
Special Section on Graphics Interaction

Using task efficient contact configurations to animate creatures
in arbitrary environments

Steve Tonneau a,n, Julien Pettré b,1, Franck Multon c,2

a IRISA Rennes, 263 Avenue Général Leclerc, 35000 Rennes, France
b Inria
c Université Rennes 2 - Inria

a r t i c l e i n f o

Article history:
Received 27 June 2014
Received in revised form
27 August 2014
Accepted 27 August 2014
Available online 16 September 2014

Keywords:
Autonomous virtual characters
Animation for games
Procedural Animation
Contact Before Motion
Range Of Motion
Force Transmission Ratio

a b s t r a c t

A common issue in three-dimensional animation is the creation of contacts between a virtual creature and
the environment. Contacts allow force exertion, which produces motion. This paper addresses the problem
of computing contact configurations allowing to perform motion tasks such as getting up from a sofa,
pushing an object or climbing. We propose a two-step method to generate contact configurations suitable
for such tasks. The first step is an offline sampling of the range of motion (ROM) of a virtual creature.
The ROM of the human arms and legs is precisely determined experimentally. The second step is a run time
request confronting the samples with the current environment. The best contact configurations are then
selected according to a heuristic for task efficiency. The heuristic is inspired by the force transmission ratio.
Given a contact configuration, it measures the potential force that can be exerted in a given direction. The
contact configurations are then used as inputs for an inverse kinematics solver that will compute the final
animation. Our method is automatic and does not require examples or motion capture data. It is suitable for
real time applications and applies to arbitrary creatures in arbitrary environments. Various scenarios (such as
climbing, crawling, getting up, pushing or pulling objects) are used to demonstrate that our method
enhances motion autonomy and interactivity in constrained environments.

& 2014 Elsevier Ltd. All rights reserved.

Research in computer animation is motivated by the need to
provide virtual creatures with an increased autonomy of motion in 3D
environments. Such improvements allow to propose new forms of
gameplay in video games, or to validate ergonomic designs.

In this work we are interested in the contacts created between
a creature and the environment: contacts allow to efficiently exert
the force necessary to perform motion tasks (such as getting up,
climbing or pulling). For instance in Fig. 13, several contacts are
created between the end-effectors of a virtual insect and the books
composing the environment.

Motion capture methods are inherently limited in such a con-
strained context: addressing various tasks and environments for
different creatures requires the creation of prohibitively large motion
databases. Therefore, a common approach is the decomposition of the
motion into a sequence of contact configurations between a virtual
creature and the environment. The notion of configuration is central in
motion planning [1]. Such planners often use randomly generated
configurations [2], and select those preserving static stability [3].

However, they lack heuristics to determine if those configurations
are suited for the task in terms of force exertion. In the rest of the
paper such configurations are called task efficient. Dynamic simulations
use predefined configurations as inputs to motion controllers, but
show little adaptation to the environment [4].

Thus, motion planners and dynamic controllers could benefit
from a method to generate appropriate contact configurations.
This is our problem statement, formalized in Section 2.

The key idea: The environment as a mean to exert a force:
Contacts allow force exertion, which in turn produces the motion.
Therefore to select a contact configuration, it is important to make
sure it will allow to perform the task. For this reason we need
heuristics to measure the compatibility of a contact configuration
with a translational motion task. Examples of such tasks are
pushing, pulling, standing up, or climbing. This set of motions is
commonly needed by interactive simulations (such as video-
games). They could benefit from our method to introduce more
variety in the environments and interactions they propose. Rota-
tional tasks will be addressed in future works.

To measure the task efficiency, we propose a heuristic inspired by
the force transmission ratio [5]. It defines the efficiency of a
configuration as the potential force it allows to exert in the direction
of a translational task, as detailed in Section 2.4. It is traditionally
used to optimize the configuration of a robotic arm, but requires to

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

http://dx.doi.org/10.1016/j.cag.2014.08.005
0097-8493/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: 06 71 30 36 68; fax: 02 99 84 71 71.
E-mail addresses: stonneau@irisa.fr (S. Tonneau), jpettre@inria.fr (J. Pettré),

fmulton@irisa.fr (F. Multon).
1 Tel.: 02 99 84 22 36; fax: 02 99 84 71 71.
2 Tel.: 02 99 84 74 23; fax 02 99 84 71 71.

Computers & Graphics 45 (2014) 40–50

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2014.08.005
http://dx.doi.org/10.1016/j.cag.2014.08.005
http://dx.doi.org/10.1016/j.cag.2014.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.08.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.08.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.08.005&domain=pdf
mailto:stonneau@irisa.fr
mailto:jpettre@inria.fr
mailto:fmulton@irisa.fr
http://dx.doi.org/10.1016/j.cag.2014.08.005


know in advance the future position of the end-effector. To over-
come this issue, we combine our heuristic with a random sampling
approach, independent from the environment (Section 3).

The sampling of all the possible joint configurations is per-
formed offline to ensure good performance during the online
simulation. However simply sampling to joint angles in a random
manner may lead to unrealistic poses. To overcome this we propose
to limit the sampling to a subspace corresponding to the Range Of
Motion for each joint. Classical approaches consider minimum and
maximum joint angle values while actual joint limits are more
complex to model, as there may be interactions between joint axis –
Fig. 7. In this paper we wish to model these interactions between
joint axis to limit the sampling to natural configurations (Section 4).

Then, the samples are filtered online to select configurations in
contact with the environment, and free of collisions. The chosen
configurations are finally used as inputs for an inverse kinematics
solver that will compute the final animation.

Therefore the contribution of this paper is a method for the real
time, automated computation of task efficient contact configura-
tions for arbitrary creatures. As shown in Section 5, it can be
applied to various motions tasks in arbitrary environments. We
discuss the limitations of our method, potential applications and
future works in Section 6.

1. Related work

The issue of creating contact configurations has been addressed
in different ways: Example-based methods use motion clips as
references for motion (Section 1.1); Biomechanical and robotical
approaches define relevant contact configurations by quantifying
them in terms of force exertion (Section 1.2); Motion planning and
optimization methods focus on contact configurations that pre-
serve balance (Section 1.3).

1.1. Example-based methods for constrained environments

To improve the natural aspect of an animation, a common
method consists in using motion clips, either created by an artist
or obtained through motion capture. Effective methods exist to
adapt those clips to the constraints of the environment such as
external force pressure [6] or locomotion on uneven terrain [7,8].
Similarly foot-step planning techniques proposed hybrid
approaches to address this issue [9,10].

Motion graphs [11,12] or precomputed search trees [13] can be
used for acyclic motions, and be adapted for contact interaction in
constrained environments.

Other methods address acyclic motions such as reaching and
manipulating tasks [14,15], or close contact interaction motions
[16].

However, methods based on motion capture do not easily apply
to arbitrary virtual creatures.

Another drawback is that although motion adaptation is
possible (for instance through inverse kinematics), the adaptation
of a motion clip is limited to a motion including the same end-
effectors in contact. This is problematic when the environment
differs too much from the one used in the reference motion. To
provide such methods with rich contact interactions for complex
environments would require to be able to produce the animations
corresponding to each possible interaction and appropriately
choose between them at run time.

Conversely the generality of our method covers a large set of
tasks, applies to any kind of virtual creature and adapts to the
environment.

1.2. Inverse kinematics and manipulability for virtual creatures

The issue of optimizing a contact configuration for a task has
been widely studied. Inverse kinematics methods exploit the
redundancy of kinematic trees to optimize secondary objectives
[17]. Yoshikawa presented the manipulability measure for quanti-
fying the ability of robotic mechanisms in positioning and orient-
ing end-effectors [18]. Based on this work, Chiu proposed the force
transmission ratio, another index for optimizing a manipulator
pose relatively to a specific task [5]. Several manipulability-based
methods have since been proposed to either optimize a config-
uration [19] or a trajectory [20,21]. Recent works in biomechanics
tend to show the relevance of the manipulability measure for
human beings [22].

Those methods require a priori knowledge of the target that an
end-effector must reach. They only solve half of our problem
because we need to know where a contact must be created to find
a suitable configuration.

Conversely, our method extends the force transmission ratio
and uses it along with a random sampling approach. This allows us
to address simultaneously the issues of finding a contact position
and a task efficient configuration.

1.3. Motion planning and optimization for constrained environments

The advantage of procedural methods over example-based
ones is that they are not limited by a motion database. Recently
Wampler et al. proposed a method to automatically synthesize
gaited motion for arbitrary creatures [23].

In [24], Kallman and Mataric generate a roadmap of configura-
tions independent from the environment. The roadmap is updated
at runtime as the environment is modified: colliding nodes are
removed and paths consequently updated. Our method is also
based on environment independent sampling, but the objective is
different: Kallman and Mataric build a roadmap to address the
issue of computing a collision-free motion; we do not build a
roadmap and use sampled configurations as candidates for task
efficient contact configurations.

Contact interactions have been considered for grasping tasks
[25,26], or for motion planning problems. Hauser et al. introduced
the Contact before motion approach [27], used in several other
contributions [28,3,29]. A common drawback of this approach is
that it requires prior discretization of possible contact positions in
the environment. Also, task efficiency is not always considered in
the process of finding contact configurations.

In the continuity of those works, Mordatch et al. proposed the
Contact-Invariant Optimization (CIO) term [30]: contact positions
and trajectory are planned simultaneously in the same optimiza-
tion loop. Along the process, an end-effector is guided towards the
nearest surface satisfying dynamic constraints. Al Borno et al.
proposed a full-body trajectory optimization method that does not
require explicit contact definition, but still requires to specify with
which obstacle an effector should be in contact [31].

However, to get up from a chair in the environment shown in
Fig. 8, a human would more likely put his hand on the table than
on the chair, even if the table is farther away. Those methods
cannot achieve this without requiring the user to explicitly define
the table as an input of the problem (Fig. 8). Another drawback of
those approaches is that, as for other planning methods, the
computation time is too long for interactive simulations.

Other contributions in robotics have considered the quality of
the contact configurations in their approach [32]. In particular
Bretl et al. proposed a heuristic similar to the manipulability
measure as a criteria for contact creation [33].

Our method lies in the continuity of these procedural
approaches. It does not address the planning issue, rather the

S. Tonneau et al. / Computers & Graphics 45 (2014) 40–50 41



problems of automatically finding better task efficient contact
positions and configurations, while offering more flexibility than
example-based methods [34].

1.4. Previous work and content of the extended version

This paper is an extension of [35] which was based on the
design of a new method to compute task-efficient contact config-
urations for arbitrary virtual creatures. In this paper we focus on
human motion. More specifically we aim at designing realistic
joint limits. To do so we rely on recent works in biomechanics [36].
As a result, the reduced sampling space generates more human-
like configurations. The changes related to this extension are
detailed in Section 4. New results are shown in Section 5, and
additional discussion is provided in Section 6. Also, in Section 3.3
we present the inverse kinematics solver we use to synthesize the
resulting animation.

2. Problem statement

In this section we give several mathematical definitions to
formulate our issue: How to rapidly compute a limb contact
configuration, efficient for performing a given task? Fig. 2 provides
an illustration for such definitions.

2.1. Kinematic representation of a virtual creature

A virtual creature is described by a kinematic structure A, with
m end-effectors. We decompose A to treat each limb separately.

Definition of a limb: A limb Lj;0r jrm�1 is a kinematic sub-
chain of A, comprising n rotational joints, and exactlyone end-
effector ej (Fig. 2 –blue rectangle). Rj denotes the 4�4 transforma-
tion matrix attached to Lj's root joint.

Limb configuration: A configuration Θj is a set of n angle values
for each joint of the limb Lj. pðΘjÞ ¼ ðxj yj zjÞT gives the position of
the end-effector ej for the configuration Θj, in world coordinates.

Jacobian matrix of a configuration: JðΘjÞ is the 3nn Jacobian
matrix of Lj in the configuration Θj. JðΘjÞT is its transposed matrix.
If θi; i¼ 1…n are the joint values of the configuration Θ then the
Jacobian is defined as follows (the j indices are removed for
clarity):

JðΘÞ ¼

∂x
∂θ1

⋯ ∂x
∂θn

∂y
∂θ1

⋯ ∂y
∂θn

∂z
∂θ1

⋯ ∂z
∂θn

0
BB@

1
CCA ð1Þ

JðΘjÞ is computed using the method given in [37]. We also define
JpðΘjÞ ¼ JðΘjÞnJðΘjÞT as the product of the jacobian by its transpose;
We call sample a the triplet 〈pðΘjÞ;Θj; JpðΘjÞ〉.

2.2. Environment and contact interactions

The virtual creature moves in an environment W. W is com-
posed of obstacles with which the creature interacts.

The environment as a set of obstacles: An obstacle is a planar
surface OAW defined in the 3-dimensional Euclidian space
(orange surfaces in Fig. 2). This definition of an obstacle is not
restrictive since any complex three-dimensional object can be
decomposed into a set of obstacles. nO is the obstacle normal unit
vector (orange arrow in Fig. 2).

Contact between a limb and the environment: We say that a
configuration Θj is in contact regarding an obstacle set E�W if

(OAE;DðxO;pðΘjÞÞoϵ

where: xO is the orthogonal projection of pðΘjÞ onto the obstacle O;
D returns the Euclidian distance between two points; ϵAR is small
(red cylinders in Fig. 2).

2.3. Objective formulation

The motion task is expressed as a unit vector vtAR3, expressed
in Rj coordinates (black arrow in Fig. 2) for a limb Lj. vt expresses a
translational motion task for the root of the creature. Rotational
tasks are not discussed in this work.

Fig. 1. Online step request. Given the task of getting up (1), We transpose the samples from our database into the local environment (2), and select the configurations in
contact with the environment (3). Among these candidates, we select the collision-free configurations that maximize the heuristic α (4). For clarity the creature and samples
are shown in a wireframe form.

Fig. 2. Virtual human composed of 4 limbs. 3 end-effectors are in contact with
2 obstacles.

S. Tonneau et al. / Computers & Graphics 45 (2014) 40–5042



Task efficient configuration: We want to compute a configuration
Thetaj with the three following properties: Θj is in contact with an
obstacle Oi of W; Θj is collision-free (no interpenetration) and does
not violate eventual joint limits; Θj is suitable for the task vt,
according to a heuristic α that must be provided. Computation
time should be compatible with real time interactive simulations.

2.4. A heuristic for task efficient contact configurations

We want a heuristic α to answer the following question: How
appropriate is a configuration Θj regarding vt? We make the
hypothesis that for a subset of the possible motions, vt will be
satisfied more easily if the end-effector can exert a high force in
the direction of vt. This makes sense for the tasks we are
addressing, such as pushing a cupboard, which might require an
important effort. We propose to use that potential force as a
heuristic for task compatibility. Previous works in robotics [5]
showed that this potential force can be quantified by computing,
for a given configuration, the force transmission ratio f T regarding
vt:

f TðΘj; vtÞ ¼ ½vT
t ðJðΘjÞJðΘjÞT Þvt��1=2 ð2Þ

The force manipulability ellipsoid provides an intuitive repre-
sentation of the different values taken by the force transmission
ratio, as shown in Fig. 3 [18]. The value f TðΘj; vtÞ corresponds to the
length of the ellipsoid in the direction vt. According to f T in those
two examples it appears that the lower obstacle is more suited for
a horizontal task, when the upper obstacle is more suited for a
vertical task.

We extend the force transmission ratio to use it as a heuristic
for contact location. We consider that Θj is in contact with an
obstacle Oi. We weigh f T with the dot product between the task vt
and the normal nOi of Oi.

αðΘj; vtÞ ¼ f TðΘj; vtÞvt � nOi ð3Þ

If we maximize α, obstacles with normals collinear to the
motion task will be advantaged for contact creation. This is
coherent with our problem because it verifies that force exertion
is actually applied against the obstacle, as shown in Fig. 8.

Also, we can see that α can take negative values. This is
interesting especially for pushing and pulling tasks, as shown in
Section 5.2.

In the results shown in this paper α is the only heuristic used.
Its integration with other heuristics is discussed in Section 6.

3. Computation of task efficient contact configurations

The definitions given in Section 2 allow us to describe our
method in mathematical terms. Our contribution lies in the
proposition of a method to generate and compare contact config-
urations according to a motion task. For efficiency reasons, the
algorithm is decomposed in two steps:

Offline sampling step: The first step is independent from the
environment. A large set of arbitrary configurations Qj is randomly
generated for each limb Lj –Fig. 4–. Precomputation is made for
each configuration to accelerate run time performance.

Online request step: The second step consists in a request
performed on the configuration set Qj. The configurations that, in
the current situation, are in contact with the environment W, will
be selected as potential solutions. Among those we select the
configuration for which our heuristic α gives the highest score –

Fig. 1. In this paper this configuration is used as an input to an
inverse kinematics solver in order to produce the final animation.

3.1. Offline generation of random limb configurations

This step is independent from the environment, and thus only
has to be run once for each limb Lj composing our creature A. Fig. 4
illustrates the sample configuration generation process. As inputs,
we take a number of samples N and a limb Lj. We fill a sample
container Qj with the sample configurations of Lj by repeating N
times four steps:

Random generation of a configuration Θj –Fig. 4 (1)–: This is
done by generating a random angle value for each joint of Lj. The
value of the angle is restricted by a range of motion (ROM) to avoid
obtaining unnatural poses. This generation step is further dis-
cussed in Section 4.

Computation of the jacobian product JpðΘjÞ: The jacobian matrix
JðΘjÞ is computed and multiplied by its transpose JðΘjÞT to obtain
the jacobian product JpðΘjÞ, which is needed for the run time
computation of the extended force transmission ratio α. It can be
computed directly from Θ but its computation is expensive.
Storing it results in the additional storage of N matrices of size
3n3 in memory. However it improves the online performance
because it avoids computing it multiple times and reduces the
computation of α to two simple matrix products.

Fig. 3. The force manipulability ellipsoid for two different configurations. A longer
axis means that a more important force can be exerted in the direction of the axis.

Fig. 4. Illustration of the environment-independent offline sampling for N¼5000,
for the right arm first, then for all the limbs. A sample container is created for each
limb. An entry contains a configuration Θ, and its jacobian product Jp. Entries are
indexed by the end-effector position pðΘÞ. For clarity the samples are shown in a
wireframe form.

S. Tonneau et al. / Computers & Graphics 45 (2014) 40–50 43



Computation of pðΘjÞ –Fig. 4 (1): The end-effector position pðΘjÞ
is expressed in the limb coordinates Rj. Storing pðΘjÞ allows the
implementation of the sample container Qj as a data structure
efficient regarding proximity requests that will be performed at
run time.

Insertion of the resulting sample in Qj –Fig. 4 (2): We create the
sample denoted by the triplet 〈pðΘjÞ;Θj; JpðΘjÞ〉, and store it into the
sample container Qj.

As stated earlier, the generation of sample configurations has to
be performed for every limb composing our creature A. For
instance, for a virtual human, we would end up with four sample
containers (one for each arm, and one for each leg). We cannot use
a single tree for both arms because the joint limits differ symme-
trically in our model.

The appropriate value for N is discussed Section 5.4. The
sampling method is discussed in Section 6.

3.2. Online computation of task efficient contact configurations

We consider the motion task vt –Fig. 1 (1): the black arrow
indicates the task of getting up–. To find a contact configuration for
a limb Lj that is efficient for vt, we proceed in four steps:

Identification of the reachable obstacles: We retrieve the obstacle
set E�W of obstacles potentially reachable by the limb Lj –Fig. 1
(2.a): the sofa, the ground and the wall–. E is the result of a
collision detection query between the environment and a sphere Sj
centered at the root of Lj. The radius of Sj is defined as the length of
Lj.

Selection of the samples in contact: We request Qj for all the
samples that are in contact with an obstacle of E –Fig. 1 (2.b)–. The
result of the query is a list of limb configurations Qcontact

j � Qj –Fig.
1 (3): Selection of configurations in contact with the sofa and the
ground–.

Ordering of the candidate samples: We sort the samples of
Qcontact

j using our heuristic αðΘj; vtÞ. This means that the first
sample of Qcontact

j , that we call Θmax
j , verifies:

8ΘjAQcontact
j ; αðΘj; vtÞo ¼ αðΘmax

j ; vtÞ:

This is the configuration that is the most appropriate for the task
regarding the extended force transmission ratio.

Selection of the best collision-free sample. We perform a collision
check between the environment and Θmax

j . If Θmax
j is free of

collision, it is returned as the solution configuration. Otherwise,
we keep iterating through the sorted configurations of Qcontact

j
until we find a configuration Θtarget

j free of collisions. If all the
configurations of Qcontact

j are colliding, no configuration is returned
–Fig. 1 (4): our method places the right hand on the armchair, both
feet on the ground, close to the root, and the left hand on the sofa–.

3.3. Computation of the resulting animation

The selected contact configuration Θtarget
j is used as a target for

a simple animation system –Fig. 5 (1) and (2). To achieve the
animation two steps are necessary:

First we compute a trajectory between the end-effector current
and target with Bézier curves –Fig. 5 (3). Then, an inverse
kinematics solver is used to guide the end-effector along the
trajectory –Fig. 5 (4).

We use the method proposed in [17] which handles efficiently
joint limits and makes it possible to specify secondary constraints
minimized along the trajectory.

In order to reach not only the position, but also the configura-
tion Θtarget

j , we use a secondary constraint h formulated as the
euclidian distance between the current configuration and the

target configuration:

hðΘcurrent
j Þ ¼ ‖ðΘtarget

j Þ�ðΘcurrent
j Þ‖ ð4Þ

With this animation systemwe show that our method is able to
generate task efficient configurations within time limits acceptable
for real time applications. The offline and online steps are auto-
matic and do not require manual editing.

4. Representation and sampling of the range of motion (ROM)

In order to avoid generating unnatural results, the configura-
tions of a limb are sampled inside a boundary called Range Of
Motion (ROM). A ROM represents the possible angle values a
degree of freedom can take in a given situation. In Section 4.1 we
explain how we determine the ROM of a limb. In Section 4.2 we
show how we generate limb configurations inside their
corresponding ROM.

4.1. Determination of the range of motion (ROM)

Usually, the Range Of Motion (ROM) of an articulation is
determined using joint limits [38]. When using joint limits, the
angle value θi a degree of freedom can take is bounded to an
interval ½βi; γi�. For the three degrees of freedom of the shoulder for
instance, the resulting ROM has the shape of a parallepiped
rectangle –Fig. 7 bottom row–. However the actual ROM of the
shoulder is more complex and restrictive –Fig. 6–, because of the
dependencies that exist between the degrees of freedom, as
shown in [39]. Using joint limits can result in unnatural config-
urations, or, if the limits are too restrictive, in the rejection of
natural configurations. For the case of a human, we address this
issue by determining a more accurate ROM for the complex
shoulder and hip articulations. To do so we use the protocol
established by Haering et al. [36]. Using a motion capture system,
we record hip and shoulder motions of maximal amplitude. From
the obtained data, we reconstruct the 3D joint kinematics, and
determine the angular configurations of the studied articulation at

Fig. 5. Animation between the current configuration Θarm
current and the target

configuration Θarm
current. (3): A trajectory is computed between the end-effector

positions of both configurations. (4): An inverse kinematics solver moves the
end-effector along the trajectory.

S. Tonneau et al. / Computers & Graphics 45 (2014) 40–5044



each frame. Each configuration can be seen as a three-dimensional
point, where one coordinate describes the value of one Euler angle
–Fig. 6.

We then compute the 3D non-convex hull K including all the
recorded angular configurations. This is achieved using the
method proposed in [40]. KHip and KShoulder represent the Range
Of Motion (ROM) of the hip and shoulder. This means that any
configuration included in KHip (respectively KShoulder) is a config-
uration of the hip (respectively the shoulder) that is valid for
a human.

In this work, the protocol was applied on a single male subject,
therefore the computed KHip and KShoulder are specific to him.
Haering et al. define a normalized ROM by including 3D poses
common to a maximal number of participants into a hull of
average volume. Therefore, the user of the method has the choice
between using an average ROM fitting any virtual human or using
one specific to a given morphology.

4.2. Generation of samples for a limb

During the offline phase of our method, we sample configura-
tions within the joint limits of a limb. For the case of the human
arm and leg, we discard configurations for which the shoulder and
hip angular values do not belong to their respective ROM. There-
fore the generation of a sample configuration is done in two steps:

Determination of the joint limits: For each degree of freedom θi,
we identify the minimum and maximum angle values βi and γi that
θi can take. For the hip and shoulder, those values are deduced
from the bounding box of KHip and KShoulder –Fig. 7. For other

articulations which use simple joint limits (such as the elbow
angle) we define them manually.

Angle values generation and validation: We randomly generate
an angle value θiA ½βi; γi� for each degree of freedom composing the
limb. We reject unnatural arm and legs configurations that are not
included in their respective Range Of Motion. In Fig. 7, the

Fig. 6. Representation of the Range Of Motion of the first author's shoulder. The blue volume is the non convex hull KShoulder including all the shoulder configurations that
were recorded in a motion capture session, following the YXZ euler angle decomposition.

Fig. 7. Generation of two sample configurations. Up: The two configurations lie
within the joint limits of the shoulder, as shown in the bottom left plot. However the
red configuration is rejected because it does not belong to KShoulder (bottom right).

S. Tonneau et al. / Computers & Graphics 45 (2014) 40–50 45



unnatural red configuration lies within the fixed joint limits of the
shoulder. Using an accurate ROM allows its rejection because it
does not belong to KShoulder.

This procedure makes it possible to efficiently sample config-
urations in a more accurate ROM for virtual humans.

5. Results

We designed several scenarios to demonstrate the benefits of
our method, through the variety of creatures and environments
that were designed. In this section we give implementation details
on those scenarios. We then detail each scenario and comment the
results obtained. The section is concluded with a performance
analysis.

5.1. Implementation details

In order to allow for a fast and efficient search among the
configurations, we implemented Qj as an octree data structure that
offers support for spatial queries. The position of the end-effector
pðΘjÞ is used as an index in Qj.

The test application was developed using the Cþþ language.
One limitation of our current implementation is that collision
checks are only tested against the environment and not between
limbs. This is not a limitation of the method and will be corrected
in future work.

Environments are described in the obj format, while virtual
creatures and scenarios are described using custom xml files.
Rendering is achieved using the OpenGl API. No other third-
party libraries were used. We performed the runs on a laptop
with an Intel Core i7-2760QM 2.40 GHz processor and 4 GB of
memory. The application is not multi-threaded.

5.2. Test scenarios

We consider a virtual creature in a constrained environment.
Six coordinates describe the position and orientation of its root. By
default the chosen initial limb configuration is the reference
posture of the creature (as shown for instance in Fig. 9). We
consider a directional task, and one or several limbs of the
creature. We then use our method to compute a task efficient
contact configuration. Each scenario is also illustrated in the
companion video.

Standing up –Figs. 1 and 8: The environment is composed of a
sofa, or a chair and a table. The creature is a virtual human (Fig. 2).
In the initial configuration the human is sitting on a sofa or a chair.
We formulate the task of getting up as a vertical vector. These
examples show the adaptability of our method: the same task in

different environments results in different configurations that take
advantage of it.

Multi-limb creatures in constrained environments (video): The
environment is composed of a challenging set of books placed on a
bookshelf. The creature is an insect with six limbs (Fig. 9). The
input is a forward directional task. This example shows that our
method is generic and can be applied to arbitrary creatures, as
opposed to example-based approaches.

Pushing and pulling objects –Figs. 10 and 11–: The creature is a
virtual human. Two environments are used: In the pushing
scenario, the environment consists in a cupboard and the ground;
in the pulling scenario it consists in a cupboard, the ground, as
well as a rope attached to the cupboard and a small wall. The task
consists in pulling (pushing) the cupboard. We formulate the task
as a horizontal vector, and compute task efficient configurations
for the arms and the left leg of the human. The right foot is already
in contact. To push objects it is preferable to create contacts on
surface the normals of which are opposite to the pushing direc-
tion. Therefore in this case we use a different heuristic
αpushðΘj; vtÞ ¼ �αðΘj;vtÞ.

In Fig. 12, the task remains to push the cupboard, but this time
the character's back is facing the cupboard. Thanks to a more

Fig. 9. Reference posture of a virtual insect composed of 6 limbs. Each limb is
composed of 5 degrees of freedom.

Fig. 10. Configurations found for a pulling task. In the right figure, our creature uses
the pink wall as a better support for the foot. The asymmetry between the arm
configurations is induced by the sampling phase.

Fig. 8. Our method (right) is compared with the closest distance heuristic (middle) in this example of getting up from a chair. In the latter case, the left hand position (on the
side of the table) is not suitable to generate a vertical effort.

S. Tonneau et al. / Computers & Graphics 45 (2014) 40–5046



accurate definition of the ROM (Section 4), undesired configura-
tions (left) are rejected in favor of human-like configurations
(right). These examples show that our method can be applied to
pushing and pulling tasks, enhancing the autonomy of motion of
our virtual characters.

Computation of a sequence of task efficient contact configurations
–Fig. 13þclimbing example in video–: A virtual creature is set in an
environment in its reference configuration. Given a trajectory for
the creature root, we use our method to compute a configuration
sequence along the trajectory. The first configuration computed is
given as an input to compute the second one, and so on. These
examples show how a simulation can interact with our method to
obtain target configurations and eventually synthesize motion.

5.3. Comparison against the closest distance heuristic

Comparing the results obtained by our method is not trivial
because few methods perform the real time automatic computa-
tion of contacts: Several previous contributions only address cyclic
motions such as walking [7,8]. Hauser et al. manually predefine
the set of possible contacts [27]. Bretl et al. use a form of
manipulability integrated in a motion planner [33]. Mordatch
et al. use a closest distance approach as part of an optimization
loop that takes several minutes to compute a result [30]. Therefore
we choose to compare the results we obtained with this closest
distance heuristic.

In Fig. 8 the environment consists of a chair, the ground and a
table. We compare our method with the closest distance heuristic.
The configuration of the left arm in particular seems more
appropriate to generate a vertical effort with our method.

In Fig. 11 the environment consists of a cupboard and the
ground. The task for a virtual human is to push the cupboard. In
the middle we can see that the results provided by the closest
distance heuristic are highly determined by the original location of
the end-effectors. Our method, on the other hand, creates contact
configurations relevant for the pushing task.

In Fig. 14 the environment is a climbing wall. The creature is a
virtual human (Fig. 2). The initial configuration is the reference
posture –Fig. 14 (middle)–. The task consists in navigating along
the wall in arbitrary directions. This example shows the advantage
of our method over heuristics such as the closest distance, because
the selected configurations vary according to the motion task.

5.4. Performances

Three parameters play a role in the performances offered by
our method: the number N of samples generated during the offline
step, the number of obstacles reachable by the limb when the
method is called at run time, and the number m of limbs
composing our creatures.

We only have control over the number of samples N, so we
focus on this variable. We are interested in finding a value for N
that will be as low as possible while maintaining an acceptable
quality in the results obtained.

We have observed that in our scenarios, the number of samples
N has a limited influence on the average maximum value of α.
Therefore the main variables of interest are the number N of
samples generated and the number of candidate configurations
found consequently. Table 3 shows the time spent during the
offline step relative to the number of samples generated. It is
interesting to note that even for N¼100000, the generation time is
acceptable, since this step is only performed once. Parallelization
and code optimization could probably allow to obtain better
performances, but the interest of doing this is limited. Table 1
shows the time spent for one call to our method. Table 2 presents
the average number of contact candidates returned by a spatial
request.

We observe that for Nr10 000, the computation time is short
and the average number of candidates is satisfying. The human
climbing scenario is an exception: a higher number of samples is
necessary to find enough contact candidates. This is because the
environment is composed of a small set of small obstacles.

Looking at the worst performances, we observe a correlation
between the time spent in the method and the maximum number
of hits obtained. This is explained by the growing number of
requests that must be made. In each scenario, the number of
triangles is about the same (a hundred); the performance variation
is explained by their spatial distribution. For the getting up

Fig. 11. Our method (right) is compared with the closest distance heuristic (middle) in this example of pushing a cupboard. The closest distance heuristic places the hands
and left feet at locations close to their original positions (left) while our method places the end-effectors in configurations relevant for the pushing task.

Fig. 12. A more precise definition of the Range Of Motion of the human arm gives
more natural results. In this example the character has to push the cupboard but its
back is facing it. The configuration on the left is unnatural because the shoulder
rotation angle is not compatible with the abduction angle. It is rejected in favor of a
more human-like configuration (right).

S. Tonneau et al. / Computers & Graphics 45 (2014) 40–50 47



scenario for instance, setting N¼1000 is a reasonable choice,
where a value of N¼100 000 seems more appropriate in the
human climbing scenario. This can be explained by the limited

range of motion of the insect limbs, so that a smaller amount of
samples is sufficient to cover correctly the reachable workspace of
the limb.

Under the appropriate conditions on the number of samples,
we observed that the framerate never went below 52 fps even in
the worst case scenarios.

Finally, we observe that the memory occupation grows linearly
with the number of samples, and remains in reasonable ranges
(from 2 MB for 10 000 samples to 166 MB for 1 000 000 samples).

Fig. 13. Configuration sequence for an insect with 6 limbs crossing a bookshelf. Task efficient contact configurations are found along the trajectory.

Fig. 14. Configurations for a humanoid on a climbing wall. Left: the closest distance
heuristic does not consider the motion task, therefore it always computes the same
configuration. Right: From the same initial root location (position and orientation),
different configurations are computed depending on the task (black arrow).

Table 1
Average time (worst time) (in ms) spent for a call to our method relative to the
scenario and the number of samples N.

N¼1000 N¼10 000 N¼100 000

Human climbing 1 (3) 2 (6) 3 (30)
Getting up 4 (7) 5 (60) 154 (856)
Insect locomotion 1 (4) 8 (40) 55 (370)
Pushing/pulling 1 (1) 5 (6) 34 (70)

Table 2
Average number of contact configurations found relative to the scenario and the
number of samples N.

N¼1000 N¼10 000 N¼100 000

Human climbing 0 1 26
Getting up 41 49 3442
Insect locomotion 20 312 2553
Pushing/pulling 13 142 1387

S. Tonneau et al. / Computers & Graphics 45 (2014) 40–5048



6. Discussion

In this section we review the main limitations of our method
and future work, before concluding.

6.1. Limitations

The method is not probabilistically complete: A probabilistically
complete method would have the following property: if a solution
exists, the probability of finding it as the running time goes to
infinity is 1. Our method generates N samples offline used as
inputs for the contact queries. Due to this approach, the method is
not probabilistically complete. This means that even if a solution
exists, our method might fail to find it. Maintaining this property
would involve performing regularly new sampling steps at run
time. We choose to lose this property in favor of real time
performance.

The method does not integrate dynamic constraints: The method
assumes a non-dynamic environment. For instance linear and
angular velocities are not taken into account, nor are gravity and
balance. To extend the method to a wider range of motions,
additional efforts will be necessary to integrate those parameters.
This would make it possible to predict the future positions of
moving objects and create contacts with them.

However, we believe that even though our method does not
integrate physical parameters yet, interactive applications such as
video games can already benefit from it, in a way similar to the
locomotion system proposed in [7].

The accurate definition of the Range Of Motion does not apply to
all creatures. In this paper we experimentally determine the ROM
of the human limbs, which allows us to obtain more natural
configurations. Currently for other virtual creatures this approach
is not possible; the current solution is to use simple linear joint
limits. It would be interesting to propose an intuitive tool to design
and test the ROM of arbitrary limbs.

Performance issues: As the complexity of the environment rises,
performance can become an issue because of the important
number of requests that must be run. Fortunately, as seen in
Section 5.4 it is possible to adjust the number of samples N to
reduce the number of requests. However, if there are too many
obstacles a trade-off between accuracy and abstraction of the
environment should be found to maintain a reactive simulation.

6.2. Future work

Our next step is to integrate the method within existing
solutions to further demonstrate its interest. We are also working
on several improvements on the method itself.

Dynamic simulation integration: The method can be integrated
within an existing physical animation framework, as a comple-
mentary tool used only to handle constrained situations. In open
situations classical controllers could still be used in this hybrid
system. To automatically determine if the local environment is too
constrained for a classical approach, we could use a measure such
as the one suggested by [41].

Motion planner integration: Offline motion planners can benefit
from the method to avoid the manual description of potential
contact points. They can also use it as an additional term to an

optimization problem, allowing better results in terms of task
compatibility at a small cost.

Global posture computation: As of today, in our method the
motion task is the same for every limb. However, designing a high
level controller to decompose a global motion task into subtasks
for each limb would allow us to obtain more accurate results.

Also, currently we do not integrate the fact that actuating
several limbs at the same time could result in undesired torques
on the body in the case of a dynamic simulation. Therefore we
want to combine the method with a complementary global
posture optimization technique [42]. Doing this would allow us
to optimize the whole body according to the computed limb
configurations, and produce more natural results.

Additional heuristics for configuration selection: Combining our
heuristic with other criteria could help us obtaining more natural
results. Specifically, we would like to integrate an additional
comfort criterion for virtual humans. Using the precise represen-
tation of the range of motion K of the human shoulder and hip, we
could select in priority configurations that lie far from the
boundaries of K. The validity of this hypothesis as well and the
simultaneous integration of both heuristics will be addressed in
future works.

Validating the extended force transmission ratio: The method
uses the extended force transmission ratio, based on the manipul-
ability measure. A biomechanical study showed that it is effec-
tively optimized by humans performing grasping tasks with their
upper limbs [22]. However, this cannot be demonstrated for all the
possible motion tasks, or for non human morphologies. We would
like to experimentally validate the application of our heuristic to
arbitrary limbs. To do so we intend to conduct a perception study
to determine if the results produced by our method are perceived
as natural by users.

We also want to improve the heuristic. Several options exist:
Treating rotational efforts would allow us to address a larger
number of tasks; We would also like to integrate more complex
contact and friction models; Lastly, combining the method with
other classic ones such as dynamic balance will allow us to obtain
more natural results.

A smarter sampling step: The configuration samples of a limb
are generated randomly in its reachable workspace. Uniform
sampling did not allow us to obtain better results. As explained
in Section 5, reducing the number of samples could be interesting
for performance. If the task is known, a possible improvement is to
design a “task-oriented” sampling that would generate more
samples around configurations known to be “good” for a task, in
a way similar to [43]. This would probably reduce the number of
samples necessary because it would limit the generation of
samples in uninteresting areas.

6.3. Conclusion

In this paper we introduced a method to compute task efficient
contact configurations for arbitrary creatures in 3D environments.
It combines a sampling approach with a heuristic to evaluate the
relevance of a configuration for a task. The sampling step is
performed offline for enhancing performance, is automatic and
independent from the environment. A precise representation of
the Range Of Motion of the human limbs is used to reject
unnatural configurations and enhance more human-like results.
The method is designed to provide contact configurations to
motion planners and animation frameworks. It is suitable for real
time applications.

Experimental results show that the method can successfully
address a large variety of tasks in various constrained environ-
ments. Thus it enhances the autonomy of motion and the inter-
activity proposed by simulations.

Table 3
Average time (in ms) spent generating samples relative to the number of samples
N.

N¼1 000 N¼10 000 N¼100 000

Generation time 18000 1500 256

S. Tonneau et al. / Computers & Graphics 45 (2014) 40–50 49



Future work will focus on integrating the method within
existing frameworks.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cag.2014.08.005.

References

[1] Esteves C, Arechavaleta G, Pettré J, Laumond J-P. Animation planning for
virtual characters cooperation. ACM Transactions on Graphics 2006;25
(2):319–39. http://dx.doi.org/10.1145/1138450.1138457.

[2] Lozano-perez T. Spatial Planning: A Configuration Space Approach c(2).
[3] Escande A, Kheddar A, Miossec S, Garsault S. Planning support contact-points

for acyclic motions and experiments on HRP-2. In: Khatib O, Kumar V, Pappas
GJ, editors. ISER, Springer Tracts in Advanced Robotics, vol. 54. Springer; 2008.
p. 293–302.

[4] Yin K, Loken K, van de Panne M. Simbicon: simple biped locomotion control.
ACM Transactions on Graphics 2007;26(3) Article 105.

[5] Chiu S. Control of redundant manipulators for task compatibility. In: Robotics
and Automation. Proceedings. 1987 IEEE International Conference on, vol. 4,
1987, pp. 1718–1724. doi: http://dx.doi.org/10.1109/ROBOT.1987.1087795.

[6] Coros S, Karpathy A, Jones B, Reveret L, van de Panne M. Locomotion Skills for
Simulated Quadrupeds. ACM Transactions on Graphics 2011;30(4) Article TBD.

[7] Johansen RS. Automated semi-procedural animation for character locomotion.
Aarhus Universitet, Institut for Informations Medievidenskab; 2009.

[8] Levine S, Popovic J. Physically Plausible Simulation for Character Animation.
In: Symposium on Computer Animation, 2012, pp. 221–230.

[9] Choi MG, Lee J, Shin SY. Planning biped locomotion using motion capture data
and probabilistic roadmaps. ACM Transactions on Graphics 2003;22
(2):182–203. http://dx.doi.org/10.1145/636886.636889.

[10] Kanoun O, Laumond J-P, Yoshida E. Planning foot placements for a humanoid
robot: a problem of inverse kinematics. Int. J. Rob. Res. 2011;30(4):476–85.
http://dx.doi.org/10.1177/0278364910371238.

[11] Kovar L, Gleicher M, Pighin F. Motion graphs. In: ACM Transactions on
Graphics, vol. 21, ACM, New York, NY, USA, 2002, pp. 473–482. doi: http://
dx.doi.org/10.1145/566570.566605.

[12] Lee J, Lee KH. Precomputing avatar behavior from human motion data. In:
Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, SCA '04, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 2004, pp. 79–87. doi: http://dx.doi.org/10.1145/1028523.1028535.

[13] Lau M, Kuffner JJ. Precomputed search trees: planning for interactive goal-
driven animation. In: Symposium on Computer Animation, 2006, pp. 299–308.

[14] Yamane K, Kuffner J, Hodgins JK. Synthesizing Animations of Human Manip-
ulation Tasks, ACM Trans. on Graphics (Proc. SIGGRAPH 2004).

[15] Kallmann M, Aubel A, Abaci T, Thalmann D. Planning Collision-Free Reaching
Motions for Interactive Object Manipulation and Grasping. Computer graphics
Forum (Proceedings of Eurographics'03 2003;22(3):313–22.

[16] Ho ES, Komura T. Indexing and retrieving motions of characters in close
contact. IEEE Transactions on Visualization and Computer Graphics 2009;15
(3):481–92 doi: doi:10.1109/TVCG.2008.199.

[17] Baerlocher P, Boulic R. An inverse kinematics architecture enforcing an
arbitrary number of strict priority levels, The Visual Computer 20(6). doi:
http://dx.doi.org/10.1007/s00371-004-0244-4.

[18] Yoshikawa T. Analysis and Control of Robotics Manipulators with Redundancy
1984.

[19] Naksuk N, Lee CSG. Zero moment point manipulability ellipsoid. In: ICRA 2006
Proceedings, 2006, pp. 1970–1975. doi: http://dx.doi.org/10.1109/ROBOT.2006.
1641994.

[20] Guilamo L, Kuffner J, Nishiwaki K, Kagami S. Manipulability optimization for
trajectory generation. In: Robotics and Automation, 2006. ICRA 2006. Pro-
ceedings 2006 IEEE International Conference on, 2006, pp. 2017–2022. doi:
http://dx.doi.org/10.1109/ROBOT.2006.1642001.

[21] Siciliano B, Sciavicco L, Villani L, Oriolo G. Robotics: modelling planning and
control. 1st Edition. Incorporated: Springer Publishing Company; 2008.

[22] Jacquier-Bret J, Gorce P, Rezzoug N. The manipulability: a new index for
quantifying movement capacities of upper extremity. Ergonomics 2012;55
(1):69–77. http://dx.doi.org/10.1080/00140139.2011.633176.

[23] Wampler K, Popović J, Popović Z. Animal locomotion controllers from scratch.
Computer Graphics Forum 2013;32:153–62. http://dx.doi.org/10.1111/
cgf.12035.

[24] Kallman M, Mataric M. Motion planning using dynamic roadmaps. In:
Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE Interna-
tional Conference on, vol. 5, 2004, pp. 4399–4404 vol.5. doi: http://dx.doi.org/
10.1109/ROBOT.2004.1302410.

[25] Ye Y, Liu CK. Synthesis of detailed hand manipulations using contact sampling.
ACM Transactions on Graphics 2012;31(4):1–10 doi: doi:10.1145/2185520.
2185537.

[26] Goldfeder C, Ciocarlie M, Dang H, Allen P. The columbia grasp database. In:
Robotics and Automation, 2009. ICRA '09. IEEE International Conference on,
2009, pp. 1710–1716. doi: http://dx.doi.org/10.1109/ROBOT.2009.5152709.

[27] Hauser K, Bretl T, Latombe J-C. Non-gaited humanoid locomotion planning. In:
Humanoid Robots, 2005 5th IEEE-RAS International Conference on, 2005,
pp. 7–12. doi: http://dx.doi.org/10.1109/ICHR.2005.1573537.

[28] Kalisiak M, van de Panne M. A grasp-based motion planning algorithm for
character animation. The Journal of Visualization and Computer Animation
2001;12(3):117–29. http://dx.doi.org/10.1002/vis.250.

[29] Bouyarmane K, Kheddar A. Multi-Contact Stances Planning for Multiple
Agents. In: ICRA'11: International Conference on Robotics and Automation,
Shanghai International Conference Center, Shanghai, Chine, 2011, pp. 5353–
5546.

[30] Mordatch I, Todorov E, Popović Z. Discovery of complex behaviors through
contact-invariant optimization. ACM Transactions on Graphics 2012;31(4)
43:1—-43:8. doi: http://dx.doi.org/10.1145/2185520.2185539.

[31] Al Borno M, de Lasa M, Hertzmann A. Trajectory optimization for full-body
movements with complex contacts. IEEE transactions on visualization and
computer graphics 2012:1–11 doi: 3A697C56-7DB9-4DDB-9C30-
6DCA693F48F9.

[32] Hauser K, Bretl T, Harada K, Latombe J-C. Using motion primitives in
probabilistic sample-based planning for humanoid robots. In: Akella S, Amato
NM, Huang WH, Mishra B, editors. WAFR, Springer Tracts in Advanced
Robotics, vol. 47. Springer; 2006. p. 507–22.

[33] Bretl T, Rock S, Latombe J-C, Kennedy B, Aghazarian H. Free-climbing with a
multi-use robot. In: Khatib MHA Jr O, editor. ISER Springer Tracts in Advanced
Robotics, vol. 21. Springer; 2004. p. 449–58.

[34] Champandard AJ. Procedural Characters and the Coming Animation Technol-
ogy Revolution, 〈http://aigamedev.com/open/editorial/animation-revolution/〉.

[35] Tonneau S, Pettré J, Multon F. Task efficient contact configurations for arbitrary
virtual creatures. In: Proceedings of the 2014 Graphics Interface Conference,
GI '14, Canadian Information Processing Society, Toronto, Ont., Canada,
Canada, 2014, pp. 9–16.

[36] Haering D, Raison M, Begon M. Measurement and description of three-
dimensional shoulder range of motion with degrees of freedom interactions,
Journal of biomechanical engineering 136(8). Interref in References: http://dx.
doi.org/10.1115/1.4027665.

[37] Buss SR. Introduction to Inverse Kinematics with Jacobian Transpose, Pseu-
doinverse and Damped Least Squares methods (2009) 1–19.

[38] Welman C. Inverse kinematics and geometric constraints for articulated figure
manipulation. Master's thesis, Simon Frasor University, 1993.

[39] Labriola JE, Lee TQ, Debski RE, McMahon PJ. Stability and instability of the
glenohumeral joint: The role of shoulder muscles (Jan. 2005).

[40] Lundgren J. Inpolyhedron - are points inside a volume?. MATLAB Central File
Exchange, 〈http://tinyurl.com/ktcgohk〉.

[41] Pan J, Zhang L, Lin MC, Manocha D. A hybrid approach for simulating human
motion in constrained environments. Computer Animation and Virtual Worlds
doi: http://dx.doi.org/10.1002/cav.365.

[42] Liu M, Micaelli A, Evrard P, Escande A. Task-driven posture optimization for
virtual characters. In: Proceedings of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA '12, Eurographics Association, Aire-la-
Ville, Switzerland, Switzerland, 2012, pp. 155–164.

[43] Leven P, Hutchinson S. Using manipulability to bias sampling during the
construction of probabilistic roadmaps. IEEE Transactions on Robotics and
Automation 2003;19(6):1020–6. http://dx.doi.org/10.1109/TRA.2003.819732.

S. Tonneau et al. / Computers & Graphics 45 (2014) 40–5050

http://dx.doi.org/10.1016/j.cag.2014.08.005
http://dx.doi.org/10.1145/1138450.1138457
http://dx.doi.org/10.1145/1138450.1138457
http://dx.doi.org/10.1145/1138450.1138457
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref3
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref3
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref3
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref3
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref4
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref4
dx.doi.org/10.1109/ROBOT.1987.1087795
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref6
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref6
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref7
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref7
http://dx.doi.org/10.1145/636886.636889
http://dx.doi.org/10.1145/636886.636889
http://dx.doi.org/10.1145/636886.636889
http://dx.doi.org/10.1177/0278364910371238
http://dx.doi.org/10.1177/0278364910371238
http://dx.doi.org/10.1177/0278364910371238
dx.doi.org/10.1145/566570.566605
dx.doi.org/10.1145/566570.566605
dx.doi.org/10.1145/1028523.1028535
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref15
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref15
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref15
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.199
dx.doi.org/10.1007/s00371-004-0244-4
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref18
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref18
dx.doi.org/10.1109/ROBOT.2006.1641994
dx.doi.org/10.1109/ROBOT.2006.1641994
dx.doi.org/10.1109/ROBOT.2006.1642001
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref21
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref21
http://dx.doi.org/10.1080/00140139.2011.633176
http://dx.doi.org/10.1080/00140139.2011.633176
http://dx.doi.org/10.1080/00140139.2011.633176
http://dx.doi.org/10.1111/cgf.12035
http://dx.doi.org/10.1111/cgf.12035
http://dx.doi.org/10.1111/cgf.12035
http://dx.doi.org/10.1111/cgf.12035
dx.doi.org/10.1109/ROBOT.2004.1302410
dx.doi.org/10.1109/ROBOT.2004.1302410
http://doi.acm.org/10.1145/2185520.2185537
http://doi.acm.org/10.1145/2185520.2185537
dx.doi.org/10.1109/ROBOT.2009.5152709
dx.doi.org/10.1109/ICHR.2005.1573537
http://dx.doi.org/10.1002/vis.250
http://dx.doi.org/10.1002/vis.250
http://dx.doi.org/10.1002/vis.250
dx.doi.org/10.1145/2185520.2185539
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref31
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref31
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref31
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref31
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref32
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref32
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref32
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref32
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref33
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref33
http://refhub.elsevier.com/S0097-8493(14)00079-X/sbref33
http://aigamedev.com/open/editorial/animation-revolution/
dx.doi.org/10.1115/1.4027665
dx.doi.org/10.1115/1.4027665
http://tinyurl.com/ktcgohk
dx.doi.org/10.1002/cav.365
http://dx.doi.org/10.1109/TRA.2003.819732
http://dx.doi.org/10.1109/TRA.2003.819732
http://dx.doi.org/10.1109/TRA.2003.819732

	Using task efficient contact configurations to animate creatures in arbitrary environments
	Related work
	Example-based methods for constrained environments
	Inverse kinematics and manipulability for virtual creatures
	Motion planning and optimization for constrained environments
	Previous work and content of the extended version

	Problem statement
	Kinematic representation of a virtual creature
	Environment and contact interactions
	Objective formulation
	A heuristic for task efficient contact configurations

	Computation of task efficient contact configurations
	Offline generation of random limb configurations
	Online computation of task efficient contact configurations
	Computation of the resulting animation

	Representation and sampling of the range of motion (ROM)
	Determination of the range of motion (ROM)
	Generation of samples for a limb

	Results
	Implementation details
	Test scenarios
	Comparison against the closest distance heuristic
	Performances

	Discussion
	Limitations
	Future work
	Conclusion

	Supplementary material
	References




