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ABSTRACT

In this paper, we consider the problem of Maximuma Pos-
teriori (MAP) equalization of the received signal over a fre-
quency selective channel when the channel is not perfectly
known at the receiver. The derivation of the MAP criterion
in this case leads to an expression for which no exact imple-
mentation exists in the literature. In this paper, we propose
to solve the problem by using the Expectation-Maximization
(EM) algorithm. The algorithm we propose has linear-time
complexity per iteration. Simulations show that few iterations
are required to reach the performance of the MAP equalizer
with perfect channel knowledge.

Index Terms— MAP equalization, channel estimation,
EM algorithm, frequency selective channel

1. INTRODUCTION

An important source of degradation in high data rate commu-
nication systems is the presence of intersymbol interference
(ISI) between consecutive data symbols originating from the
frequency selectivity of mobile radio channels. To combat
the effects of intersymbol interference, an equalizer has to be
used. In practice, the receiver does not know perfectly the
channel and has to estimate it. In this paper, we consider the
case where the equalizer has an imperfect channel estimate
provided by another module in the receiver, namely the chan-
nel estimator. In most previous works, the equalizer assumes
perfect channel knowledge and uses the channel estimate as
if it was the true channel. This approach is obviously sub-
optimal and the equalization algorithm has to be rederived in
order to take into account the channel estimation errors. This
problem of equalization for non-ideal channel knowledge has
been tackled in [1, 2]. In [1], Tüchleret al. considered a
Maximum a Posteriori (MAP) equalizer in the case of trans-
mission over a frequency selective channel. They derived the
metric to be minimized for this problem and suggested to use
sequential decoding or sphere decoding to solve it, since it
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was no feasible for a direct practical implementation. In [2],
an optimum MAP discrete-time rake receiver has been pro-
posed for CDMA systems when the channel is not perfectly
known. In this case, the algorithm can be implemented since
the probability density function (pdf) involved in the deriva-
tion of the MAP criterion can be factored unlike the pdf in [1].
In this paper, we consider, as in [1], a data transmission sys-
tem over a frequency selective channel. Our aim is to find a
practical implementation to solve the exact problem of MAP
equalization with imperfect channel knowledge. To do this,
we propose to use an iterative algorithm following the Expec-
tation Maximization (EM) approach [3]. The Maximization
step is performed by a Viterbi algorithm. Thus, the algorithm
we propose has linear-time complexity per iteration. More-
over, simulation results show that few iterations are required
to reach the optimal performance achieved when the channel
is perfectly known at the receiver.
Throughout this paper scalars are lower case, and vectors and
matrices are bold lower and upper case, respectively. The op-
erators(.)T , (.)∗ and (.)† denote respectively transposition,
conjugation and transconjugation. TheL × L identity matrix
is denoted byIL.

2. SYSTEM MODEL

We consider a data transmission system over a frequency se-
lective channel. The input information bit sequence is mapped
to the symbol alphabetA. We assume that transmissions are
organized into bursts ofK symbols. The channel is supposed
to be invariant during one burst. The baseband complex signal
sampled at the symbol rate and received at timek is

rk =

L−1∑

l=0

hlsk−l +wk = s
T
k h+wk, ∀ 0 ≤ k ≤ K +L− 2

(1)
where:

1) sk ∈ C, for 0 ≤ k ≤ K−1, are the transmitted symbols
and take their values from the alphabetA. The virtual
symbolssk ∈ C, for 1 − L ≤ k ≤ −1, are assumed
to be known at the receiver and can be set to0. We
introduce the vectorsk = [sk . . . sk−L+1]

T ∈ CL.



2) wk ∈ C, for 0 ≤ k ≤ K + L − 2, are AWGN complex
samples with pdfNC(0, σ2), whereNC(α, σ2) denotes
a Gaussian distribution with meanα and varianceσ2.

3) h = [h0 . . . hL−1]
T ∈ CL is the channel realization

vector and is circularly symmetric complex Gaussian
distributed with pdfNC(0,Rh), whereRh is the chan-
nel covariance matrix. The pdf ofh is given by

p(h) =
1

det(πRh)
exp

(
−h

†
R

−1
h h

)
(2)

4) K andL denote the burstlength and the channel mem-
ory, respectively.

Let s = [sK−1, ..., s1−L]T be the (L + K − 1)-long vector
of symbols andS be the associated(K + L− 1)×L Hankel
matrix having the last column[sK−1, · · · , s1−L]

T and the last
row [s0, · · · , s1−L]. The received signal model in (1) can be
rewritten in a matrix form as

r = Sh + w (3)

with r = [rK+L−2, ..., r0]
T andw = [wK+L−2, ..., w0]

T . It
follows that:

p(r|h, s) =
1

(πσ2)K+L−1
exp

(

−

K+L−2∑

k=0

|rk − s
T
k h|2

σ2

)

=
1

(πσ2)K+L−1
exp

(

−
(r− Sh)†(r − Sh)

σ2

)

(4)

The channel estimator computes estimatesĥ of the channel
that can be modeled as a noisy version ofh:

ĥ = h + b

with b being a complex AWGN, independent ofh. This is a
general model that encompasses the least mean square error
estimator of the channel that uses a training sequence [4]. It
follows that

p(ĥ|h) =
1

det(πRb)
exp

(

−(ĥ− h)†R−1
b (ĥ− h)

)

(5)

p(ĥ) =
1

det(π(Rh + Rb))
exp

(

−ĥ
†(Rh + Rb)

−1
ĥ

)

(6)

3. PROBLEM STATEMENT

When the channel is known, the data estimate according to
the MAP sequence criterion is given by

ŝ = arg max
s

p(s|r,h). (7)

which can be solved efficiently by the Viterbi algorithm [5].
Here, however, an estimatêh but not the true channelh is

available at the receiver. Replacingh by ĥ in the MAP al-
gorithm leads to an error for which a closed form expression
is derived in [6]. Hence, in this paper, we consider the exact
MAP problem that takes into account the channel estimate
error. This MAP problem reads:

ŝ = arg max
s

p(s|r, ĥ). (8)

This criterion was first derived in [1] but no efficient imple-
mentation was yet proposed. In this paper, we propose to use
the EM-algorithm which has a linear-time complexity per it-
eration.

4. PROPOSED SOLUTION: EM-ALGORITHM

We consider the EM algorithm [3, 7] to solve the problem (8)
with a reasonable complexity. The algorithm consists in two
steps:

E : Q
(
s, si

)
=

∫

log p
(

s|r,h, ĥ
)

p
(

h|r, ĥ, si
)

dh (9)

M : s
i+1 = arg max

s
Q
(
s, si

)
(10)

whereE stands for the expectation step andM for the maxi-
mization step of the EM algorithm. It can be shown that under
some mild conditions and for close enough initial estimates

0

to the global maximum [7], the algorithm converges to the
MAP estimated sequencês defined in (8):

s
i −→

i→∞
ŝ

In order to justify the previous result, we show that the APP
(a posteriori probability)p(s|r, ĥ) in (8) increases with any
increase in the functionQ(s, si) in (9), with respect tos. By
using the inequalitylog x ≤ x − 1, ∀x > 0, coming from the
concavity of the log function, we obtain:

Q
(
s, si

)
− Q

(
s
i, si
)

=
1

p(si|r, ĥ)

∫

log
p
(

s,h|r, ĥ
)

p
(

si,h|r, ĥ
)p
(

s
i,h|r, ĥ

)

dh

≤
1

p(si|r, ĥ)

∫



p
(

s,h|r, ĥ
)

p
(

si,h|r, ĥ
) − 1



 p
(

s
i,h|r, ĥ

)

dh

=
1

p(si|r, ĥ)

(

p
(

s|r, ĥ
)

− p
(

s
i|r, ĥ

))

Hence, wheneverQ
(
s
i+1, si

)
≥ Q

(
s
i, si
)

(which holds thanks

to (10)),p
(

s
i+1|r, ĥ

)

≥ p
(

s
i|r, ĥ

)

.

5. EFFICIENT IMPLEMENTATION

This section details a possible implementation of this algo-
rithm showing its linear-time complexity per iteration.



5.1. E-step

First, by noticing thatp
(

s|r,h, ĥ
)

= p(r|s,h)p(s)
p(r|h) , the func-

tion Q in (9) can further be simplified into:

Q
(
s, si

)
=

∫

log p (r|s,h) p
(

h|r, ĥ, si
)

dh + log p (s)

−

∫

log p (r|h) p
(

h|r, ĥ, si
)

dh

︸ ︷︷ ︸

α

Sinceα, the third term of the right-hand side, is independent
of s, it does not influence the maximization in (10). Thus, we

focus on the computation of
∫

log p (r|s,h) p
(

h|r, ĥ, si
)

dh.

5.1.1. The pdf p
(

h|r, ĥ, si
)

We now compute the pdfp
(

h|r, ĥ, si
)

and skip the exponent

i for notation simplicity. Using the independence between
(h, ĥ) ands, and betweenr andĥ given (h, s), the Bayes’
rule reads:

p
(

h|r, ĥ, s
)

=
p(r|h, s)p(h|ĥ)

p(r|ĥ, s)
. (11)

We proceed by computingp(h|ĥ). Using the Bayes’ rule and
the expressions of the pdfs (2), (5) and (6), we obtain

p(h|ĥ) =
p(ĥ|h)p(h)

p(ĥ)

=
1

det(πΣ)
exp

(
−(h − u)†Σ−1(h − u)

)
(12)

with Σ
−1 = R

−1
b + R

−1
h andu = ΣR

−1
b ĥ. The derivation

of p(r|ĥ, s) needs an additional expectation since

p(r|ĥ, s) =

∫

p(r|h, s)p(h|ĥ)dh

Using (4) and (12), we obtain

p(r|ĥ, s) =
1

det(πRc)
exp

(
−(r − c)†R−1

c (r − c)
)

(13)

with

Rc = σ2
IK+L−1 + SΣS

† (14)

c = Rc

S

σ2

(
1

σ2
S
†
S + Σ

−1

)−1

Σ
−1

u (15)

Finally, by using the Bayes’ rule in (11) and the pdfs in (4),
(12) and (13), the desired pdf is given by:

p(h|r, ĥ, s) =
1

det(πRd)
exp

(
−(h − d)†R−1

d (h − d)
)

(16)

with

R
−1
d =

1

σ2
S
†
S + Σ

−1 =
1

σ2
S
†
S + R

−1
b + R

−1
h (17)

d = Rd

(
1

σ2
S
†
r + Σ

−1
u

)

= Rd

(
1

σ2
S
†
r + R

−1
b ĥ

)

(18)
5.1.2. The expectation of the metric

Using the above derived pdf in (16), we are now able to per-
form the expectation:

E
h|r,ĥ,si

[
|rk − s

T
k h|2

]
= |rk − s

T
k d

i|2 + s
T
k R

i
ds

∗
k

whered
i andR

i
d correspond to (18) and (17), respectively,

with the variables set to the valuesi. Finally, the function is
given by:

Q
(
s, si

)
= −

1

σ2

K+L−2∑

k=0

(
|rk − s

T
k d

i|2 + s
T
k R

i
ds

∗
k

)

− (K + L − 1) log(πσ2) + log p(s) − α (19)

Hence, by noticing that the functionQ
(
s, si

)
is quadratic in

s (it consists of an Euclidean distance metric with an extra
quadratic term), the maximization ofQ

(
s, si

)
over all possi-

bles can be performed with the Viterbi algorithm.

5.2. M-step

From (19), the maximization step (10) can be performed re-
cursively by using the Viterbi algorithm with branch met-
ric
(
|rk − s

T
k d

i|2 + s
T
k R

i
ds

∗
k

)
, statesσk = (sk, ..., sk−L+2),

anda priori probability (for the symbols)p(s). Thisa priori
corresponds to the knowledge available about the sequences.
There can be either no knowledge (equiprobable sequences),
or knowledge about the training sequences (midamble) or par-
tial knowledge about the symbols provided by a decoder in
turbo-equalization.

5.3. Summary of the algorithm: an efficient implementa-
tion of the algorithm

In this paper, we have proposed to use the EM algorithm in
order to solve the exact MAP problem given in (8) and have
shown that this algorithm admits a linear-time complexity per
iteration implementation:

• Initialization with s
0

• For each iteration index i

1. ComputeRi
d andd

i defined in (17) and (18), re-
spectively, withsi used instead ofs.

2. Perform a Viterbi equalizer with branch metric

|rk − s
T
k d

i|2 + s
T
k R

i
ds

∗
k

and a priori probability (for the symbols)p(s).
The metric minimizing sequence at the output of
the Viterbi equalizer issi+1.



Notice that the complexity of the algorithm can be reduced,
whenK is sufficiently high, by approximatingS†

S in (17) by
(K + L − 1)IL.

6. SIMULATION RESULTS

We consider the transmission of BPSK symbols over a fre-
quency selective channel. The symbols are assumed to be
equiprobable. The channel length is set toL = 5. The dif-
ferent channel taps are modeled as independent zero mean
complex Gaussian random variables with variance1/L. The
channel is quasi stationary, i.e. it is time invariant during
the transmission of a burst ofK = 512 information bits and
changes independently from burst to burst. The channel esti-
mateĥ is obtained by a least mean square error estimator us-
ing a training sequence of lengthK0 [4]. Figures 1 and 2 show
the Bit Error Rate (BER) obtained using the EM algorithm
from one to four iterations, with respect to the signal to noise
ratio (SNR), when the training sequence length is equal re-
spectively toK0 = 14 andK0 = 20. Here,SNR = Eb/N0

whereEb is the energy per transmitted bit andN0 = σ2. Sim-
ulations show that in both cases, the performance achieved
at the first iteration is roughly equal to the performance ob-
tained when the MAP equalizer assumes thath = ĥ (curve
labelled: ’simple use of channel estimate’). We also notice
that the performance of the EM algorithm at the fourth itera-
tion approaches the performance obtained when the equalizer
has perfect channel knowledge (dotted curve). Notice that in
the case of quasi stationary channels, the criterion derived in
[1] cannot be implemented in a practical way since the pdf
involved in the derivation of the MAP criterion cannot be fac-
tored. The approximate rule given in ([1, eq(7)]) leads to the
same performance as the one obtained at the first iteration of
our iterative receiver.
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Fig. 1. BER performance for one to four iterations of the EM
algorithm whenK0 = 14

7. CONCLUSION

In this paper, we considered the problem of MAP equaliza-
tion when the channel is not perfectly known at the receiver.
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Fig. 2. BER performance for one to four iterations of the EM
algorithm whenK0 = 20

The MAP criterion was first derived in this case in [1] but
no exact practical implementation was proposed. In this pa-
per, we proposed a linear-time complexity per iteration imple-
mentation using the EM-algorithm when the channel is quasi
stationary. Each M step consisted in a Viterbi algorithm. Sim-
ulation results show that after few iterations, our receiver per-
formance attains the performance achieved when the channel
is perfectly known. The case of transmissions over time vary-
ing channels will be considered in a future work.
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