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Abstract

To combat the effects of intersymbol interference, the optimal equalizer to be used is based

on maximum a posteriori (MAP) detection. In this paper, we consider the case where the

MAP equalizer is fed with a priori information on the transmitted data and propose to study

analytically their impact on the MAP equalizer performance. We assume that the channel is

not perfectly estimated and show that the use of both the a priori information and the channel

estimate is equivalent to a shift in terms of signal-to-noise ratio (SNR) for which we provide an

analytical expression. Simulation results show that the analytical expression approximates well

the equalizer behavior.
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1 Introduction

To combat the effects of intersymbol interference, an equalizer has to be used. The optimal equalizer,

in the sense of minimum sequence error rate (SER) or bit error rate (BER) is based on maximum a

posteriori (MAP) detection. We distinguish two criteria, the MAP sequence detection and the MAP

symbol detection. When no a priori information on the transmitted data is available, MAP detection

turns into maximum likelihood (ML) detection. Efficient algorithms exist for MAP sequence detec-

tion, for example the SER optimizing Viterbi algorithm [1], and MAP symbol detection, for example

the BER optimizing BCJR algorithm [2]. These algorithms are interesting since their complexity

grows linearly rather than exponentially with the sequence size.

The performance of the Viterbi equalizer in the presence of additive white Gaussian noise (AWGN)

has been studied by Forney [1]. This study assumed that the channel is perfectly known at the

receiver and no a priori information is provided to the equalizer. However, the receiver does not

know perfectly the channel in practice and has to estimate it. In [3], Gorokhov studied the impact of

channel estimation errors on the performance of the Viterbi equalizer and showed that it is equivalent

to a loss in signal-to-noise ratio (SNR) and evaluated this loss. In [4], we have extended the study

to a List-type equalizer prefiltered by the whitened matched filter, in the case of multiple-input

multiple-output (MIMO) systems.

In this paper, we consider the case where the MAP equalizer has a priori information on the data

and uses an imperfect channel estimate. The a priori information are provided by another module

in the receiver. Our study can be applied, for instance, to a MAP equalizer within a system using

a bit interleaved coded modulation at the transmitter, as shown in Figure 1, and a turbo-equalizer

at the receiver, as shown in Figure 2. In a turbo-equalizer, during the iterations, the equalizer

and the decoder exchange extrinsic information and use them as a priori in order to improve their

performance [5]. We propose to study analytically the impact of both the a priori information and
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the channel estimation errors on the MAP equalizer performance. We show that it is equivalent to a

shift in SNR and we give a closed form of this shift. Here, the channel is estimated using a training

sequence [6]. The motivation for considering a training sequence based channel estimator is that the

statistics of the channel estimation error has a closed form and depends on the training sequence

properties and the transmission noise variance only. However, this analysis also holds for any variance

of the channel estimation error. It can therefore be extended to the case of blind iterative algorithms

such as the K-means algorithm [7] and the EM algorithm [8] [9].
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Figure 1: Transmitter structure: bit interleaved coded modulation
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Figure 2: Receiver structure: turbo-equalizer

This work is a first step in the study of the convergence analysis of turbo-equalizers using MAP

equalization. Most analyses are based on extrinsic information transfer (EXIT) charts [10][11]. These

analyses use generally simulations since it is difficult to study analytically the performance of a MAP

equalizer having a large number of states. Actually, analytical studies based on the EXIT function

have been performed when the trellis has only two states [12]. The contribution of our paper is to give

an analytical study of the MAP equalizer performance when the number of states is greater than two.
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The paper is organized as follows. In section 2, we describe the system model. In section 3,

we study the impact of the a priori information and the channel estimation errors on the equalizer

performance. In section 4, we give simulation results.

Throughout this paper scalars and matrices are lower and upper case respectively and vectors

are underlined lower case. (.)T denotes the transposition and Im is the m × m identity matrix.

2 System model

We consider a data transmission system over a frequency selective channel. The input information

bit sequence is mapped to the symbol alphabet A. For simplicity, we will consider only the BPSK

modulation (A = {+1,−1}). We assume that transmissions are organized into bursts of T symbols.

The channel is supposed to be invariant during one burst. The received baseband signal sampled at

the symbol rate at time k is

xk =
L−1
∑

l=0

hlsk−l + nk (1)

where L is the channel memory and sk, for 1 − L ≤ k ≤ T − 1, are the transmitted symbols. In

this expression, nk are modeled as independent random variables of a real white Gaussian noise with

normal probability density function (pdf) N (0, σ2) where N (α, σ2) denotes a Gaussian distribution

with mean α and variance σ2. The term hl is the lth tap gain of the channel, which is assumed to be

real valued. Let s = (sT−1, ..., s1−L)T be the (L+T−1)-long vector of symbols and n = (nT−1, ..., n0)
T

be the T -long noise vector. The output of the channel is the T -long vector x = (xT−1, ..., x0)
T defined

as

x = τ(h)s + n (2)

where τ(h) is a T × (T + L− 1) Toeplitz matrix with its first row being (h0, h1, ..., hL−1, 0, ..., 0) and

its first column (h0, 0, ..., 0)T .
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When the channel is known and no a priori information is provided to the equalizer, the data

estimate according to the MAP sequence criterion (or to the ML criterion since there is no a priori)

is given by

ŝ = arg min
u

(

‖x − τ(h)u‖ : u ∈ AT+L−1
)

. (3)

Now, we consider a particular error event characterized by its length m [1]. Thus, we suppose that

there exists an interval of size m such that all the symbols of ŝ are different from the corresponding

symbols of s while the preceding symbol and the following one are the same for s and ŝ. Define sm and

ŝm to be the vectors of symbols corresponding to this interval and the vector of errors em = ŝm − sm.

A subevent Em of the error event is that “ŝm is better than sm” in the sense of the ML metric

Em : ‖xm − τm(h)ŝm‖ ≤ ‖xm − τm(h)sm‖ (4)

where xm is the subvector of x and τm(h) is the block of τ(h) corresponding to the error interval.

The probability P (Em) of Em is given by [1]:

P (Em) = Q

(‖εm‖
2σ

)

(5)

where εm = τm(h)em and Q(α) = 1√
2π

∫∞
α

exp(−y2

2
)dy. Let Σm be the set of all possible error events

of length m. Then, the probability, P (Σm), that any error event is of length m is bounded by the

sum of the probabilities of the subevents Em

P (Σm) ≤
∑

Em

P (Em). (6)

Let dmin be the channel minimum distance [1]. Because of the exponential decrease of the Gaussian

distribution function, the overall probability of error P (Σ) ≤∑m P (Σm) will be dominated at high

SNR by the term involving the minimum value dmin of ‖εm‖ . Thus,

P (Σ) ' Q

(

dmin

2σ

)

. (7)

Our goal is to find an approximation of P (Σ) when the equalizer is fed with a priori information

and an imperfect channel estimation.
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3 Performance analysis

We want to evaluate the impact of both the a priori information and the channel estimation errors

on the MAP equalizer performance. The study will be done here for the equalizer using the MAP

sequence criterion. It holds for the MAP symbol equalizer using the BCJR algorithm [2] since the

two equalizers have almost the same performance as shown in [13, page 814].

The channel is estimated by using a training sequence of length T0 + L − 1. Since the channel

noise is additive, white and Gaussian, the ML estimator based on the observations generated by the

training sequence consists in minimizing the mean square error between the signal received during

the emission of the TS and its noiseless counterpart (the filtered version of the training sequence),

which is the least squares estimator [6]. Let s̃ = (sT0−1, ..., s1−L)T be the vector of training symbols

and HL (s̃) be the T0 × L Hankel matrix having the first column (sT0−1, · · · , s0)
T and the last row

(s0, · · · , s1−L) . The output of the channel corresponding to the training sequence is the T0-long vector

x̃ given by

x̃ = HL (s̃)h + ñ (8)

where h= (h0, · · · , hL−1)
T and ñ is the corresponding noise vector. The least squares channel estimate

ĥ =
(

ĥ0, · · · , ĥL−1

)T

is given by

ĥ = arg min
f

∥

∥x̃ − HL (s̃) f
∥

∥

2

=
(

HL (s̃)T
HL (s̃)

)−1

HL (s̃)T
x̃. (9)

Hence, we get,

ĥ − h ∼ N
(

0, σ2
(

HL (s̃)T
HL (s̃)

)−1
)

. (10)

We assume here that the training sequence has ideal autocorrelation and crosscorrelation properties,

i.e. HL (s̃)T
HL (s̃) = T0IL. The estimates ĥl of the tap gains hl, for 0 ≤ l ≤ L− 1, are thus modeled

as ĥl = hl + σekl, where kl are independent Gaussian random variables with zero mean and variance

1 and σe = σ√
T0

.
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Moreover, we suppose that the a priori observations at the input of the equalizer are modeled as

the outputs of an additive white Gaussian noise (AWGN) channel with zero mean and variance σ2
a.

These a priori observations are

zk = sk + wk (11)

where wk ∼ N (0, σ2
a), for 1 − L ≤ k ≤ T − 1. Thus, the a priori Log Likelihood Ratios, fed back

for instance from the decoder in a turbo-equalizer, can be modeled as independent and identically

distributed random variables with the conditional pdf N ( 2sk

σ2
a

, 4
σ2

a

). This assumption is classically

taken in the analyses of iterative receivers [10][11].

Proposition 1 Suppose we are given a frequency selective channel with L taps and an AWGN with

variance σ2. Assume that a priori observations are available and that they can be modeled as the

outputs of an AWGN channel with noise variance σ2
a. The estimates ĥl of the channel tap gains

hl, for 0 ≤ l ≤ L − 1, are modeled as ĥl = hl + σekl, where kl are independent Gaussian random

variables with zero mean and variance 1. Then, at high SNR, the MAP equalizer using the a priori

information and the channel estimate can be approximated by the MAP equalizer having no a priori

information and a perfect channel knowledge but with an equivalent signal-to-noise ratio

SÑR = SNR
d′2

d2
min

(1 +
4m′µ2

d′2 )

(

1 +
Lρ2

1 + 4m′µ2

d′2

)−1

(12)

where SNR is the signal-to-noise ratio of the transmission, µ = σ
σa

and ρ = σe

σ
. The quantities m′

and d′ are defined as (m′, d′) = arg max P (Em)
m,‖ε

m
‖

with

P (Em) = Q







√

‖εm‖2 + 4mµ2

2σ



1 +
1

1 + 4mµ2

‖ε
m
‖2

Lρ2





−1/2





. (13)

The proof of Proposition 1 is given in the Appendix. The proof is divided into three parts. First,

the probability of an error subevent of length m, P (Em), is derived and then upper bounded. Finally,

the overall probability of error, P (Σ), is calculated in order to find an approximation of the equivalent
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SNR.

When the channel is perfectly estimated, ρ is 0, which leads to the following proposition.

Proposition 2 When the channel is perfectly known at the receiver, then at high SNR the MAP

equalizer using the a priori information can be approximated by the MAP equalizer having no a

priori information and a perfect channel knowledge but with an equivalent signal-to-noise ratio

SÑR = SNR
d′2

d2
min

(1 +
4m′µ2

d′2 ) (14)

where m′ and d′ are defined as (m′, d′) = arg max P (Em)
m,‖ε

m
‖

with

P (Em) = Q





√

‖εm‖2 + 4mµ2

2σ



 . (15)

We propose in the sequel to refine the previous results given in propositions 1 and 2. We consider

different cases according to the values of µ and of the channel memory, and determine the error

sequence that maximizes P (Em). We then give a closed form of SÑR.

Corollary 3 When the channel memory is not too large (less than 6) and µ sufficiently smaller than

1, the equivalent signal-to-noise ratio is given by:

SÑR = SNR(1 +
8µ2

d2
min

)



1 +
Lρ2

1 + 8µ2

d2

min





−1

(16)

Proof of Corollary 3: Let us consider first the case of perfect channel knowledge. By definition,

‖εm‖2 ≥ d2
min. Generally, in the MAP equalizer, errors occur in packets. This is still true here since

the a priori information are not very reliable (µ << 1). Thus, we do not consider isolated errors

since they occur rarely and we assume that m ≥ 2. Then, a lower bound for
√

‖εm‖2 + 4mµ2 is

given by

bound(µ2) =
√

d2
min + 8µ2. (17)
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We observed that this bound is reached for channels with memory L less than 6, since for these

channels the error sequence allowing to attain the minimum distance is generally of length m = 2

(see the channels in [14] for instance). Then, an upper bound for P (Em) is Q

(√
d2

min
+8µ2

2σ

)

.

When the channel is not perfectly estimated, the probability of the error event (13), given in

Proposition 1, can be rewritten as

P (Em) = Q





‖εm‖2 + 4mµ2

2σ
√

‖εm‖2
Lρ2 + ‖εm‖2 + 4mµ2



 . (18)

We assume here that L << T0 which is equivalent to Lρ2 << 1. In this case, ‖εm‖2
Lρ2 is negligible

compared to ‖εm‖2. Then, (18) is almost equal to (15) and the error sequence that maximizes (15)

will also maximize (18). In the case of short channels, this sequence is the one allowing to attain

the minimum distance and is of length m = 2. Thus, we can consider that the quantity obtained

by calculating (18) taking m = 2 and ‖εm‖2 = d2
min is an upper bound for (18). Thus, the overall

probability of error can be approximated by:

P (Σ) ' Q







dmin

2σ

√

1 +
8µ2

d2
min



1 +
Lρ2

1 + 8µ2

d2

min





−1/2





. (19)

The expression of the error probability given in (19) can then be viewed as the one given in (7)

with the equivalent signal-to-noise ratio (16).

Corollary 4 When µ is sufficiently larger than 1, the equivalent signal-to-noise ratio is given by

SÑR = SNR
4

d2
min

(1 + µ2)

(

1 +
Lρ2

1 + µ2

)−1

(20)

Proof of Corollary 4: When µ is high, σ >> σa, most of the a priori observations are very

reliable and have more influence on the detection than the channel observations. Since the a priori

information are independent, the errors will not occur in packets. Actually, in this case, isolated

9



errors corresponding to the few non reliable a priori observations will occur and will dominate the

overall probability of error. Thus, the overall probability of error can be approximated by the upper

bound of P (Em) obtained by replacing m by 1 and ‖εm‖2 by 4 in (13),

P (Σ) ' Q

(

√

1 + µ2

σ

(

1 +
1

1 + µ2
Lρ2

)−1/2
)

. (21)

The expression of the error probability given in (21) can then be viewed as the one given in (7) with

the equivalent signal-to-noise ratio (20).

4 Simulation results

In this section, we propose to test for the validity of the analytical results given previously. In

the simulations, the modulation used is the BPSK and the channel is assumed to be constant. We

plot the Bit Error Rate (BER) curves with respect to the SNR, for different values of the ratio

µ = σ
σa

. Each curve is obtained while the ratio µ is kept constant. The solid lines indicate the

equalizer performance obtained by simulations. The dotted lines are obtained by shifting the curve

corresponding to the case with no a priori and with a perfect channel knowledge (µ = 0, ρ = 0) by

the values of the SNR shifts calculated in section 3. We consider two cases according to the length

of the channel. We also consider the case where the channel is overestimated.

4.1 Case of short channels (L ≤ 6)

In our simulations, we consider the following channels:

• Channel3: (0.5; 0.71; 0.5)

• Channel5: (0.29; 0.50; 0.58; 0.50; 0.29).
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Table.1 shows the values of the minimum error distance dmin and the minimum distance input

error sequence for the channels of interest [14].

Channel3 Channel5

dmin 1.5308 1.0532

Error sequence (2,−2) (2,−2)

Table.1

Figures 3 and 4 show the BER curves for different values of the ratio µ = σ
σa

when the channel is

assumed to be perfectly known at the receiver (ρ = 0). For Channel 3, when µ < 0.66, we use the

result of Corollary 3, hence the SNR shift in dB is 10 log10

(

1 + 8µ2

d2

min

)

. When µ ≥ 0.66, we use the

result of Corollary 4 and the SNR shift is 10 log10

(

4
d2

min

(1 + µ2)
)

. For Channel 5, when µ < 1, we

use Corollary 3, otherwise, we use Corollary 4. We notice that the theoretical curves (dotted lines)

approximate well the BER.

−2 0 2 4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/N0

B
E

R

µ=0.33
µ=0.5
µ=0.66
µ=1
µ=1.25
µ=1.67

Figure 3: BER versus SNR: comparison of the equalizer performance (solid curves) and the theoretical

performance (dotted curves) for Channel3, when the channel is perfectly estimated.
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Figure 4: BER versus SNR: comparison of the equalizer performance (solid curves) and the theoretical

performance (dotted curves) for Channel5, when the channel is perfectly estimated.

Figures 5 and 6 show the BER curves for different values of µ and for ρ = σe

σ
= 0.3. This value

of the ratio ρ corresponds to T0 = 11. For µ < 0.83, we use the expression of the SNR shift given in

Corollary 3. For larger µ, we use the expression given in Corollary 4. We notice that the theoretical

curves approximate well the BER.

Figure 7 shows the BER curves for Channel3, for different values of µ and for ρ = 0.4 and

ρ = 0.2. These values of the ratio ρ correspond respectively to T0 = 6 and T0 = 25. We notice that

also for these values of ρ, the approximation of the SNR shift given by the analytical expressions is

still accurate.

4.2 Case of long channels

We consider now a long channel, Channel7, with impulse response (0.18; 0.32; 0.48; 0.53; 0.48; 0.32; 0.18).

The error sequence allowing to reach the minimum distance is (2,−2,−2, 2, 2,−2) and dmin = 0.7283

[14]. However, this sequence does not maximize the probability of an error event P (Em), since its
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Figure 5: BER versus SNR: comparison of the equalizer performance and the theoretical performance

when ρ = σe

σ
= 0.3, for different values of µ, for Channel3.

length m is equal to 6. In this case, an exhaustive search shows that the error sequence maximizing

P (Em) is (+2,-2) corresponding to m′ = 2 and d′ = 0.8. Figure 8 shows the BER curves for different

values of µ when the channel is assumed to be perfectly known at the receiver (ρ = 0). For µ < 1,

we use the result of Proposition 1, hence the SNR shift is 10 log10

(

d′2

d2

min

(1 + 4m′µ2

d′2
)
)

. When µ = 1,

we use the result of Corollary 4 and the SNR shift is 10 log10

(

4
d2

min

(1 + µ2)
)

. We notice that the

theoretical curves approximate well the BER.

Figure 9 shows the BER curves for different values of the ratio µ and for ρ = 0.3. The approxi-

mation holds also in this case.

Remark 5 The bound given in (6) and the analytical expressions of the error probabilities P (Em) we

derive in different cases are close at high SNR and loose at low SNR [1]. However, in this paper our

aim is to estimate the shift in performance due to the use of the a priori information and the channel

estimate and not to estimate the performance. To obtain an expression of this shift, we compare the

analytical expression of P (Em) when the channel is perfectly estimated and no a priori is available
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Figure 6: BER versus SNR: comparison of the equalizer performance and the theoretical performance

when ρ = σe

σ
= 0.3, for different values of µ, for Channel5.

with the expression obtained when the channel is estimated and a priori information are available.

These analytical approximations have the same behaviors, i.e. they are close at high SNR and loose

at low SNR. Therefore, the estimation of the shift remains accurate at low SNR.

4.3 Case of overestimated channel

Until this point, we assumed that the channel length is perfectly known at the channel estimator.

Here, we consider the more realistic case where the channel is overestimated. We denote L1 the

estimated channel length. The estimates ĥl of the tap gains hl are such as ĥl = hl + σekl, for

0 ≤ l ≤ L−1 and ĥl = σekl, for L−1 ≤ l ≤ L1, where kl are independent Gaussian random variables

with zero mean and variance 1 and σe = σ√
T0

. One can easily check that all the results given in this

paper remain valid while replacing L by L1. Figure 10 shows the BER curves for different values of µ

for Channel3, for ρ = 0.3, when the channel is overestimated with L1 = 6. The theoretical curves are

obtained here by using (16) and (20) and replacing L = 3 by L1 = 6. We notice that the theoretical
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Figure 7: BER versus SNR: comparison of the equalizer performance and the theoretical performance

when ρ = σe

σ
∈ {0.4, 0.2}, for different values of µ, for Channel3.

curves approximate well the curves obtained by simulations. It is worth mentioning that there exist

methods to eliminate the pure noisy estimated channel taps as proposed in [15]. However, we do not

consider such methods since it is not the purpose of this paper.

5 Conclusion

In this paper, we consider a MAP equalizer fed with a priori information, as in a turbo equalizer,

and with a channel estimate obtained by using a training sequence. We propose to study analytically

the impact of both the a priori information and the channel estimation errors on the MAP equalizer

performance. We give an approximation of the error probability which allows us to find an expression

of the shift in terms of the SNR due to the use of the a priori information and the channel estimate.

Simulation results show that the analytical expressions give a good approximation of the equalizer

performance. The aim of this work is to obtain in the future the analytical convergence analysis of

turbo equalizers using MAP equalization.
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Figure 8: BER versus SNR: comparison of the equalizer performance (solid curves) and the theoretical

performance (dotted curves) for Channel7, when the channel is perfectly estimated.

6 Appendix: Proof for Proposition 1

The proof is divided into three parts. First, we derive the probability of an error subevent of length

m, P (Em), and then upper bound it. Finally, we calculate the overall probability of error, P (Σ), in

order to find an approximation of the equivalent SNR.

We recall that the output of the channel during a burst is the T -long vector x = (xT−1, ..., x0)
T

defined as

x = τ(h)s + n (22)

where s = (sT−1, ..., s1−L)T is the (L+T −1)-long vector of transmitted symbols, n = (nT−1, ..., n0)
T

is the T -long noise vector and τ(h) is the T × (T + L − 1) Toeplitz channel matrix.

We assume that the equalizer has at its input a set of a priori observations

zk = sk + wk (23)

where wk ∼ N (0, σ2
a), for 1 − L ≤ k ≤ T − 1.
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Figure 9: BER versus SNR: comparison of the equalizer performance and the theoretical performance

when ρ = σe

σ
= 0.3, for different values of µ, for Channel7.

We denote h= (h0, · · · , hL−1)
T the vector of true channel parameters, ĥ=

(

ĥ0, · · · , ĥL−1

)T

its

estimate and ∆h=ĥ−h. We suppose here that a perfect training sequence of length T0 + L − 1 is

used and then for 0 ≤ l ≤ L − 1, ĥl = hl + σekl, where kl are modeled as independent Gaussian

random variables with zero mean and variance 1 and σe = σ√
T0

.

6.1 Proof-part1: P (Em)

The MAP equalizer is fed here with an imperfect channel estimate ĥ. In standard works on equal-

ization, the MAP equalizer assumes perfect knowledge of the channel and replaces h by ĥ. In [16],

the MAP equalization algorithm has been rederived for imperfect channel knowledge, taking into

account that ĥ is different from h. In this paper, we use the approximation replacing h by ĥ. Hence,

taking into account the a priori information and using ĥ instead of h, the a posteriori probability

17



−2 0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

SNR

B
E

R

µ=0
µ=0.25
µ=0.5
µ=1

Figure 10: BER versus SNR: comparison of the equalizer performance and the theoretical perfor-

mance for Channel3 when ρ = 0.3 and the estimated channel length is L1 = 6, for different values of

µ.

of the sequence s is given by

p(s|x, z, h = ĥ) ∝ exp






−

∥

∥

∥
x − τ(ĥ)s

∥

∥

∥

2

2σ2






exp

(

−‖z − s‖2

2σ2
a

)

(24)

where z= (zT−1, ..., z1−L)T and τ(ĥ) is a T × (T + L − 1) Toeplitz matrix associated to ĥ. The data

estimate according to the MAP sequence criterion is then given by

ŝ = arg min
u

(

∥

∥

∥
x − τ(ĥ)u

∥

∥

∥

2

+
σ2

σ2
a

‖z − u‖2 : u ∈ AT+L−1

)

(25)

Now, we consider a particular error event characterized by its length m. We suppose that there

exists an interval of size m such that all the symbols of ŝ are different from the corresponding

symbols of s while the preceding symbol and the following one are the same for s and ŝ. Let

sm = (sm+t0−1, · · · , s1+t0−L) be the vector of transmitted symbols and ŝm = (ŝm+t0−1, · · · , ŝ1+t0−L)

be the vector of estimated symbols corresponding to the error interval such as for t0 ≤ k ≤ m+t0−1,

ŝk 6= sk and for t0 − L + 1 ≤ k ≤ t0 − 1, ŝk = sk. Let em = ŝm − sm be the vector of errors and
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εm = τm(h)em. A subevent Em of the error event of length m is that ŝm is better than sm in the sense

of the MAP sequence metric

Em :
∥

∥

∥
xm − τm(ĥ)ŝm

∥

∥

∥

2

+
σ2

σ2
a

‖zm − ŝm‖2 ≤
∥

∥

∥
xm − τm(ĥ)sm

∥

∥

∥

2

+
σ2

σ2
a

‖zm − sm‖2 (26)

where zm is the subvector of z and τm(ĥ) is the m× (m + L − 1) block of τ(ĥ) corresponding to the

error interval.

Let µ = σ
σa

, y= (xT−1, xT−2, · · · , x0, µzT−1, · · · , µz1−L)T , M =
(

(τ(h))T
, µIT+L−1

)T

a (2T + L−

1) × (T + L − 1) matrix and b= (nT−1, nT−2, · · · , n0, µwT−1, · · · , µw1−L)T . Using (22) and (23), we

can write

y = Ms + b. (27)

Assuming perfect channel knowledge, i.e. using ĥ instead of h, the data estimate according to the

MAP sequence criterion is given by,

ŝ = arg min
u

(

∥

∥

∥
y − M̂u

∥

∥

∥

2

: u ∈ AT+L−1

)

(28)

where M̂ =

(

(

τ(ĥ)
)T

, µIT+L−1

)T

. Hence, (26) is equivalent to

Em :
∥

∥

∥
y

m
− M̂mŝm

∥

∥

∥

2

≤
∥

∥

∥
y

m
− M̂msm

∥

∥

∥

2

(29)

where y
m

is the (2m + L − 1) × 1 subvector of y corresponding to the error interval and

M̂m =

(

(

τm(ĥ)
)T

, µIm+L−1

)T

(30)

is a (2m + L − 1) × (m + L − 1) matrix.

The event (29) is equivalent to

∥

∥

∥
M̂mem

∥

∥

∥

2

≤ 2
(

eT
mM̂T

m

(

y
m
− M̂msm

))

. (31)

Let Mm =
(

(τm(h))T
, µIm+L−1

)T

, Mm (∆h) = M̂m − Mm and bm = y
m
− Mmsm, then we obtain

∥

∥

∥
M̂mem

∥

∥

∥

2

≤ 2
(

eT
mM̂T

mbm − eT
mM̂T

mMm (∆h) sm

)

. (32)
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This inequality contains products of random variables (for instance
∥

∥

∥
M̂mem

∥

∥

∥

2

). Therefore, the com-

putation of the probability of the error event is difficult. It can be simplified by noticing that M̂mem

converges in quadratic mean to Mmem as T0 tends to infinity. The following step is to show this

convergence. First, we have,

τm(∆h)em ∼ N (0, ‖em‖2 σ2

T0
Im)

where τm(∆h) = τm(ĥ) − τm(h). Since the modulation used is a BPSK, the m first components of

em are equal to ±2 and the others are equal to zero, we obtain, ‖em‖2 = 4m. Thus, for finite m,

the random process XT0
= τm(∆h)em converges in quadratic mean to the vector zero as T0 tends

to infinity. From the definition of M̂m (30), and since µ is independent of T0, it follows that M̂mem

converges in quadratic mean to Mmem. Moreover, for all continuous function f , f
(

M̂mem

)

converges

in quadratic mean to 1f(Mme
m

)>0, where 1() is the indicator function. Finally, the event (32) is well

approximated by

‖Mmem‖2 ≤ 2
(

eT
mMT

mbm − eT
mMT

mMm (∆h) sm

)

. (33)

Notice that Mm (∆h) sm can not be neglected. Indeed,

τm(∆h)sm ∼ N (0, ‖sm‖2 σ2

T0

Im),

where ‖sm‖2 = (m + L − 1)2 for BPSK. When T0 and L tend to infinity with the constraint that the

ratio L2

T0

is finite and non zero, the random process YT0
= τm(∆h)sm converges in quadratic mean to

a random variable with a non zero variance.

From Mm =
(

(τm(h))T
, µIm+L−1

)T

, we obtain,

‖Mmem‖2 = ‖τm(h)em‖2 + 4mµ2

= ‖εm‖2 + 4mµ2, (34)

since the m first components of em are equal to ±2 and the others are equal to zero.
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Hence, (33) can be rewritten as

‖εm‖2 + 4mµ2 ≤ 2
(

eT
mMT

mbm − eT
mMT

mMm (∆h) sm

)

Since the lower block of Mm (∆h) is equal to zero, we obtain

eT
mMT

mMm (∆h) sm = εT
mτm(∆h)sm. (35)

Thus,

‖εm‖2 + 4mµ2 ≤ 2
(

eT
mMT

mbm − εT
mτm(∆h)sm

)

(36)

where Mm, em, εm and sm are deterministic and Mm (∆h) and bm are random. Let’s define HL(sm)

the Hankel matrix such as HL(sm)∆h= τm(∆h)sm. We obtain,

‖εm‖2 + 4mµ2 ≤ χs (37)

where χs = 2
(

eT
mMT

mbm − εT
mτm(∆h)sm

)

∼ N (0, ∆s) with

∆s = E
(

χsχ
T
s

)

= 4eT
mMT

mE
(

bmbT
m

)

Mmem + 4εT
mHL(sm)E

(

∆h∆hT
)

HL(sm)T εm

− 4εT
mHL(sm)E

(

∆hbT
m

)

Mmem − 4eT
mMT

mE
(

bm∆hT
)

HL(sm)T εm. (38)

Assuming that ∆h is independent from bm and since ∆h∼ N (0, σ2
eIL) and bm ∼ N (0, σ2I2m+L−1),

we obtain,

∆s = 4σ2eT
mMT

mMmem + 4σ2
eε

T
mHL(sm)HL(sm)T εm.

From the law of large numbers, HL(sm)HL(sm)T tends to LIm as L tends to infinity. Hence, by using

(34), ∆s = 4σ2
(

‖εm‖2 + 4mµ2
)

+ 4σ2
eL ‖εm‖2, and we obtain that the probability of the error event
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P (Em) is given by

P (Em) =
1√

2π∆s

∫ +∞

‖ε
m
‖2+4mµ2

exp

(

− x2

2∆s

)

dx

= Q

(

‖εm‖2 + 4mµ2

√
∆s

)

= Q







√

‖εm‖2 + 4mµ2

2σ



1 +
1

1 + 4mµ2

‖ε
m
‖2

Lρ2





−1/2





(39)

where ρ = σe

σ
.

6.2 Proof-part2: upper bound for P (Em):

In order to find an approximation of P (Σ) , the overall probability of error, we now want to find an

upper bound for P (Em). Actually, at high SNR, this term will dominate the sum of the probabilities

of the error events (because of the exponential decrease of the Gaussian distribution function). We

consider in the following the error sequence which maximizes P (Em). Let m′ and d′ be respectively

its length and its norm (after convolution with the channel). Then,

P (Em) ≤ Q





d′

2σ

√

1 +
4m′µ2

d′2

(

1 +
Lρ2

1 + 4m′µ2

d′2

)−1/2


 . (40)

6.3 Proof-part3: P (Σ)

As in the case without a priori and perfect channel knowledge, at high SNR, the overall probability

of error P (Σ) can be approximated by

P (Σ) ' Q





d′

2σ

√

1 +
4m′µ2

d′2

(

1 +
Lρ2

1 + 4m′µ2

d′2

)−1/2


 . (41)

Thus, the expression of the error probability given in (41) can be seen as the one given in (7) with

an equivalent signal-to-noise ratio
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SÑR = SNR
d′2

d2
min

(1 +
4m′µ2

d′2 )

(

1 +
Lρ2

1 + 4m′µ2

d′2

)−1

. (42)
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