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ABSTRACT

We consider distributed linear transceivers for sendinecaisd-
order wide-sense stationary process observed by two nerssoss
over a Gaussian multiple-access channel (MAC). We deriwertin-
imum mean-square error (MSE) distributed linear transgeifhe
optimal linear transmitter exploits bandwidth expansignrépeat-
ing transmission and the transmitters at the two sensothasame

except for a constant factor. When the source is white, wdtod
transmission is the best linear code for any SNR. But for a col

ored source, whitening transmit filter is sub-optimal. IgthiSNR
regime, the magnitude response of the optimal transmiggienis

inversely proportional to fourth-root of the power spenirof the
process (while that for the whitening filter is inversely poctional

to the square-root of the spectrum). In the special case ofghes
sensor with Gaussian source, we also quantify the perfarenknss
of linear source-channel codes with respect to the Sharmin |
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derive closed-form solution to the optimal linear trangeei The
problem of distributed source coding of multiple indeperttjecor-
rupted copies of a source is commonly referred to as the CBB pr
lem ([5]). Thus in this paper we consider linear joint soscbannel
codes for the CEO problem over a Gaussian MAC.

Our goal is to find the performance limit of linear source+afel
codes for a colored source. So we consider non-causal &igBss,
which may be viewed as the limit of block transceivers as thekb
size goes to infinity. Our results show that bandwidth exjuenis
exploited by the optimal transmitter by repeating the tnaission.
Moreover the two sensors employ the same transmit filte ef@for
a scale factor), which in effect reduces the two sensor cessingle
sensor case. In the high SNR regime, the optimal transniiltier
has magnitude response inversely proportional to the Headt of
the power-spectrum (while that for the whitening filter isersely
proportional to the square-root of the spectrum). We alswige an
expression for the least MSE in the high SNR regime, whichvsho

Index Terms— Colored source, linear codes, joint source-chann#lat the MSE is proportional to the integral of the squaie-od the

coding, multiaccess communications, sensor networks

1. INTRODUCTION

Motivated by applications in sensor networks, severalae$ers
are considering the transmission of dependent sourcesravéple-
access channels. The problem is particularly interestiogbse the
source-channel separation theorem does not hold in geifiEhalin
fact, itis known that separation can be exponentially wtraa joint
source-channel coding ([2]). In this paper, we look at lir(e&er the
real field) joint source-channel codes. Our motivation is-fald.
First, linear processing is simple to implement and by nosvehs
vast experience in efficient hardware implementation afdinpro-
cessing. Thisis important to keep the sensors simple andedtieir
cost. Second, it has recently been shown that for transmittiemo-
ryless, bivariate Gaussian sources over the Gaussian MAcoded
transmission is optimal below a certain SNR threshold ([3[he
class of linear transmitters includes uncoded transmissind it is
insightful to understand the nature of the best linear trattsrs. We
note that there is extensive literature on linear transcedptimiza-
tion for sending independent, memoryless sources over th€ M
(see [4] and references therein). In [4], the problem is fdated
as a semi-definite program, and numerical algorithms arpgsed
for the same. In contrast, in this paper we consider a sirgtaed
source being observed by two sensors with independentsars®
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spectrum. In the case of a single sensor with Gaussian souece
also quantify the loss with respect to the Shannon limit. é&@m-
ple, in the high SNR regime, for a Gaussian first-order Marnp+
cess with correlation sequene&!*!, the optimal linear transceiver
is about 1.4 dB from Shannon limit but it is 1.5 dB better thha t
whitening filter.

The remainder of this paper is organized as follows: theipeec
problem definition is given in Section 2, the main resultsgven
in Section 3, and the conclusion in Section 4.

Notation: All vectors are column vectors. Superscriptdenotes
transpose and superscrifitdenotes conjugate transpose. The mini-
mum MSE achievable using linear codes is denoted by M&/ile
that achievable usingnycode is denoted by MSE.

2. PROBLEM DEFINITION

Consider a stationary second-order stochastic prdee$s> _ ., with
zero mean and covariance functieft), ¢(0) = 1. We assume that
¢(t) is integrable, and this implies that the process has a aentin
ous bounded spectral densityw), w € (—m, 7| ([6]). The process
is observed by two sensors in the presence of additive ndike.
observations at sensoare

Tit = @;St + Vi,

whereaq; are the signal amplitudes, the additive noise is iAd0, o2)
and the noise processes are independent across the sefisesg



observations are to be transmitted over a channel. In typim
narios, the channel has more bandwidth than the sourceB Let
the bandwidth expansion factor; then for every source symigo
are allowedB channel uses. We only considBr = 1,2,.... The
transmitter at sensarprocesses the observations throughinear
filters H; » (w) arranged in parallel. The resultidgdata-streams are
multiplexed into a single stream, which is then transmitieer the
channel. We note that we have restricted ourselves to tiveriant
filters. This choice is motivated by the wide-sense statipnature
of the source. Each sensor has a transmit power constrainaof
this leads to the following constraints on the transmitifdte

/ |Hip(w)[>p(w)dw < P,

i=1,2b=1,..B.

The data-streams at the two sensors are then transmitted ove

the Gaussian MAC. The Gaussian MAC has additive iA/d0, o?)
noise and scales the signal transmitted by sehdxyr the channel

gaing;. At the receiver, the samples are passed through a demulti-

plexer that converts the single data-stream iBtparallel streams. If
the transmitter filters have absolutely summable impulsparses
{hi .}, then the signal on thi" output branch is given by

2 2
Yb,t = Zgiai(hi,b,t * 8¢) + Zgi(hi,b,t * Vi) + Wy

=1 =1

where{w, .} are i.i.d.N (0, c*) and* denotes convolution. In gen-
eral, (1) does not guarantee the existence of absolutelynsine
filter impulse response. But under (1), the filter operatiareswell-

defined in the Fourier domain ([6]) and we work with these more

general filters.

For fixed transmitter filters, the least MSE is achieved by the

non-causal Wiener filter at the receiver. Dét = Ly’
andHi = [HZ'J, ey H

([6]), the resulting MSE is found to be

[y1’t7..4

MSE= /:r [é(w) - ¢?y(w)¢x7§/(w)¢s1/(w)] dw (2
where
H
dyy (w (Z gia; H;(w ) (Z giai Hi(w ) o)
) (3)
+;—;ngH W) H () + g_wl
i—1
and

¢SY

-

) P(w)- 4)

for this purpose. For a positive definite matifik let Amax (R) de-
note its maximum eigenvalue. Then from Weyl's theorem [,p(®
75], we know that

Amax (R + 22™) < Amax(R) 4 Amax (227) = Amax (R) + [|z]|?

with equality if z is an eigenvector oR corresponding to eigenvalue
Amax(R). Applying this property repeatedly to (3), we get

Z gbasz

where for simplicity we have dropped the argumerftom the var-
ious quantities. We note that equality holds in this bound if

GO
)\max(QSYY Zgz”H ” +

Hi(w) = aH2(w), for some constant. (5)
Using this bound we get that
2
O ovy ey 2 Amin(orh)llowv|? = A2
)\max(éYY)
I X0, giaiHi|*¢
> = 6
> ) (6)
where
D(w) := o= + o Zgz 1 H:|* + ZgbaszH ¢.

We see that equality holds in (6) if (5) is true. Substitut{Byin (2),
we get

MSE >

;8] . Then using the orthogonality condition where

N(w) :=

_+_Zgz”H

Expanding the ternj >>7_, gia; H;(w)|| in the denominatoD (w)
and using

@)

grg2araaRe (H{ () Ha(w)) < [g1g001aa]| @) | Ha(w)]
®)

for the cross-term, we get,

N(w)p(w)dw

MSE> [ -
[ﬂ N(w) + (i lgiaill[ Hi(w)])
= U(Hl,HQ)

p(w)

and equality holds if (5) is true and equality holds in (8). W&e
thatU(H1, H2) is a lower bound on the MSE and minimizing it

Problem Statement: Our goal is to choose the transmit filters such Under the power constraints (1) yields a lower bound on MSE

that the MSE (2) is minimized subject to the power constsaft).
We solve this problem analytically in the next section. Weate
the minimum MSE achievable using linear codes by MSE

3. MAIN RESULTS

3.1. Derivation of Main Results

the filters that minimizé/ ( H1, H) satisfy (5) and (8) with equality,
then the lower bound on MSHs tight. We show below that this is
indeed the case. For convenience let

Aip(w) = [Hip(w)]”
andA;(w) = [Ai,1(w), .., Ay, (W)] "

Lemma 1 There exist filter§ H1, H2) such that they minimize the

Our first step to solve the problem posed in Section 2 is to find dower boundU (H., H2) under(1), satisfy conditior(5), satisfy(8)

lower bound on the MSE (2). We need the following matrix prope

with equality, and therefore satisfy; (w) = A2 (w).



Proof: Writing U(H1, H2) as a function of 41, A2):

U(A1, Ag)
:/” N(w)p(w)dw ; ‘
T N@W) + (23:1 giail /S Ai,bw)) o)

The power constraints are

/ Aip(w)p(w)dw < P, i=1,2b=1,..,B.
Now let
A 91As + g2 Az
l91] + |g2|

Since the power constraints are linear(ify, A2), the pair(4, A)
satisfies the power constraints. Moreover, sifdev) given by (7)
is a linear function of(A1, A2) and since the square-root function
is concave, we getV(A4, A) < U(Ai, A2). Thus it follows that
U(A1, A2) is minimized for somed; (w) = Az(w), and we denote
this common value by

C(w) = [C1(w), .., Cp(w)]" = A1 (w).

For choosing the filters, we note that we are completely fr@hbose
the phase responses since the power constraints do notddepen
them. So we choosél; (w) sign(gig2a1a2) H2(w) such that
|Hop(w)]? = Cp(w), b = 1,...,B. ltis easy to check that this
ensures equality in (8) and (5) also holds. [ |

LetC(w) = Zle Cy(w). The problem of finding the best lin-
ear transmitter now reduces to finding'éw) = [C1(w), ..., Cs(w)]
that minimizes

wse— | N ()o(w)dw
e N@) + (grar] + | POW@)6w) g
with N (w ):U—+—(g1 +93)C(w)
subject to
/ Co(w)p(w)dw < P, b=1,..,B. (10)

We note that the MSE (9) depends only 6I(Iw). The power con-
straints (10) imply that

" C(w)p(w)dw < BP.

-

(11)

If we minimize the MSE (9) w.r.tC'(w) subject to constraint (11),

where )\, is chosen to ensure equality in (11). Due to space con-
straints we do not show the tedious (but straightforwarttutations
involved in deriving the above expression. To summarize hese
shown the following.

Proposition 1 There exists an optimal linear transmitter that satis-
fies:

Hip(w)=Hii(w),i=1,2,b=1,...,B.

Hi y(w) = sign(g1g2a1a2)Hap(w), b=1,..., B.
|H11(w)|? = C.(w)/B, whereC, (w) is given by(12).
e MSE. is obtained by substitutingl2) in (9).

Thus the two sensors use the same transmit filters excepteor t
constant factor of-1. The bandwidth expansion is exploited merely
by repeating the transmissidntimes. For simplicity of discussion,
we assume thaf; > 0,92 > 0, a1 = a2 = 1, B = 1 below. If the
source is white, thep(w) = 1 and from (12) we get that uncoded
transmission is the optimal linear transmitter. For a wiiitg filter
of a colored sourc€’'(w) = constanf¢(w), which is different from
that (12) for the optimal linear filter. Hence for a coloredisee,
the whitening filter is sub-optimal. The nature of the opfifiléer
simplifies significantly in the limit ag — 0 with o, /0 fixed to
some valuey. From (9) we get that

MSE
)

dw

_’72(9%+9§)+L/W o
—= (914 92)*C(w)

lim =
o0 (91 +92)2 2w

Using a Lagrange multiplier we can easily minimize the aHowé
subject to (11). This gives us thatas— 0 with 0, /0 — 7,

= BP

C.(w) — 13
W= oI Ve -
and
. MSE. (9 +93) {f Vo d“’}
Uocl'/lgliw o7 " (pt@? | 2P+ ) )

In contrast, for a whitening filte€'(w) is inversely proportional to
¢(w). The loss of the whitening filter w.r.t. the optimal lineaauts-
mitter is plotted for an example in the next section.

3.2. Single Sensor Case

Consider the special case when= 1, g» = 0, 02 = 0 and the
source is Gaussian. The main reason for considering this isas
that the Shannon limit can be found. For this special caseome
compare the optimal linear transmitter, the whiteningffiltansmit-

then we get a lower bound on the MSE (since constraint (11) iser, and the Shannon limit for achievable MSE usamy code. The

weaker than conditions (10)). However, the resulting lobveund
is tight since we can choos@; .(w) = C.(w)/B, which attains
the lower bound with equality and satisfies (10). Thus to firiav
we have to minimize the convex function (9) ©{w) subject to the
linear constraint (11). Lefr]™ = max{0,x}. Using [8, Theorem
4.4.1, pp. 87] it can be verified that the solution is given by

2/2 +
[)\* - \/(|91a1| + |g2a2]|)p(w)

P(w)
(lgras| + |g2az2])

Colw) = o(lgra1| ;T|g2a2|)

2¢(w)

02
52(97 +935) +
(12)

MSE for the whitening filter is given by:

o | o

For the optimal linear transmitter, from (14) with= 0 we get that

MSEw =

702+P

. MSE. 1 /—
;1310 oz 27P { dw} '
Thus we get
2
i MSE. V@)
SOMSEw | 27" o(@)dw -



The Cauchy-Schwarz inequality easily verifies that the aldowit
is upper bounded by 1 with equality iff(w) = 1, that is, when the
source is white.

Now using Shannon theory we can also find the least MSE the
can be achieved usiramycode. For this purpose assume that) >
0 > 0. Then forD < ¢ the rate-distortion function is given by ([9,

Theorem 4.6.2, pp. 133])
log < )

@ =2me (5 [ mionar)

is the one-step prediction error of the source ([6]) ani the loga-
rithm w.r.t. the natural base. Since fgr = 1, g» = 0, the channel
is a single-user AWGN channel, we can achiéve< ¢ if

Q1
1+

1

R(D) = 3 &

D

where

1 P
R(D)<210g(1+02):>D> z
(We assume tha®/o? is large enough so that the lower bound above
is less tham, which is necessary for the validity of the expression for
R(D).) We know from the source-channel separation theorem [9
that there exist codes that come arbitrarily close to theatbmver
bound. Thus (for sufficiently larg®/o?) the smallest achievable
MSE using any code is

Q1

MSE... :
1+4

Thus we get that
. MSE** 271'Q1
lim MSE. = 5 =
e {J7, o)}

For transmitting a white Gaussian source over a Gaussiameha
with B = 1, itis well known that uncoded transmission is optimal
([10]) and the above limit is unity in this case. However fotared
sources, linear codes lead to a loss, as shown in the exaeiple.b

T2.

MSE Loss w.r.t. Shannon Limit

8 T T T T T T
— — — Whitening Filter
—— Optimal Filter )

MSE Loss (dB)

Fig. 1. The optimal filter has significantly less loss compared & th
whitening filter forp > 0.5.

]N.I’.t. the Shannon limit may not be too large, and due to it% si
plicity, linear processing is an attractive choice. Ouru®evas on
identifying the limits of linear processing. Future invgation into
implementation aspects in the absence of channel infoomatnd
with finite-precision arithmetic is needed to understartthe mer-
its of linear processing in sensor communication.
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