([6]). The process
is observed by two sensors in the presence of additive noise.The
observations at sensori are

xi,t = aist + vi,t,

whereai are the signal amplitudes, the additive noise is i.i.d.N (0, σ2
o)

and the noise processes are independent across the sensors.These



observations are to be transmitted over a channel. In typical sce-
narios, the channel has more bandwidth than the source. LetB be
the bandwidth expansion factor; then for every source symbol we
are allowedB channel uses. We only considerB = 1, 2, .... The
transmitter at sensori processes the observations throughB linear
filtersHi,b(ω) arranged in parallel. The resultingB data-streams are
multiplexed into a single stream, which is then transmittedover the
channel. We note that we have restricted ourselves to time-invariant
filters. This choice is motivated by the wide-sense stationary nature
of the source. Each sensor has a transmit power constraint ofP and
this leads to the following constraints on the transmit filters:

Z π

−π

|Hi,b(ω)|2φ(ω)dω ≤ P, i = 1, 2; b = 1, ..., B. (1)

The data-streams at the two sensors are then transmitted over
the Gaussian MAC. The Gaussian MAC has additive i.i.d.N (0, σ2)
noise and scales the signal transmitted by sensori by the channel
gaingi. At the receiver, the samples are passed through a demulti-
plexer that converts the single data-stream intoB parallel streams. If
the transmitter filters have absolutely summable impulse responses
{hi,b,t}, then the signal on thebth output branch is given by

yb,t =

2
X

i=1

giai(hi,b,t ∗ st) +

2
X

i=1

gi(hi,b,t ∗ vi,t) + wb,t

where{wb,t} are i.i.d.N (0, σ2) and∗ denotes convolution. In gen-
eral, (1) does not guarantee the existence of absolutely summable
filter impulse response. But under (1), the filter operationsare well-
defined in the Fourier domain ([6]) and we work with these more
general filters.

For fixed transmitter filters, the least MSE is achieved by the
non-causal Wiener filter at the receiver. LetYt = [y1,t, ..., yB,t]

T

andHi = [Hi,1, ..., Hi,B ]T . Then using the orthogonality condition
([6]), the resulting MSE is found to be

MSE =

Z π

−π

h

φ(ω) − φH
sY (ω)φ−1

Y Y (ω)φsY (ω)
i

dω (2)

where

φY Y (ω) =

 

2
X

i=1

giaiHi(ω)

! 

2
X

i=1

giaiHi(ω)

!H

φ(ω)

+
σ2

o

2π

2
X

i=1

g2
i Hi(ω)HH

i (ω) +
σ2

2π
I

(3)

and

φsY (ω) =

 

2
X

i=1

giaiH
∗
i (ω)

!

φ(ω). (4)

Problem Statement:Our goal is to choose the transmit filters such
that the MSE (2) is minimized subject to the power constraints (1).
We solve this problem analytically in the next section. We denote
the minimum MSE achievable using linear codes by MSE∗.

3. MAIN RESULTS

3.1. Derivation of Main Results

Our first step to solve the problem posed in Section 2 is to find a
lower bound on the MSE (2). We need the following matrix property

for this purpose. For a positive definite matrixR, let λmax(R) de-
note its maximum eigenvalue. Then from Weyl’s theorem [7, (9),pp.
75], we know that

λmax(R + xxH) ≤ λmax(R) + λmax(xxH) = λmax(R) + ‖x‖2

with equality ifx is an eigenvector ofR corresponding to eigenvalue
λmax(R). Applying this property repeatedly to (3), we get

λmax(φY Y ) ≤ σ2

2π
+

σ2
o

2π

2
X

i=1

g2
i ‖Hi‖2 +

‚

‚

‚

‚

‚

2
X

i=1

giaiHi

‚

‚

‚

‚

‚

2

φ

where for simplicity we have dropped the argumentω from the var-
ious quantities. We note that equality holds in this bound if

H1(ω) = αH2(ω), for some constantα. (5)

Using this bound we get that

φH
sY φ−1

Y Y φsY ≥ λmin(φ
−1

Y Y )‖φsY ‖2 =
‖φsY ‖2

λmax(φY Y )

≥ ‖P2

i=1
giaiHi‖2φ2

D(ω)
(6)

where

D(ω) :=
σ2

2π
+

σ2
o

2π

2
X

i=1

g2
i ‖Hi‖2 + ‖

2
X

i=1

giaiHi‖2φ.

We see that equality holds in (6) if (5) is true. Substituting(5) in (2),
we get

MSE≥
Z π

−π

N(ω)

D(ω)
φ(ω)dω

where

N(ω) :=
σ2

2π
+

σ2
o

2π

2
X

i=1

g2
i ‖Hi(ω)‖2. (7)

Expanding the term‖P2

i=1
giaiHi(ω)‖2 in the denominatorD(ω)

and using

g1g2a1a2Re
“

HH
1 (ω)H2(ω)

”

≤ |g1g2a1a2|‖H1(ω)‖‖H2(ω)‖
(8)

for the cross-term, we get,

MSE≥
Z π

−π

N(ω)φ(ω)dω

N(ω) +
`
P

2

i=1
|giai|‖Hi(ω)‖

´2
φ(ω)

=: U(H1, H2)

and equality holds if (5) is true and equality holds in (8). Wenote
that U(H1, H2) is a lower bound on the MSE and minimizing it
under the power constraints (1) yields a lower bound on MSE∗. If
the filters that minimizeU(H1, H2) satisfy (5) and (8) with equality,
then the lower bound on MSE∗ is tight. We show below that this is
indeed the case. For convenience let

Ai,b(ω) := |Hi,b(ω)|2

andAi(ω) = [Ai,1(ω), ..., Ai,B(ω)]T .

Lemma 1 There exist filters(H1, H2) such that they minimize the
lower boundU(H1, H2) under(1), satisfy condition(5), satisfy(8)
with equality, and therefore satisfyA1(ω) = A2(ω).



Proof: Writing U(H1, H2) as a function of(A1, A2):

U(A1, A2)

=

Z π

−π

N(ω)φ(ω)dω

N(ω) +

„

P2

i=1
|giai|

q

PB

b=1
Ai,b(ω)

«2

φ(ω)

.

The power constraints are
Z π

−π

Ai,b(ω)φ(ω)dω ≤ P, i = 1, 2; b = 1, ..., B.

Now let

Ā =
|g1|A1 + |g2|A2

|g1| + |g2|
.

Since the power constraints are linear in(A1, A2), the pair(Ā, Ā)
satisfies the power constraints. Moreover, sinceN(ω) given by (7)
is a linear function of(A1, A2) and since the square-root function
is concave, we getU(Ā, Ā) ≤ U(A1, A2). Thus it follows that
U(A1, A2) is minimized for someA1(ω) = A2(ω), and we denote
this common value by

C(ω) = [C1(ω), ..., CB(ω)]T = A1(ω).

For choosing the filters, we note that we are completely free to choose
the phase responses since the power constraints do not depend on
them. So we chooseH1(ω) = sign(g1g2a1a2)H2(ω) such that
|H2,b(ω)|2 = Cb(ω), b = 1, ..., B. It is easy to check that this
ensures equality in (8) and (5) also holds.

Let C̃(ω) =
PB

b=1
Cb(ω). The problem of finding the best lin-

ear transmitter now reduces to finding aC(ω) = [C1(ω), ..., CB(ω)]
that minimizes

MSE =

Z π

−π

N(ω)φ(ω)dω

N(ω) + (|g1a1| + |g2a2|)2C̃(ω)φ(ω)

with N(ω) =
σ2

2π
+

σ2
o

2π
(g2

1 + g2
2)C̃(ω)

(9)

subject to
Z π

−π

Cb(ω)φ(ω)dω ≤ P, b = 1, ..., B. (10)

We note that the MSE (9) depends only onC̃(ω). The power con-
straints (10) imply that

Z π

−π

C̃(ω)φ(ω)dω ≤ BP. (11)

If we minimize the MSE (9) w.r.t.̃C(ω) subject to constraint (11),
then we get a lower bound on the MSE (since constraint (11) is
weaker than conditions (10)). However, the resulting lowerbound
is tight since we can chooseCb,∗(ω) = C̃∗(ω)/B, which attains
the lower bound with equality and satisfies (10). Thus to find MSE∗

we have to minimize the convex function (9) ofC̃(ω) subject to the
linear constraint (11). Let[x]+ = max{0, x}. Using [8, Theorem
4.4.1, pp. 87] it can be verified that the solution is given by

C̃∗(ω) =
σ(|g1a1| + |g2a2|)√

2π

"

λ∗ −
s

σ2/2π

(|g1a1| + |g2a2|)φ(ω)

#+

×
p

φ(ω)
σ2

o
2π

(g2
1 + g2

2) + (|g1a1| + |g2a2|)2φ(ω)

(12)

whereλ∗ is chosen to ensure equality in (11). Due to space con-
straints we do not show the tedious (but straightforward) calculations
involved in deriving the above expression. To summarize, wehave
shown the following.

Proposition 1 There exists an optimal linear transmitter that satis-
fies:

• Hi,b(ω) = Hi,1(ω), i = 1, 2, b = 1, ..., B.

• H1,b(ω) = sign(g1g2a1a2)H2,b(ω), b = 1, ..., B.

• |H1,1(ω)|2 = C̃∗(ω)/B, whereC̃∗(ω) is given by(12).

• MSE∗ is obtained by substituting(12) in (9).

Thus the two sensors use the same transmit filters except for the
constant factor of±1. The bandwidth expansion is exploited merely
by repeating the transmissionB times. For simplicity of discussion,
we assume thatg1 ≥ 0, g2 ≥ 0, a1 = a2 = 1, B = 1 below. If the
source is white, thenφ(ω) = 1 and from (12) we get that uncoded
transmission is the optimal linear transmitter. For a whitening filter
of a colored sourcẽC(ω) = constant/φ(ω), which is different from
that (12) for the optimal linear filter. Hence for a colored source,
the whitening filter is sub-optimal. The nature of the optimal filter
simplifies significantly in the limit asσ → 0 with σo/σ fixed to
some valueγ. From (9) we get that

lim
σ→0

σo/σ→γ

MSE
σ2

=
γ2(g2

1 + g2
2)

(g1 + g2)2
+

1

2π

Z π

−π

dω

(g1 + g2)2C̃(ω)
.

Using a Lagrange multiplier we can easily minimize the abovelimit
subject to (11). This gives us that asσ → 0 with σo/σ → γ,

C̃∗(ω) → BP
p

φ(ω)
R π

−π

p

φ(ω)dω
(13)

and

lim
σ→0

σo/σ→γ

MSE∗

σ2
=

γ2(g2
1 + g2

2)

(g1 + g2)2
+

n

R π

−π

p

φ(ω)dω
o2

2πP (g1 + g2)2
. (14)

In contrast, for a whitening filter̃C(ω) is inversely proportional to
φ(ω). The loss of the whitening filter w.r.t. the optimal linear trans-
mitter is plotted for an example in the next section.

3.2. Single Sensor Case

Consider the special case wheng1 = 1, g2 = 0, σ2
o = 0 and the

source is Gaussian. The main reason for considering this case is
that the Shannon limit can be found. For this special case, wenow
compare the optimal linear transmitter, the whitening filter transmit-
ter, and the Shannon limit for achievable MSE usinganycode. The
MSE for the whitening filter is given by:

MSEW =
σ2

σ2 + P

Z π

−π

φ(ω)dω =
σ2

σ2 + P
.

For the optimal linear transmitter, from (14) withγ = 0 we get that

lim
σ→0

MSE∗

σ2
=

1

2πP

Z π

−π

p

φ(ω)dω

ff2

.

Thus we get

lim
σ→0

MSE∗

MSEW

=

n

R π

−π

p

φ(ω)dω
o2

2π
R π

−π
φ(ω)dω

=: r1.



The Cauchy-Schwarz inequality easily verifies that the above limit
is upper bounded by 1 with equality iffφ(ω) = 1, that is, when the
source is white.

Now using Shannon theory we can also find the least MSE that
can be achieved usinganycode. For this purpose assume thatφ(ω) ≥
δ > 0. Then forD < δ the rate-distortion function is given by ([9,
Theorem 4.6.2, pp. 133])

R(D) =
1

2
log

„

Q1

D

«

where

Q1 = 2π exp

„

1

2π

Z π

−π

ln(φ(ω))dω

«

is the one-step prediction error of the source ([6]) andln is the loga-
rithm w.r.t. the natural base. Since forg1 = 1, g2 = 0, the channel
is a single-user AWGN channel, we can achieveD < δ if

R(D) <
1

2
log

„

1 +
P

σ2

«

=⇒ D >
Q1

1 + P

σ2

.

(We assume thatP/σ2 is large enough so that the lower bound above
is less thanδ, which is necessary for the validity of the expression for
R(D).) We know from the source-channel separation theorem [9]
that there exist codes that come arbitrarily close to the above lower
bound. Thus (for sufficiently largeP/σ2) the smallest achievable
MSE using any code is

MSE∗∗ =
Q1

1 + P

σ2

.

Thus we get that

lim
σ→0

MSE∗∗

MSE∗
=

2πQ1
n

R π

−π

p

φ(ω)dω
o2

=: r2.

For transmitting a white Gaussian source over a Gaussian channel
with B = 1, it is well known that uncoded transmission is optimal
([10]) and the above limit is unity in this case. However for colored
sources, linear codes lead to a loss, as shown in the example below.

Example: Consider a first-order autoregressive Gaussian process
with c(k) = ρ|k|, ρ ∈ (−1, 1). For this process

φ(ω) =
(1 − ρ2)

2π(1 − 2ρ cos(ω) + ρ2)

andQ1 = 1−ρ2. In Figure 1 we have plotted the loss of the whiten-
ing filter and the optimal filter w.r.t. the Shannon limit asσ → 0
(which are respectively given byr1r2 andr2) for various values of
ρ. We see that in the higher SNR regime, substantial gain can be
achieved by using the optimal filter; forρ = 0.7, the optimal filter
is about 1.4 dB from Shannon limit but it is 1.5 dB better than the
whitening filter.

4. CONCLUSIONS

In this paper, we derived distributed linear transceivers that mini-
mize the MSE for transmitting independently corrupted versions of
a colored source over a Gaussian MAC. The key conclusion is that
the optimal transceiver can significantly outperform the whitening
transmitter. In the single sensor case, the loss of linear processing
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Fig. 1. The optimal filter has significantly less loss compared to the
whitening filter forρ > 0.5.

w.r.t. the Shannon limit may not be too large, and due to its sim-
plicity, linear processing is an attractive choice. Our focus was on
identifying the limits of linear processing. Future investigation into
implementation aspects in the absence of channel information and
with finite-precision arithmetic is needed to understand the true mer-
its of linear processing in sensor communication.
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