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Abstract

This paper introduces a method to clone crowd motion data. Our goal is to efficiently animate large crowds

from existing examples of motions of groups of characters by applying an enhanced copy and paste technique on

them. Specifically, we address spatial and temporal continuity problems to enable animation of significantly larger

crowds than our initial data. We animate many characters from the few examples with no limitation on duration.

Moreover, our animation technique answers the needs of real-time applications through a technique of linear

complexity. Therefore, it is significantly more efficient than any existing crowd simulation-based technique, and

in addition, we ensure a predictable level of realism for animations. We provide virtual population designers and

animators with a powerful framework which (i) enables them to clone crowd motion examples while preserving

the complexity and the aspect of group motion and (ii) is able to animate large-scale crowds in real-time. Our

contribution is the formulation of the cloning problem as a double search problem. Firstly, we search for almost

periodic portions of crowd motion data through the available examples. Secondly, we search for almost symmetries

between the conditions at the limits of these portions in order to interconnect them. The result of our searches is

a set of crowd patches that contain portions of example data that can be used to compose large and endless

animations. Through several examples prepared from real crowd motion data, we demonstrate the advantageous

properties of our approach as well as identify its potential for future developments.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

A challenging problem within computer graphics is how to
combine the realism of animation with the complexity of
crowds. Moreover, the difficulty increases with the constant
growth of size of virtual environments. The most natural an-
swer to this problem is crowd simulation, but it can not sat-
isfy all needs of virtual population designers, because the
design work requires not only substantial computational re-
sources, but also tedious manual work of setting up sim-
ulations. An interesting alternative to crowd simulation is
example-driven approaches, but its resulting animations are
limited by the size and duration of initial data.

In this paper, we propose to create and animate large pop-
ulations by cloning example motion data. The aim of our
cloning method is to address the motion continuity prob-
lems in order to enable large crowd animations without
limit of duration. The key idea is to cut sets of trajectories
from real data which displays some expected effects, and
then paste them into virtual environments as repeatable tex-

tures. Consequently, it is possible to create infinite anima-
tions in both time and space. Our technique combines the
concept of crowd patches [YMPT09] with trajectory edit-
ing tools [KLLT08, KHKL09]. However, unlike Yersin et

al., who create trajectories inside periodic patches to sat-
isfy connectivity, we propose to extract periodic patches by
searching through real data sets and establish connectivity
between patches. This process raises two issues: first, how to
extract periodic motions inside real data so that both spatial
and temporal continuities can be guaranteed; second, how
to adapt real data in order to extract pieces of motions from
different data sets and patch them together.

To address these issues, we formulate the problem as a
two-stage search: first, a search for almost periodic portions
of motion data; and second, a search for almost symmetry be-
tween the conditions at the limits of portions. The portions
exhibiting such properties can then be transformed into a
set of interconnectable crowd patches. We further extend the
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crowd patches with global deformation techniques as means
to adapt initial data to diverse environment geometries.

The key contributions of this paper are:

• a technique to automatically extract almost periodic por-
tions of crowd motions from real data sets and apply local
transformations to make these portions periodic;

• a technique to automatically find almost symmetries and
apply local transformations on periodic portions to enable
smooth interconnections;

• and finally a technique to map patches of crowds extracted
from real data into new virtual environments.

These techniques enable infinitely large environments to
be populated with only the cost of replaying existing data.
The paper is organized as follows: after comparing and con-
trasting our approach with state-of-the-art contributions in
the field and recalling the concept of crowd patches on which
our work is built in Section 2, we detail our core contribution
by introducing the notions of periodicity and connectivity in
Section 3. We then illustrate our contribution on an example
with 1D data for the sake of clarity in Section 4 and present
main results in Section 5. Finally, we discuss the limitations
and conclude our paper in Sections 6 and 7, respectively.

2. Related Work

Previous contributions to the research area of populating
large-scale virtual environments can be split up in two cate-
gories: approaches with realistic simulation models, and ap-
proaches which extract and adapt real data.

2.1. Crowd Simulation

Crowd simulation is a natural solution to the problem of
populating interactive environments. Various types of so-
lutions and simulation models have emerged recently: the
seminal rule-based Reynolds’ model [Rey87] (later extended
in [Rey99]), the force-based models [HM95,PAB07,JHS07],
the continuum dynamics based model [TCP06], the local
field-based model [KSHF09, KSH∗12], the velocity-based
models [PPD07, POO∗09, GCC∗10, KO10], and the vision
based model [OPOD10].

These models enable the creation of impressive crowd
motions from simple individual behaviours, actions, and in-
teractions. However, crowd simulation techniques do not an-
swer some specific needs in the task of populating large in-
teractive environments. Firstly, it is difficult to match a sim-
ulation setup with a desired content because of the chaotic
nature of crowd simulation, despite some user-friendly tools
such as the CrowdBrush [UCT04]. Secondly, although many
solutions have been proposed to improve performance such
as the level-of-details methods for rendering and simula-
tion [DHOO05, PCM∗06, KOOP11], simulations of virtual
crowds are still computationally expensive in terms of time

and memory usage and hence the size of the virtual environ-
ments have to be limited. Thirdly, recent efforts in detecting
and classifying simulation artifacts [KSA∗09] demonstrate
that it is almost impossible to perform a simulation without
these artifacts. We have to point out that any kind of strange
behaviour, when it is detected by spectators, will break the
believability of a populated scene.

Unlike crowd simulation, our solution is based on exam-
ple of crowd motions and hence it targets less dynamic situ-
ations: We reproduce the motion itself instead of modelling
how humans move and then reproduce their behaviours in
simulation. Since there is no need to specify the behaviours
that the virtual characters should simulate, our method is in-
tuitive, as well as easy to use.

2.2. Example-based and Data-driven Crowds

Example-based or data-driven methods [MH03, LCL07,
KLLT08, SKSY08, LFCCO09, HLLO10, JCP∗10, TLG11]
have been applied in recent years to crowd simulation with
the aim of reproducing in virtual worlds a number of charac-
teristics extracted from recorded data sets.

In [LCL07], after decomposing trajectories of pedestrians
from real data in order to isolate interactions between 2 or 3
pedestrians, Lerner et al. employ at run-time an agent-based
simulation technique: Each time an agent faces an interac-
tion with one or multiple characters, the database is queried
for similar character states. Our approach differs in that we
do not rely on the concept of agent: Every animation is di-
rectly taken from the example data sets. Lerner et al. target
the creation of an example database which captures solutions
for any interaction between individual characters, while we
aim at capturing specific situations that we want to faithfully
reproduce. Furthermore, since our technique is not restricted
to simple interactions between a few pedestrians, it can cap-
ture and reproduce complex and visually rich interactions.

Other approaches such as the ones in [LCHL07, JCP∗10]
identify the nature of relations between characters in a num-
ber of different situations. The underlying geometric rela-
tions are analyzed using a statistical approach, modelled,
and further simulated in virtual environments. In an implicit
way, these techniques capture a large number of social and
cultural rules which guide human relations in groups. In
comparison to these techniques, our approach does not at-
tempt to identify such relations, but only reproduces pieces
of trajectories in situations that are potentially very complex.
Consequently, our approach can capture complex situations
that can not be explained through the previous statistical ap-
proaches that relies on models with only a limited set of pa-
rameters.

As shown in [KLLT08], one can edit trajectories of ani-
mations — limited in both space and time — for complex
groups and then adapt them to a given virtual environment
while preserving the original structure of the motions. Even
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though the editing process can successfully integrate new
constraints from the environment (e.g., obstacles), it is not
scalable to very large environments unless a very large data
set is available as the input. Our approach differs in that we
can generate an unlimited animation in both space and time
from a few examples of limited size, because the source tra-
jectories are simply the motifs that can be copied and then
pasted into the environment.

Among the previous works, our approach is most simi-
lar to the method proposed by Shum et al. in [SKSY08] to
create large-scale animations where characters have close in-
teractions (e.g., a duel). Just like our approach, Shum et al.

store the interactions between the characters in patches be-
fore concatenating spatio-temporally the patches to compose
large-scale scenes. However, since the method in [SKSY08]
is designed for close interactions, it can not be applied to
generate scenes where multiple characters continuously in-
teract. On the contrary, our approach is designed with char-
acters who continuously interact in mind. Furthermore, all
actions inside the action-level motion graph created by Shum
et al. in [SKSY08] have to undergo a manual annotation pro-
cess, which is potentially a tedious thing to do, especially
when the motion capture data contains many characters.

2.3. Crowd Patches

Our approach, which is strongly pertained to the notion of
motif, is built upon crowd patches [YMPT09] in where the
authors draw a parallel between challenges in object textur-
ing and challenges in populating virtual environments.

The objective of [YMPT09] is to populate virtual envi-
ronments with convex polygon-shaped patches, where each
patch Φ contains cyclic animations over a constant period τ.
If a dynamic character never leaves the patch, it is a so-called
endogenous object and its trajectory Γ must meet the patch
periodicity condition: Γ(0) = Γ(τ). When a dynamic char-
acter crosses from one patch to a neighbouring patch (i.e., it
is exogenous), the presence of another exogenous character
is required to fulfil the periodicity condition. Furthermore,
trajectory of an exogenous character must meet the common
limit conditions which are captured by the concept of pat-
terns Ψ as defined in [YMPT09]: In order to connect two
patches at two edges, one from each patch, the edges’ pat-
terns must be mirror images of each other (i.e., the edges
are of equal length; the patterns have the same period; and
for each entry/exit point of one pattern, there must be an
exit/entry point with the same time and the same position in
the other pattern). For more details about crowd patches, we
refer the reader to [YMPT09].

2.4. Comparison to Previous Work

In this paper, we extend the concept of crowd patch in order
to copy and paste elements of existing motion data, because

crowd patches enable the on-the-fly generation of crowd ani-
mations without any limitations on neither size nor duration.
However, the challenges we tackle here differ strongly from
those identified by Yersin et al. in [YMPT09], where the
problem of generating trajectories is solved inside a patch,
assuming that the conditions defined by the patterns (i.e.,
positions and time of entries/exits of the patch) are given.
The problem we target here is the inverse one: How can one
extract periodic patches that can connect to other patches
through patterns, given a set of motion tracked trajectories.
We search for spatio-temporal portions of trajectories which
satisfy the periodicity conditions of patches, and then ex-
plore the possible connections between the different por-
tions we have extracted in order to build a global anima-
tion through simple composition. To find periodic portions
of trajectories in real data, we propose an almost periodic

criterion which has to be satisfied by portions of trajecto-
ries and then locally deform these partial trajectories as done
in [KLLT08, JCP∗10].

3. Cloning Crowd Motion Data

In this section, we describe in detail how we clone crowd
motions by copying trajectories inside crowd patches and
then pasting these trajectories to empty virtual environments
in order to populate them.

3.1. Crowd Motion Data

In our problem setting, we are given motion capture data of
a set of N pedestrians, R = {r1, ...,rN}, and the total dura-
tion of the motion capture is T sec. For pedestrian ri, its 2D
trajectory Γi is composed of the pedestrian’s physical state
qi(t) at time t, where qi(t) = [xi(t),yi(t)]

T and T is the sym-
bol for vector transpose. However, our method is not limited
to this case and it can be generalized to higher dimensional
physical states such as qi(t) = [xi(t), ẋi(t)]

T, where xi(t) is
the degrees of freedom (DOFs) of pedestrian ri and ẋi(t) is
the first-order derivatives of the DOFs with respect to time.

3.2. Copying Motions: from Data to Patches

In the initial step of our method, we search for portions of
captured trajectories that can be transformed into patches.
More specifically, we check whether the content inside ev-
ery portion is almost periodic, where the notion of almost
periodic is defined through a similarity metric between ini-
tial and final states of the patch.

A portion of data is delimited in space and time by a poly-
gon P and an interval [t0, t0 + τ], where t0 is the start time
and t0+ τ ≤ T , respectively. In order to obtain the delimited
portion of data, the user has to choose first an appropriate
polygon P, where the size of P depends on the environment
he/she wants to populate. Furthermore, the user should take
note of that, even though the shape of P is not limited by the
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crowd patches, square-shaped polygons are often preferred
because they greatly simplify the implementation. Secondly,
the user needs to choose appropriate values for both t0 and
τ. Finally, the delimited portion of data consists of the seg-
ments of the trajectories that intersect the surface of P during
the time period [t0, t0+ τ].

In order to verify whether a portion of data that is de-
limited in space and time by a polygon P and an inter-
val [t0, t0 + τ], respectively, is part of a patch Φ, we ex-
tract the initial state of all pedestrians inside the portion
Q(t0) = [q0(t0), ...,qm(t0)], and their final state Q(t0+ τ) =
[q0(t0+τ), ...,qn(t0+τ)], where m and n are the numbers of
pedestrians inside P at time t0 and t0+τ, respectively. Ifm=
n, we sort the items in the vectorQ(t0+τ) so that ∑

n
k=0 dq[k]

is minimized, where dq[k] = ‖qk(t0)−qk(t0+ τ)‖. The tra-
jectories inside the extracted portion is considered to be al-
most periodic if dq[k] < ε ∀k ∈ {0,1, ...,n}, where ε is a
small positive number, and the portion is part of the patch Φ.
On the contrary, when m 6= n, the extracted portion can be
rejected (i.e., it is not part of a patch) right away, because the
almost periodicity condition implies that there are an equal
number of pedestrians at time t0 and t0+ τ.

To quantify how periodic the patch Φ is (i.e., how simi-
lar Q(t0) and Q(t0 + τ) are), we define the periodicity cost
function fp as

fp(Φ) =max(dq). (1)

Finally, the trajectories inside the patch Φ are de-
formed using the Laplacian motion edition method presented
in [KHKL09] such at qk(t0) and qk(t0+ τ) are connected at
qk(t0) + (qk(t0 + τ)− qk(t0))/2 after the deformations. A
final verification step ensures the deformations do not gen-
erate any collision. If a collision does occur, the patch is re-
jected.

3.3. Pasting Motions: Patch Connection

From the set of patches we have obtained in the previous
step, we now search for possible connections (more specif-
ically the existence of mirror patterns) between different
patches with the aim of composing large scale crowd anima-
tions. Once again, it is highly unlikely to find two perfectly
matching mirror patterns, and hence we search for almost
symmetric patterns instead. Between two almost symmetric
patterns, we define a connectivity cost function in order to
identify patterns that can be connected with minimum de-
formations.

Given a patch Φ, the pattern Ψi for side i of the polygon P
that defines Φ geometrically contains two sets of data (i.e.,
Ii and Oi) that specify the inputs and outputs at the limit of
Ψi: Ii is the set of intersections between Ψi and exogenous
trajectories entering Ψi, while Oi is the set of intersections
between Ψi and exogenous trajectories exiting Ψi.

Before the almost symmetry condition between patterns
Ψi and Ψ j (taken from patches Φa and Φb, respectively)
can be established, we have to verify that Ψi and Ψ j (more
specifically the sides of Φa and Φb where Ψi and Ψ j are de-
fined) have the same length and the patterns share the same
period of time τ. If these conditions are fulfilled, Ψi and Ψ j

are considered to be almost symmetric when |Ii| = |Oj| and
|Oi|= |I j|, where |Ii| is the cardinality of the set Ii.

To quantify how symmetric patterns Ψi and Ψ j are, we
define a connectivity cost function fc as

fc(Ψi,Ψ j) =max( f IOc , f OIc ), (2)

where f IOc quantify how symmetric Ii and Oj are, while
f OIc quantify how symmetric Oi and I j are. We detail how
f IOc is computed and f OIc can be obtained in a similar way.
The sets Ii and Oj can be represented by two vectors of
state and time tuples: QTI

i = [(qIi0, t
I
i0), ..., (q

I
im, t

I
im)] and

QTO
j = [(qOj0, t

O
j0), ..., (q

O
jm, t

O
jm)], where the superscripts I

and O stand for input and output, respectively, and m is the
cardinality of the sets. Next, we sort the items in QTO

j so
that ∑

m
k=0 dqt [k] is minimized, where

dqt [k] = dq[k]dt [k] = ‖qIik−q
O
jk‖|t

I
ik− t

O
jk|. (3)

Finally, f IOc is defined as f IOc =max(dqt).

When patches Φa and Φb present a good degree of con-
nectivity through patterns Ψi and Ψ j, we deform the tra-
jectories entering Φa at Ii and the ones exiting Φb at Oj

in the way as described in Section 3.2. Note that here one-
dimensional time warp has to be performed in addition to
spatial path editing using the same technique (i.e., the Lapla-
cian motion edition method presented in [KHKL09]). The
trajectories exiting Φa at Oi and the ones entering Φb at I j
are connected in a similar way.

3.4. Composing Animations

In the previous two steps, we have not only extracted por-
tions of motion capture data that are transformable into
patches, but also identified possible connections between
these patches through symmetric patterns. In addition, we
have assigned costs to the patches (i.e., periodicity cost) and
to their connections with other patches (i.e., connectivity
cost), and these costs are proportional to the amount of de-
formations that have to be done to the trajectories in order to
make the final animations both spatially and temporally con-
tinuous. If we create an undirected graph where each node
of the graph represents a patch, the cost assigned to the edge
between two nodes is simply the connectivity cost we com-
puted in Section 3.3 for the two neighbouring patterns (one
from each patch). Using any standard graph traversal algo-
rithm, the minimum-cost path between two patches can be
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easily obtained. Note that the periodicity costs of the patches
are not stored in the graph. If a patch should be ignored be-
cause its periodicity cost is too high, we simply remove the
node that represents the patch from the graph.

Finally, before a patch is inserted into a given virtual en-
vironment, it can be deformed using the boundary element
method (BEM) based technique proposed in [GSN04,GN08]
in order to adapt the patch to the exact geometries of the en-
vironment. To deform the patch, its boundary and the bound-
ary of the target patch in the virtual environment are meshed
for BEM. Note that, unlike the finite element method (FEM),
BEM does not require that the interior of a patch be meshed.
Using an energy minimization approach, the boundary of the
original patch can be deformed to fit the boundary of the tar-
get patch. Once the deformation of the boundary has been
accomplished, the deformation of the trajectories inside the
original patch can be easily calculated so that they fit the
target patch after the deformation. The benefits of such de-
formations are illustrated in Sections 4.4 and 5.3.

4. An Illustrative Example

4.1. Crowd Motion Data

In this section, we illustrate the method presented in Sec-
tion 3 by animating a large number of pedestrians queueing
using the motion capture data of 28 pedestrians following
each other in a circle (see Figure 1). This example is chosen
because it allows us to display the data in a two-dimensional
plot (more specifically in polar coordinate system). From the
angle-time plot shown in Figure 1, it is clear that the trajec-
tories last 90sec. The oscillatory phenomenon in the figure
corresponds to the propagation of a counter-flowing stop-
and-go wave.

Figure 1: An illustrative example of pedestrians following

each other. Left: A snapshot of the motion capture session.

Right: Plot of the pedestrians’ polar angles with respect to

time.

4.2. The Patch Search

Following the method described in Section 3.2, we search for
portions of the motion capture data that can be transformed
into patches. Since the given data is one-dimensional, the
boundary of a potential patch forms a rectangle and the area

of the rectangle is bounded by the vertical lines for time t0
and time t0+ τ and by the horizontal lines for angle a0 and
angle a1 (see Figure 2). Specifically, the vertical dimension
of the rectangle represents the spatial coverage, while its hor-
izontal dimension represents the temporal coverage.

Figure 2: An illustration of a rectangular portion extracted

from the one-dimensional data of 28 pedestrians following

each other in a circle.

In order to accelerate the patch searches, we first fix the
period τ and discretize the search space. Since the period of
the propagation of stop-and-go waves we want to capture is
about 20sec, τ is set to the same value (i.e., τ = 20sec). Sec-
ondly, we set the polar angle step size to π/10rad, while
the time step size is set to 1sec to obtain the discretized
search space. Thirdly, we construct a pattern for each point
(a0,t0) in the discretized search space under condition of
t0+ τ ≤ 90sec, because the motion capture data lasts 90sec.
Fourthly, by associating a pattern pair (Ψi, Ψ j), a patch Φ

can be constructed if the portion bounded by Ψi and Ψ j is
a rectangle and the trajectories inside the rectangle are al-
most periodic. Finally, if the almost periodicity condition is
met, the periodicity function fp(Φ) is evaluated. For exam-
ple, as shown in Figure 2, the rectangle bounded by patterns
Ψi and Ψ j forms a patch, because the trajectories inside the
rectangle are almost periodic: There are an equal number of
pedestrians inside the patch at time t0 and time t0+τ. Conse-
quently, the periodicity function fp(Φ) can be evaluated as
illustrated in Figure 3.

The results of the patch search can be stored inside a peri-
odicity matrix as shown in Figure 4, where column i and row
j correspond to patterns Ψi and Ψ j, respectively. Each ele-
ment of the matrix corresponds to a portion bounded by Ψi

and Ψ j. If the portion is rectangular and the trajectories in-
side are almost periodic, the portion can be transformed to a
patch Φ and the value of the element is set to the periodicity
function fp(Φ). Otherwise, we don’t give any value to the
element. Note that the periodicity matrix is pseudo-diagonal
because we sort the patterns by the starting time ti, and only

c© The Eurographics Association 2012.

205



Y. Li & M. Christie & O. Siret & R. Kulpa & J. Pettré / Cloning Crowd Motions

Figure 3: An example of a patch: The trajectories are almost

periodic and hence the periodicity function fp(Φ) can be

evaluated.

two patterns with the same starting time can be transformed
into a patch. Finally, although the motion capture data lasts
only 90sec, Figure 4 shows that we are able to extract a large
number of patches, and among them the ones with the low-
est periodicity values can be used to animate crowds with a
high level of realism.

Figure 4: The periodicity matrix.

4.3. Patch Connectivity

We now search for possible interconnections between the
set of patches constructed in the previous step. Following
the steps described in Section 3.3, we consider each possi-
ble pair of patterns (Ψi,Ψ j) and then evaluate fc(Ψi,Ψ j) as
illustrated in Figure 5 if the patterns are almost symmetric.
Note that, in Figure 5, pattern Ψi has as many outputs as
pattern Ψ j has entries.

Figure 5: Connecting two patches by matching almost sym-

metric patterns.

The results from the search can be stored in a connectivity
matrix as shown in Figure 6. Note that the value of a matrix
element is set to fc(Ψi,Ψ j) if and only if patterns (Ψi,Ψ j)
are almost symmetric. If they are not, the matrix element is
left empty. Since the patterns are sorted by the starting time
ti, the bottom-right part of the matrix is denser.

Figure 6: The connectivity matrix.

4.4. Animation Composition

The process of animating a long queue of pedestrians by cre-
ating a sequence of interconnected patches using the data
stored in the periodicity and connectivity matrices is shown
in Figure 7. Once a sequence of interconnected patches with
low connectivity cost between every two adjacent patches
is found, trajectories inside these patches are edited twice:
They are first deformed to make ensure the periodicity in
time, and the second pass of deformations ensure that transi-
tions between adjacent patches are continuous in both time
and space. If necessary, a global deformation can be done to
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a patch so that it fits the shape of the target patch inside the
virtual environment. This enables us to impose the queue to
follow a specific path (e.g., in Figure 7, the patches are de-
formed so that the long queue follows a huge circular path).

Figure 7: Composing animation of a long queue of pedestri-

ans: a) The connectivity and periodicity matrices are looked

up to extract patches and connections between them. b) A se-

quence of connected patches. c) The patches displayed in the

angle-time plots. d) The 2D spatial representation of the tra-

jectories inside the patches. e) The trajectories are used to

animate a long queue of pedestrians. f) Patches are globally

deformed so that the pedestrians follow a circular path. Note

that we can compose very long queues because our solution

is only limited by the processing capacity of GPU.

In this illustrative example, we created and animated mo-
tions of a huge crowd. Since all trajectories have been pre-
recorded and processed, creating the animation does not re-
quire addition computation. Our method is not only efficient,
the resulting animation is also realistic both at the individual
level and at the global scale. Furthermore, we managed to
capture successfully the stop-and-go waves. In the next sec-

tion, we demonstrate that our approach remains expressive
and efficient in more complex situations.

5. Results

5.1. Complexity Analysis

Both computational complexity and storage complexity of
our method are linear in the number of patches. Furthermore,
inside each patch, there is no need to search for neighbour-
ing pedestrians and solve interactions between pedestrians.
Consequently, a few patches can be used to populate a virtual
environment that is much larger than each individual patch.
In fact, the efficiency of our method enables one to add pro-
gressively patches into the scene in real-time and on the fly.
Finally, we’re going to emphasize that this efficient solution
is not obtained at the cost of realism.

5.2. 3-Lane Crossing

For this example, we use the motion capture data of peo-
ple moving along three intersecting lanes as shown in Fig-
ure 8. Even though the trajectories are quite complex as
the pedestrians have to avoid head to head collisions in ad-
dition to keep suitable distance with the pedestrian ahead,
we still succeed in extracting almost periodic motions. Af-
ter choosing square as the patch polygon, multiple patches
were extracted from the motion capture data, for instance,
one of them is shown at the top-right corner of Figure 8.
These patches can then be combined to generate an ani-
mation where virtual pedestrians walk along a virtual wire
netting consisting of parallel lines (at angle 0, 120, or 240
degrees to the horizontal axis). This example, although not
the most natural one, demonstrates that a large-scale ani-
mation can be constructed from some snips of trajectories
of captured motions and the interactions between the vir-
tual pedestrians faithfully reproduce real world interactions.
Furthermore, more complex scenarios can be built by com-
bining various sources. For example, the companion video
contains one example where three-lane crossing patches are
combined with 1D queueing data.

5.3. Interactions of 24 People

In this example, we consider data from three motion cap-
ture sessions where 24 pedestrians standing in circle were
asked to move to target positions which are diametrically
opposite to their initial positions as shown in Figure 9. Our
method maintain the very complex interactions between the
pedestrians and reuse them to animate virtual characters. The
large virtual environment shown in Figure 9 is populated
with three different patches computed from the three distinct
examples of interactions between the 24 pedestrians. Once
again, this example is not designed to synthesize a realistic
global behaviour, even though the cloned motions are as nat-
ural as the ones in the motion capture data. The virtual crowd
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Figure 8: Complex crossing data. Top-left: picture from a

motion capture session, where pedestrians start from three

different positions and then exit the area on the opposite side.

Top-right: a patch extracted from these motion capture data.

Bottom: snapshot of a large environment populated with the

computed patches.

inherits complex interactions that could be hard to obtain
with crowd simulation techniques, while the computational
cost is again the lowest possible. Furthermore, the anima-
tions are not limited in neither space nor time as patches can
be added whenever they become visible from the camera.

6. Discussions

6.1. Decomposition of Motion Data

Our method requires that the user chooses the data decompo-
sition method as well as the discretization parameters of the
search space, because the search problem is intractable with-
out this simplification. Since the size and duration of patches
depend on the phenomenon in data the user wants to clone
and it is much easier in practice to only use basic shapes
(e.g., squares, equilateral triangles, etc.), it is quite intuitive
for the user to provide decomposition parameters, even if a
minimum expertise is required. Instead of asking the user to
provide the decomposition parameters, a more flexible so-
lution consists in letting the user sketch some approximate
properties for patches (e.g., shape, size, and duration) and
then searching in the neighbourhood of the sketched proper-
ties. This additional degree of freedom in the search process

Figure 9: Cloning complex crossing data. Top-left: an initial

set of crowd motion data, where the trajectories of the 24

pedestrians cross each other. Top-right: an extracted patch.

Bottom: snapshot of a large environment populated with the

computed patches.

would greatly extend the solution space, as well as improve
data periodicity and connectivity.

6.2. Improving Periodicity and Connectivity

When data hardly exhibits almost periodic portions or al-
most connectivity between patterns, additional degrees of
freedom should be explored. Instead of simply playing on
local deformations as described in the previous section, pe-
riodicity and connectivity can be improved by removing su-
pernumerary trajectories. For example, when attempting to
connect two patterns and the numbers of inputs and out-
puts are not equal, instead of rejecting the connection, the
supernumerary trajectories that lead to the rejection can be
removed in order to improve the connectivity. Similarly, ad-
ditional trajectories (e.g., synthetic ones obtained by simula-
tion) can be added to compensate for the differences. Lastly,
the provision of a metric is necessary to quantify the impact
of the removal/addition.

6.3. Motion Continuity

Our method ensures C0 continuity; nevertheless, it can be
easily improved in two ways to ensure C1 continuity of tra-
jectories. The first solution is to take into account C1 conti-
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nuity during the search stages by extending fc and fp func-
tions with the derivatives q̇i of character states with the aim
of giving preference to patches and connections with the best
C1 continuities. A second solution is to ensureC1 continuity
at the stage of trajectory editing (i.e., the stage when trajecto-
ries are made periodic / interconnected). Furthermore, these
two solutions can be combined. However, these additional
constraints may prevent the method from providing a wide
variety of solutions. Despite the fact that C1 continuity may
be desired for low density motions when pedestrians may
move relatively fast, we argue that C0 continuity is enough
in the case of high density motions such as our demos.

6.4. Combining Cloned Patches with Synthetic Crowd

Patches

The patches we created in this paper were extracted from
the example data, in contrast to the crowd patch pa-
per [YMPT09], where the patches were generated from pat-
terns. It is straightforward to combine data-based patches
with synthetic patches in a single environment: Data-based
patches can be spread over the environment and the gaps can
be filled in by synthetic patches. Furthermore, as mentioned
above, one could also mix data-based trajectories with syn-
thetic trajectories in a single patch.

6.5. Analogies with Texture Synthesis and Motion

Graph Techniques

Even though our technique has similarities with both tex-
ture synthesis and motion graph techniques, there are some
fundamental differences between the techniques. Compared
to texture synthesis techniques, we are working with punc-
tual continuity constraints and our material is human mo-
tion (with many specificities about the way they should be
edited and a great sensitivity of spectators to artifacts). In-
stead of preserving a single character motion as done by
motion graphs techniques, we preserve interactions between
multiple characters. This difference has a profound impact
on the nature of similarity between states and therefore the
exploration of the solution space. For these reasons, we do
not directly refer to those two problems in our paper.

7. Conclusions

We have presented a new method that can create large-
scale crowd animations with unlimited duration by extract-
ing patches from existing data that is limited in both space
and time.

Our method has several advantages compared to previ-
ous methods that consider and duplicate individual and lo-
cal relations. Firstly, it can populate large-scale virtual envi-
ronments on the fly with artifact-free motions, because our
method relies on crowd patches [YMPT09] and hence it re-
places computationally expensive animations with data re-

plays. This is of critical importance because large-scale vir-
tual environments are becoming increasingly important for
architecture design, urban planning, entertainment etc. Sec-
ondly, our method allows for easy usage by novices because
it follows the familiar copy and paste metaphor. Thirdly,
macroscopic group structures can be reproduced through the
selection of specific crowd phenomenons in example data,
and hence the anticipated results can be easily achieved with-
out the burden of crowd modelling and simulation tuning
steps, which are always difficult and chaotic by nature. Fi-
nally, the method intrinsically generates realistic animations
when real motion data is used as the input.

We have demonstrated the potential of our method
through various examples. Unfortunately, crowd motion data
is still a rare and expensive resource. To overcome this lack
of data problem, we intend to combine the original crowd
patches approach with our crowd motion cloning method
in order to handle the large variety of challenges originated
from designers’ intentions, data-sets, and environments. Fur-
thermore, since we only use a limited set of pedestrian mod-
els at the moment, each model has to be used many times to
clone virtual characters when simulating large crowds. We
should add accessories, texture variation, and decals to dis-
guise clones [MLD∗08].
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