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Energy-efficient mid-term strategies for collision avoidance in crowd simulation

Julien Bruneau∗, Julien Pettré†

Figure 1: In some situations, humans can see some kind of tunnel inside a flow that can facilitate the crossing of the flow. The left figure
shows a first person view point where the tunnel is clearly visible. The right figure shows a top view of the situation as well as the space of
colliding and collision free velocities. Regular local avoidance models try to find a collision free speed toward the goal. This means the red
agent will choose a velocity from the green part of the space of velocities, making him slow down and miss the tunnel.

Abstract

When navigating in crowds, humans are able to move efficiently be-
tween people. They look ahead to know which path would reduce
the complexity of their interactions with others. Current naviga-
tion systems for virtual agents consider the long-term planning to
find a path in the static environment and the short term reaction to
avoid collision with close obstacles. Recently some mid-term con-
siderations have been added to avoid high density areas. However,
there is no mid-term planning among static and dynamic obstacles
that would enable the agent to look ahead and avoid difficult paths
or find easy ones as human do. In this paper we present a system
for such mid-term planning. This system is added to the navigation
process between the path finding and the local avoidance to improve
the navigation of virtual agents. We show the capacities of such
system on several case studies. Finally we use an energy criterion
to compare trajectories computed with and without the mid-term
planning.
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1 Introduction

Crowd simulation is a very active field with many applications,
like the entertainment industry in the aim of populating scenes for
games and movies. For these applications we need to create virtual
humans (agents) that behave in a believable manner. Spectators
easily detect any weird behaviors, such as unnatural navigation tra-
jectories. The main objective of this paper is to improve agents nav-
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igation skills. In particular, we reinforce the capacity of the agents
to setup relevant mid-term strategies for navigation among moving
obstacles (typically, a crowd of moving agents).

A typical problem in agent navigation which remains quite ne-
glected is how agents combine successive interactions in time. To-
day, most crowd simulators handle navigation in two steps. First,
the long term strategy: the agent searches for a path between its
position and its goal in the environment. This step is done by path
finding modules. The second step is a short term strategy: while
following the path the agent adapts its velocity to avoid any colli-
sion with nearby obstacles. This step is done by local avoidance
modules. Most advanced solutions are able to combine simulta-
neous interactions: agents will find velocities that avoid collisions
with all its neighbors obstacles at the same time. But such veloc-
ities do not always exist, especially when the agent is surrounded
by many obstacles. In such a situation, local avoidance models
have to reduce their constraints and allow colliding speed. More-
over the consequences of one local avoidance strategy (i.e., nature
of the adaptations made) on the following interactions is generally
not considered. Our objective is to prevent agents from performing
an unnatural sequence of successive avoidance motions which can
lead them to get stuck, whereas there are some more relevant and
obvious solutions.

Real humans are very efficient to snake in and out between indi-
viduals or groups when crossing a flow or other dense crowds. An
example is shown in Figure 1, where a red agent needs to cross
a dense flow. There is an empty space in this flow that we call a
tunnel. If we look at the first person view point on the left of the
figure, the tunnel is clearly visible. A real human would probably
detect it and use it to cross the flow with a minimum effort. Path
finding techniques are unable to detect this tunnel as they plan in-
side the static environment and do not have information about the
dynamic obstacles such as other agents. Local avoidance systems
are also unable to detect this tunnel because they consider short
term strategies only, they try to avoid any collision with only one
velocity adaptation. The collision free velocity space and the col-
liding velocity space, shown on the figure, have been computed for
a near future as done in local avoidance model. A closer look at
the collision free velocities (in green) shows that the agent can ei-
ther turn right and follow a parallel path to the flow for ever or turn
left/reduce speed and pass behind the flow. But there is no indica-
tion of a tunnel in the flow on the different velocity spaces used by
local avoidance to take a decision. In this situation local avoidance
models make the red agent go straight forward and slow down a
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lot when approaching the flow while the blue agents (in the flow)
will move to let the red agent pass (see Figure 8). More recently,
some heuristics have been proposed to choose a strategy depending
on density, but these heuristics would also fail in our example as
the tunnel is not straight and it requires considering several veloc-
ity adaptations to cross the flow. In this paper, we explore a third
step for navigation in crowd simulators, which looks further into
the future than the local avoidance step does, but not as far as the
path finder does. Such a step is thus between path finding and local
avoidance. It provides a mid-term strategy, allowing to handle the
kind of situations shown in Figure 1.

There exist an infinite number of solutions to avoid a collision with
an obstacle. An avoidance strategy can be defined as the nature of
adaptations made to the trajectory to perform avoidance. A colli-
sion can for example be avoided by adapting speed or orientation,
or a combination of both. The strategy choice has a huge impact
on the resulting trajectories since, besides preventing the current
collision, it also influences the relative motion with all the other ob-
stacles, and thus changes the way the next potential collisions will
be avoided. In this paper, we propose a solution to handle mid-term
strategies by building several strategies to navigate through a crowd.
These strategies consist of a list of adaptation sequences over time.
The less costly strategy is then chosen. The cost of a strategy is a
composition of the energy needed to follow the strategy, as well as
an extra cost for every collision cause by the strategy. This allows
agents to plan their way through a crowd, using empty spaces to
navigate while optimizing their effort. We show the improvement
on energy consumption compared to local avoidance systems.

Our contribution is a mid-term motion planning technique for com-
plex scenarios with multiple moving obstacles. Our system, called
Effective Avoidance Combination Strategy (EACS), is able to com-
pute an energy-efficient avoidance path made of successive adap-
tations. To this end, it explores several possible ways to combine
interactions, evaluates the energetic cost of each possible solution,
and selects the most efficient one. The several options for avoidance
paths result from the application of various avoidance strategies.

The remainder of this paper is organized as follows. In Section 2,
we discuss the previous models used in agents navigation. In Sec-
tion 3.1, we present our system and explain our approach. Section
4 shows the capabilities of our system on some specific situations,
and an evaluation in terms of energy gain with respect to previous
models. Finally, in Section 5, we draw some conclusions.

2 Related Work

In a crowd simulation, the navigation of agents generally results
from two interlinked components. A global path planner is in
charge of providing a sequence of way-points to guide agents to
long-term goals. Some planners were specifically designed to han-
dle crowds ([Pettré et al. 2006], [Bayazit et al. 2002], [Karamouzas
et al. 2009], [Shao and Terzopoulos 2005]). While agents follow
the planned motion, the local avoidance system avoids collision
with moving obstacles that were not considered by the global plan-
ner ([Reynolds 1987], [van den Berg et al. 2008], [Helbing et al.
2000]). Between these two levels of motion synthesis, a relatively
important gap exists.

Global path planners were extended to consider the presence of dy-
namic obstacles: a graph can vary through time to be adapted to
dynamic obstacles [Sud et al. 2007] or information such as local
density can be added to the graph [Pettré et al. 2006], including a
prediction of its evolution over time [Kapadia et al. 2013]. How-
ever, these solutions are not able to estimate an optimal strategy
over a sequence of interactions. Sud and colleagues [Sud et al.
2007] consider agents position only and do not anticipate future

agents’ trajectory, thus preventing from exploring relevant strate-
gies for successive interactions in time. Kapadia and colleagues
[Kapadia et al. 2013] consider the case of multiple interactions by
merging them to penalize going through denser areas and add time
consideration to compute collision free velocities with neighbors in
a similar way as velocity based local avoidance model. But they
are not able to explore avoidance strategies for successive interac-
tions. Our system could actually be used to extend this planning
framework with a finer grain interaction analysis.

Local avoidance systems were also extended to consider some ele-
ments of mid-term strategies. Guy and colleagues [Guy et al. 2010]
estimate the cost of applying a given strategy to perform collision
avoidance. However, its consequence on the following interactions
is not explored. Golas in [Golas et al. 2014] looks for the den-
sity of the crowd further ahead and penalizes avoiding velocities
that go toward high density area. Using the same principle, [Best
et al. 2014] adapt the walking speed to the crowd density ahead of
the agent. These methods allow nice improvements over agent’s
navigation but still limit themselves to a single velocity adaptation
which is not sufficient to solve situations such as the one presented
in the introduction and shown in Figure 1. The method presented in
[Kapadia et al. 2009] use egocentric affordance fields to find a path
through dynamics and static obstacles and should be able to solve
the situation of Figure 1. While the egocentric field should contain
enough information on the immediate surroundings of the agent to
find such narrow passageways, information are lost over distance
and narrow passageways won’t be detected if too far away even if
there is no obstruction between the agent and the passageways.

Our approach differs from the previous work in various aspects.
The proposed method is based on an accurate evaluation of the cost
of several feasible paths, it is not guided by heuristics which only
consider the effect of density on navigation efficiency. Our method
finds good strategies to combine interactions in time by selecting
strategies that may improve several successive avoidance interac-
tions. It differs from techniques which apply a greedy approach by
selecting the best strategy for the next interaction only, such as [Best
et al. 2014]. The most similar approach to ours is probably the one
by Guy and colleagues [Guy et al. 2010], with the major difference
that we explore the n next interactions occurring in time, whereas
this previous work only considers the on-going interactions with
neighbor agents.

3 Effective Avoidance Combination Strategy

3.1 Overview

Figure 2: Navigation system architecture with three different levels
of decision.

The objective of the EACS system (EACS stands for Effective
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Avoidance Combination Strategy) is to enable agents to perform
efficient navigation through other moving agents.

The typical structure of a crowd simulation framework consists of
two levels. As presented in Figure 2, there is the path planning
for global strategy and the local avoidance for local strategy. The
path planning find a path in the environment which consists of a se-
quence of positions without any fixed obstacles between two con-
secutive positions. The local avoidance uses the first position of the
path, which is reachable in a straight line from the agent’s position,
and computes a speed to reach it without any collision with nearby
fixed or moving obstacles. The EACS system stand between these
two modules, it takes the reachable first position of the path from
the path planning as a mid-term goal and output a preferred velocity
to the local avoidance system. The local avoidance system will then
follow this preferred velocity while avoiding very close obstacles.
Efficient navigation is obtained by setting the relevant avoidance
strategy for the few next future interactions with anticipation.

To this end, EACS detects all next interactions on the path to the
mid-term goal and computes a sequence of velocity adaptations to
successively perform collision avoidance. The variety of possible
adaptations to achieve collision-free motion results into different
mid-term navigation paths. EACS evaluates and compares their ef-
ficiency from the energetic point of view and selects the most effi-
cient one to steer agents. In the remainder of this section we start
by defining the main concepts used in our system, followed by a
description of our technique.

3.2 Definitions

Collision Course: two agents are on a collision course when their
position and velocity vectors are so that their future distance of clos-
est approach is below contact distance if velocity vector is kept con-
stant.

Avoidance Strategy is the nature of the adaptations made to velocity
vectors to avoid future collisions. For example, an agent can avoid a
collision with another agent by adapting speed (i.e., the norm of the
velocity vector) or by turning (i.e., by rotating the velocity vector).

Interaction Waypoints (IW): for two agents on a collision course
and performing collision avoidance, the IW are the space-time way-
points by which agents go when avoiding.

Cardinal Interaction Waypoints (CIW) are the 4 IW which result
from 4 specific avoidance strategies with the minimum required
amount of adaptations: accelerating only, decelerating only, turning
left only and turning right only. We note these cardinal interaction
points by a, d, l and r, respectively.

Interaction Paths (IP) are a sequence of IW ordered by increas-
ing time. An agent that follows an IP will go through all its IW.
Between two consecutive IW the agent follows the straight line be-
tween the two positions at a constant speed.

Interaction Segments (IS) are a part of an IP composed of two con-
secutive IW.

Goals (G) are special IW that do not have a time constraint. A goal
is a position in space that agents try to reach, regardless of the when
they reach it. Goals appear only at the end of an IP or IS. When an
agent is following an IS between a regular IW to a goal, it simply
walks at its preferred speed toward the goal.

3.3 Cardinal Interaction Points (CIW)

In this section, we describe how we compute the 4 CIW. We arbi-
trarily chose this four points, they cover the four types of adaptation

Figure 3: Collision velocity space for one interaction, in red.
va1|2 , vr1|2 , vd1|2 and vl1|2 represent the collision free velocities
that are used to compute the ICW.

(accelerating, decelerating, turning right and turning left) as well as
the two orders of passage (passing before the other agent or after).
Using these 4 CIW yields satisfying results but other IW could be
consider when computing avoidance strategies.

The 4 CIW computation is described for a given agent α1 on a col-
lision course with agent α2. An example is presented in Figure 4.
Their respective 2-dimensional positions and velocities at current
time t0 are noted (p1,v1) and (p2,v2). The CIW (3-dimensional:
space and time) are noted: a1|2, d1|2, l1|2 and r1|2. To compute
these points, we base our principle on the velocity-obstacle intro-
duced in [Fiorini and Shillert 1998] as illustrated in Figure 3. The
key idea is to compute the 4 admissible velocities which enable col-
lision free trajectories and which correspond to 4 specific strategies
(deceleration, acceleration, turning left, turning right). We recall
that the set of admissible velocities for α1 concerning its interac-
tion with α2 is noted AV1|2 and is defined as follows:

AV1|2 = {v1 ∈ V1 | ∀t ∈ [t0, t0 + τ ], dist1,2(v1, t) ≥ c} (1)

where: V1 is the set of all the reachable velocities for α1, τ is the
size of a time window, dist1,2(v, t) = ‖(p2 + v2t)− (p1 + vt)‖
and c is the collision distance threshold.

Then, the CIW define trajectories followed by α1 with specific
strategies (velocities): va1|2 ,vd1|2 ,vl1|2 ,vr1|2 ∈ V A1|2:

• v1 · va1|2 = 0, ‖v1‖ < ‖va1|2‖, and ∃t ∈ [t0, t0 +

τ ] | dist1,2(va1|2 , t) = c,

• v1 · vd1|2 = 0, ‖v1‖ > ‖vd1|2‖, and ∃t ∈ [t0, t0 +

τ ] | dist1,2(vd1|2 , t) = c,

• det(v1, vl1|2) > 0, ‖v1‖ = ‖vl1|2‖, and ∃t ∈ [t0, t0 +

τ ] | dist1,2(vl1|2 , t) = c,

• det(v1, vr1|2) < 0, ‖v1‖ = ‖vr1|2‖, and ∃t ∈ [t0, t0 +

τ ] | dist1,2(vr1|2 , t) = c.

The CIW a1|2, d1|2, l1|2 and r1|2 are then:

• a1|2 = (p1 + va1|2 .time(va1|2), time(va1|2)),

• d1|2 = (p1 + vd1|2 .time(vd1|2), time(vd1|2)),
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Figure 4: Example of collision solved using the four CIW. The
collision trajectories are drawn in red and the four trajectories fol-
lowed to reach the CIW are shown in blue. The position of each
CIW are shown together with the position of the other agent when
the CIW are reached.

• l1|2 = (p1 + vl1|2 .time(vl1|2), time(vl1|2)),

• r1|2 = (p1 + vr1|2 .time(vr1|2), time(vr1|2)),

where time(v) is the time of closest approach (ttca) delayed by

a small amount: time(v) = ttca(v) +min
(

c
v
, c
v2

)
; ttca(v) is

computed assuming agents α1, α2 travel with velocities v, v2.

This delay allows the two agents to get away from each other to
avoid resetting them on a collision course if one of the two agents
performs a new manœuver too soon (e.g., to solve one next in-
teraction). The example presented in Figure 4 clearly shows that
once the CIW is reached, the collision risk with the other agent is
avoided.

3.4 Collision Free Interaction Path

The Collision Free Interaction Path construction is presented on Al-
gorithm 1 and illustrated with an example in Figure 5. The colli-
sion free IP is built iteratively by the algorithm. It starts with the
straightforward IP to the goal (line 3). A collision test is performed
with this IP (line 7). If no collision is found, a collision free IP is
detected (line 18). If a collision is found, the IP is discarded and the
four CIW are computed and used to build four new IP (line 8). The
test is then repeated on these new IP, first on the IS right before the
interaction (line 9 to 12) then the IS from the interaction to the goal
(line 16) until one IP reaches the goal (line 18).

An example is presented in Figure 5. The initial situation is shown
in Figure 5A): the blue agent starts at the position s and has to
reach the position g. As we said the algorithm starts by testing the
straight forward IP (Figure 5B)), a collision is detected and four
new IP are created sl1|3g, sd1|3g, sa1|3g and sr1|3g. Now, these
four new IP have to be tested starting with the IS just before the
interaction: sl1|3, sd1|3, sa1|3 and sr1|3. Figure 5C) shows the test
for the turning left solution sl1|3. A collision is detected on the IS
and again four new paths are created. Figure 5D) shows the test for
the accelerating solution sa1|3 and no collision is found. But this
is only the first part of the IP, there is still the IS a1|3g to test. This
test is done in Figure 5E). A collision is detected and only two paths
are created. Both agents are going toward each other, they cannot
avoid the collision by accelerating. Decelerating will not solve the

Figure 5: Example showing the construction of a collision free IP
illustrating the different steps taken by the EACS system.
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Data: Starting position s, Goal g
Result: Build a collision free IP

1 checkList←[];
2 collisionFreeList←[];
3 add(sg, checkList);
4 pathFound←FALSE;
5 while !pathFound do
6 bc←pullSegment(checkList);
7 if collision(bc) then
8 a,d,l,r← computeCIW(bc);
9 add(ba,checkList);

10 add(bd,checkList);
11 add(bl,checkList);
12 add(br,checkList);
13 else
14 add(bc, collisionFreeList);
15 if c!=g then
16 add(cg, checkList);
17 else
18 pathFound←TRUE
19 end
20 end
21 end
22 P←buildPath(s,g,collisionFreeList);
23 return P;

Algorithm 1: Algorithm used by EACS to build collision free In-
teraction Paths

problem either but only delay it as the blue agent will have to go
toward the goal eventually. The turning left solution is tested on
both IS, first on a1|3l1|4 (Figure 5F)) then on l1|4g (Figure 5G)),
and no collision is found. The goal is reached and a collision free
IP is built: sa1|3l1|4g (Figure 5H)).

3.5 Cost and ranking

On the example presented in Figure 5, the collision free IP
sa1|3l1|4g is built. But if the turning right solution for the last
interaction had been tested before the turning left one, we would
have ended with the collision free IP sa1|3r1|4g. With another or-
der of test, we could have also built the collision free IP sl1|2g. In
the end, there are many different IP to go through a crowd. We are
looking for only one but one that is efficient and would most likely
be picked by a real walker. To that end, we used a cost function
to rank the different IP and select a single one among them. We
chose to use the energy consumption as the cost function. Real hu-
mans often favor the least energy consuming way to perform a task
[Zipf 1949], moreover it has already been used to improve collision
avoidance models [Guy et al. 2010].

The energy formula, E = m
∫
(es + ew|v|2)dt, is from [Whit-

tle 2003]. The values of es = 2.23J.Kg−1.s−1 and ew =
1.26J.s.Kg−1.m−2 minimize the energy consumption per dis-
tance for a speed of |v| = 1.33m.s−1 which will become the pre-
ferred speed of the agent. We want to have agents with different pre-
ferred speed. From the energy formula per distance, Equation (2),
we set a constant distance to look for the speed that minimizes the
energy consumption: vpref (see Equation (3)). Then we are able
to change the value of ew for the chosen vpref (see Equation (4)).

E = m

(
es
|v| + ew|v|

)
d (2)

dE

dv
= m

(
es
|v|2 + ew

)
d = 0 (3)

ew =
es

|vpref |2
(4)

In some situations, allowing collisions is necessary to find good
solutions (see Figure 10). So we enabled the search algorithm to
consider IP with collisions. To keep a preference for collisions free
IP, an extra cost is added for IP with collisions. This extra cost is the
equivalent of making a long detour: the energy consumption at pre-
ferred speed for a specific distance which is a parameter of the sys-
tem (CollisionCost = m( es

|vpref |
+ ew|vpref |)dcollisionDetour).

This way, agents will still go around dense area when these are not
too big, and will go through them otherwise.

3.6 Following case

When there is someone in front going in the same direction but
slower, there is not always enough space to avoid him. In this case,
people can try to squeeze to avoid him despite the lack of space or
they can match the speed of the one in front to follow him until there
is enough space to overtake him or until their trajectories separate.
The following behavior is close to collision avoidance as it can be
used to prevent a collision. At the same time, it is very different
as the collision is never solved by following, only postponed. As
said before, people follow until they can properly avoid the one
in front of them or the collision risk disappears by itself. When
computing the four CIW, the agent follows a velocity that prevents
the collision until the collision risk no longer exists. As explained
above, when following the collision risk remains except if one of
the agent changes direction. So the agent can still change his speed
to match the one of the agent in front and prevent a collision by
following but we need to determine how long should it follow to
compute the corresponding IW.

Figure 6: Detection of a following case and the two Interaction
Waypoints i and j computed from the following speed

Following happens when the tested IS has a collision with an agent
that goes in the same direction, this situation is represented in Fig-
ure 6. Whether the IW h (the end of the IS) is the goal or just
an intermediate IW place here to avoid another agent, the position
and/or the time of the IW is important. This is why it has been de-
cided that when following, two IW should be computed. For the
first one j, the agent will follow until it reaches the previous po-
sition he wanted to reach (the position of h). For the second one
i, the agent will follow for as long as it would have walk with the
previous IS kh.

From the Figure 6, we have the velocity of the green agent v, the
IW k = (pk, tk) and h = (ph, th). We then compute the IW
j = (ph,

ph−pk
v

+ tk) and i = (v ∗ (th − tk), th).
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4 Results

In this section we present the results of our work. The simulations
have been done by using our system coupled with RVO2. EACS
computed a strategy and then set the preferred velocity required by
RVO2. No additional path finding algorithms have been used as
the studied situations were simple enough and the goal is always
reachable from the agents’ starting position.

4.1 Performance

The EACS system computes and evaluates many different IP. An
estimation of the final cost of an IP is done to advance the con-
struction of the most promising one in priority. Three limitations
further bound the exploration to avoid an explosion of the compu-
tational cost: maximum planning time (we don’t plan further than
one minute ahead), maximum number of interactions per plan (we
don’t build strategies of more than 20 interactions) and a maximum
number of main loop iterations (500).

Moreover, much like path planning, interaction planning does not
need to be performed every step. Plans are not made to be discarded
immediately afterwards, except in some exceptional situations. The
agents thus compute their IP every ten steps (defaults time step is
0.1s so agents are updating their plan every seconds). In order to
spread the computational cost of the interaction plan, the system
does not compute the IP of every agent at once. Instead, it computes
the IP of a tenth of the agents at every step.

These measures and the use of multiple threads during the planning
enable the different simulations presented in this section to be run in
real time. Moreover computation time has been measured for sev-
eral counter flow simulations with different number of agents (an
example of such simulation is presented in the companion video).
The results, shown in Figure 7, have been measured on a computer
with an Intel R©Xeon R©Processor E5-1603 (4 cores, 10M Cache,
2.80 GHz, 0.0 GT/s Intel R©QPI) and 32GB Memory. In this situa-
tion where every agents have to compute complex IP, we are able to
run simulations with up to 200 agents in real time with the default
time step of 0.1s.

Figure 7: Computational time for one step of a counter flow simu-
lation depending on the number of agent in the simulation.

Figure 8: Simulation of an agent (in red) going through a flow, with
the flow having a tunnel to facilitate the crossing. Left: simulation
including EACS; Right: simulation without EACS .

4.2 Case study

Several situations where designed to test the EACS system and
check the improvement it brings to crowd simulation. The first one
is the example used in the introduction to show the limitation of
the current models. The results are shown in Figure 8. As ex-
pected, RVO2 alone is unable to use the tunnel to go through the
flow. Instead, the red agent goes straight forward and has trouble
going through the flow as it spends around 10 seconds in the flow
itself. With the EACS system, the red agent is able to take the tun-
nel which facilitates its navigation greatly: the agent spends only 2
seconds in the flow.

Figure 9: Simulation of a clogged exit, EACS is able to choose
other exits that are further away but not clogged.

Figure 10: Simulation of an agent (in red) going through a flow
that goes in the opposite direction. The flow has no tunnel but a
section of it has a lower density. At the top, we have the simulation
with EACS and at the bottom the simulation without EACS.

The second one is shown in Figure 9 and is very similar to the first
one. Instead of going through a flow, agents need to exit or enter
a building that has 3 entrances. All the agents are close to one exit
which quickly becomes clogged. As for the first situation where
the agent was able to detect the tunnel, in this situation, some of the
agents detect that the other two exits are empty. Instead of waiting
and avoiding many obstacles which can be painful, they decide to
go through the two others exits. The extra cost from the detour is
largely compensated by all the required velocity adaptations to go
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through the clogged exit. This is easily witnessed in real life: in
the train station for example, where people will use further exits to
avoid the dense crowd of the closest one.

In the third situation shown in Figure 10 there is no collision-free
solution to cross the incoming flow. Such situations exist in real life
where we have to cross a very dense crowd and we require other
people to give us some space to go through. In the presented sit-
uation, even if there are no collision-free paths through the crowd,
there is a weak point where the density is lower. Going through this
point would make it easier to go through the flow. EACS is able to
detect such weak points in the flow and compute a path through it.
If we compare with the trajectory computed without EACS (at the
bottom), we can clearly see that it is easier to use the weak point
to go through the flow. In the end, the agent controlled by RVO2
spends around 10 seconds in the flow while the one controlled by
EACS spends only 2 seconds in it.

Figure 11: Top: simulated test where short-term cost leads to bad
mid-term cost, agents simulated with EACS on the left and with-
out on the right. At the bottom, the graph quantifies the energy
consumption of the red agent (For RVO2 and EACS) as they walk
towards the goal (In this situation, it is equivalent to the distance
traveled on the x axis). The section of the blue curve circle in red
correspond to the RVO2 agents going backwards to avoid the dense
group (T=7.5s on the top figure).

Another situation is shown in Figure 11 and has been designed to
show the difference in optimizing the short-term outcome and the
mid-term one. If we look at the trajectory given by RVO2 alone
(top right), we can see that the red agent is avoiding by going on
the left. If we consider only the first few blue agents, it is the best
solution as going on the right would require to go faster and to shift

more on the side. This is confirmed by the energy graph, the energy
consumption of EACS which goes on the right is higher than the
one of RVO2 for the first 3m. But when we look further, we can
see that the agent will meet with more people when going to the left.
This dense area is so hard to navigate that the agent will even move
backwards. Looking at the graph, we can notice the sudden rise
in energy consumption for RVO2 around 4m as well as the curve
going backwards because the agent walks in the opposite direction
of its goal. The curve of EACS energy consumption remains stable
which confirms that the EACS strategy is better on the mid-term.

Figure 12: Simulation of group avoidance for different group den-
sities.

The last situation is about group avoidance. Previous experiments
have shown that real humans go around dense groups and through
sparse ones [Bruneau et al. 2015]. We have made several simula-
tions where an agent had to avoid groups of different densities to
check that EACS is able to reproduce the real trend. We can see
some of them in Figure 12, the situation setup is the same as the
one in the experiment with real humans. The red agent is able to
decide whether to go through the group or around it and reproduces
the same trend as that of a real human: it circumvents the two dense
groups (Figures 12A and 12B) and traverses the sparse ones (Fig-
ures 12C and 12D).

4.3 Energy

To check the energy gain of EACS over pure RVO2, we studied the
trajectories of agents going through an orthogonal flow. We tried
several different conditions to analyze their impact on the results.
We performed 2800 simulations: 7 density types x 19 exploration
limits for EACS and 1 without EACS x 20 repetitions. For each
simulation, a flow was randomly generated and 10 agents were ran-
domly placed on the same side of the flows with their goal on the
other side. The energy consumption of the 10 agents were com-
puted from their starting position to their goal location and then
averaged.

The first condition studied is the density type. For each generated
flow, the same dimensions (10mx80m) and number of agents (700)
were used. Thus the global density was the same for each flow. The
variation among the different conditions was made on the regularity
of the density in the flow. These variations are shown in Figure 13.
We have a uniform flow on the right and the different types of irreg-
ularity until the very irregular flow on the left. These irregularities
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Figure 13: The different density types used for the energetic study
from very irregular (left) to uniform (right).

create small dense clusters and leave some space in between to nav-
igate more easily. We expect EACS to be able to use this in-between
space and perform better when going through irregular flows.

Figure 14: This graph shows the amount of energy preserved by
the agents when using EACS to optimize their avoidance strategies
compared to EACS-less strategies.

The second condition studied is the exploration limit for EACS.
When EACS is looking for a path it will sequence several interac-
tions over time. The number of interactions can become very big in
some situations which can cause performance issues. Moreover it
is doubtful that real humans can consider a high number of future
interactions. For this reason, we set a maximum number of inter-
actions when constructing an IP in EACS. When an IP reaches the
limit, it will not be extended anymore. We expect that a low max-
imum number of interactions will lead to results close to RVO2.
We also expect that a very high number of interactions will per-
form similarly or worse than a medium number of interactions: the
further we plan in the future, the less the extrapolation is relevant.

For the results, for each exploration limit, we compare the aver-
age energy consumption with and without EACS. The Figure 14
shows this consumption difference in percent. As expected, EACS
is performing better for very irregular densities. When the density
becomes uniform, the energy consumption with and without EACS
becomes similar. If we look at the different results for different
maximum numbers of interactions, we can see that having a value

higher than 14 does not seem to change the results much. Indeed,
optimum results seem to be found for a maximum number of inter-
actions around 4.

4.4 Limitations

Our system has limitations. The main one is the number of future
interactions explored by the system. We showed in the previous
section that the system is particularly efficient when used in specific
contexts, such as when agents density is not uniformly distributed
in space. We can actually easily guess what type of crowd motions
will enable EACS to be efficient. For example, we expected that
non-uniform density distributions would open larger efficient inter-
action paths in the crowd with a great probability that these paths
remain valid in spite of all agent adaptations.

More generally, the EACS system is particularly efficient when the
initial predictions are good and turn out to be representative of the
actual motion of neighbor agents. In the opposite case, predictions
turn out to be false, and the energy gain by EACS is poor. We
also observe in the energetic evaluation of EACS solutions (previ-
ous section) that considering interactions too far in the future de-
creases the quality of the solutions provided by EACS. Note that
EACS guided agents toward fewer counterproductive situations,
when compared with naive short-term solutions.

One solution to this could be to evaluate on-line the quality of the
predictions made by EACS. The number of interactions explored in
the future could be directly dependent on the quality of this predic-
tion. If predictions are good, agents can explore wider future time
windows and more numerous future interactions, and conversely.

Another limitation of EACS is to only consider an energy-related
cost function. We are convinced that this criterion is considered by
human walkers when setting mid-term strategies, but we are also
convinced that other factors play a role. For example, we could
check how close the solution paths to other agents motion are. Ad-
ditional social distances could be considered in the cost of paths. As
another example of a social criterion, passing in front of an agent at
close distance could be penalized in comparison with the strategy
of giving way, which could be considered to be more polite.

Finally, EACS explores a subset of all the possible strategies to per-
form collision avoidance. We make an arbitrary choice to explore
adaptations exclusively made of speed or orientations changes,
whereas all intermediary solutions could be explored. We are here
in a typical trade-off between computation times and quality: we
could add more than 4 CIW in the system to consider mixed adap-
tations strategies, but this would result into higher computation
times.

5 Conclusion

We have modified the usual navigation process of crowd simulation
to add some mid-term consideration. To this end we have designed
an interaction planner, the Effective Avoidance Combination Strat-
egy that creates interaction path which enables agents to consider
non straight paths to go through a crowd. As results, we have shown
with specific test cases that the agents are able to select strategies
that use density tunnel to facilitate their navigation through a crowd.
Moreover, while building the interaction path, the EACS evaluates
the repercussion of its avoidance choices further in the future. This
allows agents to make some extra effort in resolving their current
collision so as to simplify future interactions.

With an energetic study, we show that by adding the EACS to the
regular navigation process agents use less energy to navigate. The
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study has shown that the EACS is especially useful to improve tra-
jectories when facing crowd with irregular densities. The study has
also highlighted that too much mid-term planning is not beneficial,
which can be explained by the incapacity to correctly extrapolate
the other agents’ trajectories too far in the future. It seems that
planning around 4 interactions ahead yields the best results.

We have shown the improvement in the quality of agents naviga-
tion brought by our work. The next step is to compare it with real
human behaviors and interactions planning. Especially, it would be
interesting to study how many interactions ahead real humans plan.
Another interesting direction is to work on the evolution of the in-
teraction path. Right now, the IP is computed at a constant interval
and each time the computation starts from scratch. Real humans
are known to be highly adaptable creatures, in most cases they most
likely adapt their plan based on changes in the environment instead
of planning a new one from scratch. This would greatly improve
performance but it might also improve results by making the plan
more reactive to the environment changes.
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