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Abstract In this paper, we propose a novel approach to in-
tegrate virtual pedestrians into a scene of real pedestrian
groups with behavior consistency, and this is achieved by
dynamic path planning of virtual pedestrians. Rather than
accounting for the local collision avoidance only, our ap-
proach is capable of finding an optimized path for each vir-
tual pedestrian on his way based on the current global distri-
bution of the real groups in the scene. The big challenge is
due to the information of both position and velocity of real
pedestrians in the video being unavailable; also the distribu-
tion of the groups in the scene may vary dynamically. We
therefore need to detect and track real pedestrians on each
frame of the video to acquire their distribution and motion
information. We save this information by an efficient data
structure, called environment grid. During the way of a vir-
tual pedestrian, the respective agent frequently emits the de-
tection rays through the environment cells to find the situa-
tion of the real pedestrians ahead of him and adjust the origi-
nal path if necessary. Virtual pedestrians are merged into the
video finally with the occlusion between virtual characters
and the real pedestrians correctly presented. Experiment re-
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sults on several scenarios demonstrate the effectiveness of
the proposed approach.
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1 Introduction

Mixed reality has been widely studied in recent years. How-
ever, the seamless integration of virtual characters into a
real scenes video remains as a difficult problem. Comparing
to embedding static objects into pictures, three main chal-
lenges exist in on-line inserting virtual pedestrians into a
video of pedestrian groups, i.e., acquiring the motion of real
pedestrians, ensuring the behavior consistency between the
virtual and real pedestrians and correctly presenting the oc-
clusion between them without the 3D information of the real
pedestrians.

Virtual pedestrians need to be located in the space con-
sistent with the scene in the video. Video-based reconstruc-
tion approaches can be used to reconstruct the geometry of
static objects, while the motion of real pedestrians should be
acquired by methods of pedestrian detection and tracking.
However, when scenes become crowded, it is difficult to ef-
ficiently obtain the precise motion information using these
methods.

Behavior consistency, which means that the behavior of
virtual pedestrians should be adapted to the environment in
video, has a significant impact on the reality of integration.
Although pedestrian simulation has been widely researched
in fields such as virtual reality, computer animation, robotic
etc., mixed reality has brought new challenges to it. As the
motion of real pedestrians in the video is not available in
advance, the virtual character should make predictions and
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take reactions properly. Moreover, in crowded scenes the ac-
curacy of detecting and tracking individuals may decrease
due to occlusion. The lack of 3D pedestrian group infor-
mation may lead virtual pedestrians to squeeze through the
crowd. No wonder, current pedestrian simulation methods
which assume fixed and accurate motion inputs are not suit-
able to be applied to mixed reality.

When integrating virtual characters into a video, visibil-
ity needs to be computed when occlusion happens between
the virtual and real pedestrians. Apart from setting the depth
order of real and virtual pedestrians, the silhouette of the
concerned real pedestrians need also be extracted from each
frame of the video. However, the dynamic shape of real
pedestrians and ubiquitous occlusion makes individual seg-
mentation a big challenge. Current segmentation methods
can hardly achieve a satisfactory tradeoff between the effi-
ciency and precision in crowded scenes.

In this paper, we study techniques to integrate virtual
characters into a video which contain pedestrian groups,
with emphasis on the behavior consistency between the vir-
tual and real pedestrians. Here, the group means some peo-
ple walk together during a time period, leading to a locally
crowded region in the scene, and members in the group may
occlude each other in the view of the camera. Firstly, we pro-
pose an efficient dynamic path planning approach adapting
to the motion of groups in real environment. Secondly, we
present an approach to estimate the distribution of pedestri-
ans despite the imprecise detection. Lastly, an on-line mixed
reality system is implemented so that virtual characters can
be inserted into real scenes after video processing at every
frame. Experimental results show that virtual characters can
be efficiently inserted into videos with pedestrian groups of
medium-density.

2 Related work

Existing video analysis methods are used in this paper to
detect, segment and track pedestrians in video. The motion
information of real pedestrians extracted from the video is
provided for virtual pedestrians to ensure that they can react
appropriately in mixed reality simulation. Using silhouettes
of the real pedestrians extracted through segmentation, the
occlusion relationship between real and virtual pedestrians
can be presented correctly.

Pedestrian detection methods based on classification [1–
3] can robustly detect pedestrian location in complex envi-
ronment. Wu et al. [1] adopted the human contour as cues
to carry real-time detection on CPU. Sudowe et al. [2] re-
duced for the detection region by employing the constraints
of the ground normal vector, height range of pedestrians etc.;
to achieve accurate and efficient detection with GPU accel-
eration. Benenson et al. [3] increased the pedestrian detec-

tion rate to 100 fps by searching the feature space of differ-
ent scale and using stixels. These efficient methods enable
tracking-by-detection methods [4, 5] to be applied in real
time video tracking. Pellegrini et al. [6] propose a model
designed for walking people with short-term prediction in
mind, which improving the tracking performance in busy
scenarios. We adopt the method of Sudowe [2] to detect
pedestrians, as well as the Extended Kalman Filter to track
the bounding box of detected pedestrians.

Image segmentation methods [7–9] directly determine
the location and silhouette of pedestrians from the image.
The typical methods include background subtraction [7],
methods based on graph theory [8] and methods based on
level set [9]. Nevertheless, if there exist pedestrian groups in
the scene, those methods can hardly distinguish individuals
due to the complex occlusion relation among people in the
group. In this paper, we take the group as a whole. Instead of
segmenting individual pedestrians in the group, we ensure
the correct occlusions between virtual pedestrians and the
whole group by avoiding virtual pedestrians going through
the group.

Pedestrian simulation, in general, can be divided into
macroscopic simulation [10–13] and microscopic simula-
tion [14–18]. Macroscopic simulation consider the crowd as
a whole. This kind of methods can display macroscopic be-
havior of crowds; but the individuals motion result from the
stream of people. They often result into unrealistic individ-
ual trajectories. Microscopic simulation, which often refers
to agent-based simulation, however, focuses on the behav-
ior of individuals allowing each virtual pedestrian to inter-
act with environment independently. Compared to macro-
scopic simulation, microscopic simulation is more suitable
for mixed reality environment applications.

Avoiding the collisions among dynamic obstacles, which
particularly refers to pedestrians in this paper, is a core prob-
lem of microscopic simulation. Helbing et al. [14] adopted
social force to represent interaction between pedestrians,
the problem of collision avoidance is then converted to that
of solving Newton dynamical equations. Reynolds [15] di-
rected pedestrians to avoid collision by defining a series of
rules. Velocity obstacle method [16, 17] is originated from
robotics. An agent can find an appropriate velocity to avoid
collision by solving an optimization problem in velocity
field based on the relative position and velocity with re-
spect to the nearby objects. Pettré et al. [18] improved the
velocity-based method by analyzing the space–time rela-
tion of pedestrians and adjusting model parameter, leading
to more natural simulation result. Kim et al. [19] introduce
Bayesian RVO and learn the simulation parameters based on
tracked data from video.

Existing microscopic simulation methods are not suitable
to cope with the case of avoiding the potential collisions
of the virtual pedestrians with the pedestrian groups in the
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video. First, the methods solve for the optimized route of the
current agent based on the information of the local region,
while overlooking the potential collisions that may happen
on its way. Agent getting closed to a group may fail to re-
act timely to individuals in the group. Moreover, the frame-
work of these methods is based on agent-to-agent interac-
tion, which behaves well in sparse environment but may be
less robust and efficient for crowd case. In particular, the ex-
tracted pedestrian information from a crowd video usually
has noises, which may lead to oscillation problems, even
deadlock if this information is adopted directly. In this paper,
we will introduce a dynamic path planning method, allowing
a virtual pedestrian to behavior properly against pedestrian
groups in the video. The path of virtual pedestrians will be
dynamically adjusted to avoid the crowded region based on
the global distribution of real pedestrians in video.

In the field of mix reality, many approaches has been pro-
posed to insert virtual object into real scenes [20]. Image-
based methods put emphasis on the realistic illumination of
the virtual object [21], while many other methods consider
the physical interaction between virtual objects and the real
scenes [22, 23]. Somasundaram et al. [24] proposed a system
which can add virtual roles to video of indoor scenes. Since
it needs to extract in advance the route of real pedestrians
in video and then use the route information to avoid colli-
sion, the system is unable to run in real time. Zhang et al.
[25] design an on-line mixed system to insert virtual pedes-
trians into a sparse environment with a velocity-based colli-
sion avoidance approach. Nevertheless, when the scene con-
tain pedestrian groups, it will be very hard for the segmen-
tation methods involved in video processing to accurately
segment members in the group and the collision avoidance
approach may not work as well. We will propose a mixed
system which runs in real time and can deal with pedestrian
groups in the video.

3 Overview

Similar to [25], our approach includes a pre-processing stage
and an on-line integration stage. For the sake of simplic-
ity, we use videos taken by a fixed camera, so the cam-
era parameters need be computed only once. During pre-
processing, we acquire the intrinsic parameters of camera
through chessboard calibration, and get the homograph ma-
trix by matching the coordinates of several marks in image
and real ground. Then extrinsic parameters and the matrix
transforming object from image coordinates to the unified
world coordinates can be obtained. Also at this stage, cer-
tain frame background video will be collected for on-line
segmentation. Moreover, the illumination will be estimated
to guarantee the light consistency between the virtual pedes-
trians and the environment after rendering.

Fig. 1 Overview of on-line processing

The on-line integration stage as shown in Fig. 1, per-
forms tasks of real pedestrian information acquisition, vir-
tual pedestrian simulation as well as video integration. For
each frame of video, the position and velocity of the real
pedestrian in the world coordinate can be acquired from the
video adopting the pedestrian detection and tracking meth-
ods. We divide the two dimensional space of the environ-
ment into uniform cells. During simulation, we first project
the distribution information of the real and virtual pedes-
trians onto the environment cells, which we will describe
in Sect. 4. Each cell records the information of the current
pedestrians, including their density and the average veloc-
ity, within its local area. Next, based on density and velocity
distribution, virtual pedestrians adjust their path using dy-
namic path planning algorithm, which will be presented in
Sect. 5. Based on the adjusted path, their new velocity and
position will be obtained by implementing a collision avoid-
ance algorithm. Finally, we insert the location-updated vir-
tual pedestrians into the real video.

Note that the optimized dynamic path planning of each
virtual pedestrian is based on the information of the dynamic
distribution of pedestrians on their way. The motion infor-
mation of pedestrians in the environment can be divided into
two types, i.e., microscopic and macroscopic, which is sim-
ilar to [10]. Microscopic information includes the individual
velocity vcur and the position p of each pedestrian, while
macroscopic information includes the crowd density ρ and
the average flow velocity v, which reflects the congestion
level of the region and the moving trends of the groups.

For description convenience, we use ‘agent’ to indicate
virtual and real pedestrian, and an agent can be represented
as a disc with certain attributes (such as velocity, position,
etc.). During simulation, we store the distribution of agents
on a sparse uniform grid, called environment grid. The grid
points are located either at the center of the cell or at the mid-
point of the cell edge, named central grid point or boundary
grid point, respectively. Each grid point stores the informa-
tion of a local region, including ρ and v. We use the splat-
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ting method to project the discrete agent information on to
the grid. The method is often used to record the distribution
of pedestrians by macroscopic model.

By accumulating the values carried by nearby agents with
weight, we can obtain the values of density ρ and velocity v
on the grid:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ =
∑

i

εiw(pi − p)ρi

v =
∑

i εiw(pi − p)vcur
i∑

i εiw(pi − p)

(1)

where w(pi − p) is used to ensure that the influence of an
agent’s pi on grid point p decreases with the increasing dis-
tance, and we notated the influence radius of the weight as
Rweigth. In addition, in Eq. (1), ε is used to adjust the indi-
vidual impact of each agent on grid points. Accounting for
the movement of the agent, we adopt the position of agent
pi after a short time τ for projection.

Each cell maintains a dynamic index table to record the
indices of all agents within that cell. Agent can quickly find
other agents nearby by query the index table, and get their
vcur and p. During each time step in the simulation, the
macroscopic information at each grid point is updated after
updating the position and velocity of all agents. In order to
improve efficiency, only those cells that contain agents need
to get updated.

4 Video processing

4.1 Pedestrian detection and tracking

We adopt GroundHOG [2] to locate the individual 2D image
of each real pedestrian, the 3D bounding box can then be
estimated making use of the geometric constraints such as
ground plane and the human body. Since the intrinsic and
extrinsic camera parameters are already known after the pre-
process, the mapping between image space and object space
can be obtained performed easily. To track the 3D path of
each real pedestrian, we adopt the Extended Kalman Filter
(EKF) [26].

When virtual pedestrians are integrated into a scene video
with a moving group, they may either occlude or be oc-
cluded by the real pedestrians in the scene. To generate a cor-
rectly composite image, the visibility of each virtual pedes-
trian should be computed. For this purpose, the depth order
and an accurate alpha matte of each real pedestrian are re-
quired. The depth order can be estimated based on the foot-
print of each pedestrian. To get the alpha matte, we first use
background subtraction to get a rough mask, and then apply
morphological operations to remove noise and small holes.

The pedestrians in groups in the video are difficult to be
detected robustly. Due to the occlusion, the detector may

Fig. 2 Pedestrian detection

miss some objects. In Fig. 2, only the pedestrians repre-
sented by the yellow points close to the side of camera are
detected. If only these real pedestrians are accounted, the
virtual pedestrian may fail to make the right choice and
squeeze into the crowd directly. In addition, his behavior of
collision avoidance may also become instable due to the var-
ied number of real pedestrians detected at adjacent frames.
Even worse, the virtual pedestrians may penetrate with un-
detected real pedestrians. In this paper, we propose a new
solution, which can deal with the above problem effectively
for groups of medium-density.

4.2 Computing the crowd density

To facilitate the path planning of a virtual pedestrian, the
crowd density at each grid point along his way should be
provided. To deal with the problem of unstable estimation
of crowd density, we propose a two-pass solution. In the first
pass, a density map is computed according to the number of
all detected real pedestrians. In the second pass, the crowd
density at some grid points are adjusted to cover the den-
sity loss due to the miss detected pedestrians. Our method
is based on the following assumption: due to occlusion, the
more crowded a region is, the more difficult to detect every
pedestrian. Therefore, the second pass will focus on the re-
gions which are found nearly crowded during the first pass.
Specifically, we first sort the grid points according to their
density value, and then select the most front N grid points
in the list satisfying ρ < ρthresh as the candidate grid points
for further process. The density value at these grid points
is likely to be underestimated due to the detection error. We
then introduce Proxy pedestrian into the local region of each
of these grid points to make up its density, which is shown in
Fig. 3. Each Proxy pedestrian has its own density, velocity,
and weighting function, which serve for density computa-
tion only. Note that the Proxy pedestrians do not actually
participate into the crowd movement, they pose no impact
on the process of collision avoidance. Assuming that each
Proxy pedestrian has the same density and weighting func-
tion with the real pedestrians in the respective region, we
will then determine its position, velocity and the influence
radius of its weighting function.

To estimate the crowd density, each grid point records the
real pedestrians distributed within its local region at every
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Fig. 3 Density map of real pedestrians. The left image is the density
map of all real pedestrians, each represented by a black circle. The
central image is the density map of the detected pedestrians. The right
image is the density map after introducing a Proxy pedestrian

frame. The average position and velocity of these pedestri-
ans is adopted as the position and velocity of the correspond-
ing Proxy pedestrian. The Proxy pedestrians therefore auto-
matically located near the center of the crowd area. Accord-
ing to the distribution of real pedestrians within the local
region, we can determine the radius of the weighting func-
tion of the Proxy pedestrian. Denoted by dpedestrian the max
distance between the Proxy pedestrian and real pedestrians,
and dgrid the distance between the Proxy pedestrian and the
grid point, then the radius of the weighting function can be
determined by Rweight = max(dpedestrian, dgrid).

Based on the continuity of pedestrian movements, we as-
sume that the number of pedestrians in a region stays stable
within a short time period. For each grid point, we record
the maximum number of detected pedestrians within the lo-
cal region of that grid in a time period, and take it as the ac-
tual number of pedestrians in this period. In implementation,
we maintain a queue at each grid point whose capacity is k,
and then for each frame, the number of detected pedestrians
within the respective local region is recorded and pushed
into the queue, meantime the last record at the rear of the
queue is popped. The entry with the maximum number, say
Nmax, in the queue is regarded as the real number of pedes-
trians passing through the local region of that grid in the
latest k frames.

When the number of detected pedestrians at a grid point
is likely being underestimated, the introduction of a Proxy
pedestrian will increase its density to a normal value. This is
achieved by adjusting in Eq. (1). Let the number of pedes-
trians detected at the current frame be Ncur, we define:

ε = 1 + λ
(
Nmax − Ncur) (2)

where λ is the parameter specified by user. On the other
hand, the contribution of the Proxy pedestrian to the density
value at that grid point will decrease following the increase
of the radius of the weighting function. Let Rdefault be the
default radius of weighting function for all real pedestrians,
we rewrite Eq. (2) as

ε = 1 + λRweight

Rdefault

(
Nmax − Ncur) (3)

Fig. 4 Dynamic path adjustment

5 Dynamic path planning

We extend the traditional agent-based simulation framework
by developing a dynamic path planning module between
global path planning and local collision avoidance module.
This additional module locally adjusts the initial path of
each virtual pedestrian according to the dynamic distribu-
tion of pedestrians in the scene, without recalculating the
global path.

5.1 Notation

We use the following notations to represent the motion of
pedestrians:

– p—the current position
– pgoal—the goal position
– vcur—the current velocity
– vpref—preferred velocity
– vmax—maximum velocity
– r—radius of personal area

Here, vpref refers to the pedestrian preferred velocity if
there are no obstacles in the environment. Personal area
refers to the minimum personal space of a pedestrian kept
away from other pedestrians. In this paper, we use circle to
approximate the personal area, and represent the personal
area with radius r . During the simulation, each pedestrian
can be regarded as a disc with the above properties. vpref,
vmax and r are relevant to physiological and psychological
factors of pedestrian, and can be generated by an additional
physiological and psychological module, or specified by the
user. In this paper, we assume that vcur, p and r for each
pedestrian can be perceived by others, while the residual at-
tributes are only visible to the pedestrians himself.

5.2 Path adjustment

As shown in Fig. 4, the agent makes decision taking into
account macroscopic and microscopic information of the
crowd distribution. Specifically, according to the informa-
tion of crowd distributions to red in the grid on his way, each
agent adjusts vpref as well as the initial path at an early time.
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Table 1 The type of grid points

Location of grid point Type Code

Central point (C) Comfort point 00

Congestion point 11

Boundary point
(N, E, S, W)

Comfort point 00

Congestion point 01

10

Fig. 5 The binary code of grid points

During the way, the agent determines dynamically his actual
velocities vcur based on vpref and motions of his neighboring
agents in the local region. Finally, the position of each agent
is updated by adding vcur into current position.

The ability of getting macroscopic information is essen-
tial for agents to interact with crowd. Each agent acquires
the knowledge of crowd distribution by emitting a detection
ray along the path to his destination. The range of ray lrange

is determined according to the current velocity of each agent
and the distance to his goal position:

lrange = min

( |vcur|
vmaxldefault

, d
(
pgoal − p

)
)

(4)

Here, ldefault is the parameter concerning the vision abil-
ity of each agent. It can be defined in the external module
or simply specified by user. We use DDA algorithm to find
the grid cells intersecting with the detection ray, and record
the indices of the nearby grid points along the ray in a list
which will be provided to the corresponding agent for ref-
erence. The initial path of each agent can then be adjusted
according to the information stored in these grid points.

Grid points can be classified into two types: comfort
points whose density values are smaller than ρthresh, and
congestion points whose density values are larger than
ρthresh. We use binary code to represent the type of a grid
point as shown in Table 1. Figure 5 illustrates the way how
to search for comfort point through the binary code stored
at a boundary grid point along the specified direction. If the
binary code of the grid point is 10, the central grid point of
its adjacent cell will be the comfort point. On the other hand,
the code 01 indicates a congestion point at the central grid
of its adjacent cell and the search for comfort point should
continue along other directions.

Fig. 6 Generating new sample point

In the implementation, the initial path of an agent is de-
fined as a set of pre-computed sample points. During the
way, this path may be adjusted according to the motion of
the pedestrians ahead of the agent, both the density of the
crowd and its moving tendency are considered. Once arriv-
ing at a congestion point, the agent makes decisions accord-
ing to his current velocity and the average velocity of the
crowd close to the agent. If the crowd moves along the same
direction and its average velocity is faster than that of the

agent, i.e., v̄ · vpref > |vpref|, and v̄·vpref

|v̄|·|vpref| > 0.9, then this
congestion point can be ignored and the agent can follow the
crowd without any path adjustment. Otherwise, the prede-
termined path should be adjusted by introducing some new
sample point to replace the respective old points. The proce-
dure of generating new sample points is as follows:

– Step 1—Search the neighboring grid points for two near
comfort points along the directions perpendicular to the
current moving direction of the agent.

– Step 2—Find two candidate sample points at which ρ =
ρthresh by interpolation between each near comfort point
and congestion point as shown in Fig. 6.

– Step 3—Select one of the candidate sample points as the
final choice by minimizing the following cost function:

Where α, β , γ are weights for individual terms. In the
first term θ is the angle between the adjusted path and the
initial path. The last two terms serve to ensure the moving
direction of agent and the moving tendency of the crowd
consistent.

Agent will update his vpref once the current path has been
adjusted. Nevertheless, the agent still emits detection ray
towards his original destination so that he can move along
the direction towards the original goal again as soon as the
ahead region becomes sparse. When searching for the com-
fort points, we specify a maximum number of queries to
prevent the newly generated sample points far away from
original path. If no comfort point is found, the neighboring
congestion point with the smallest density values is chosen
as the new sample point. In our implementation, we perform
the path adjustment of each agent only once within a time
interval, which greatly increases the efficiency.



Inserting virtual pedestrians into pedestrian groups video with behavior consistency

Fig. 7 Simulation in virtual environment

To dodge the other agents nearby, a collision avoidance
approach is employed. The current position and velocity of
the neighbored agents can be acquired through the index list
stored in the current cell of the agent. Then vcur can be ob-
tained according to this information and vpref. We choose
RVO [17] method in our implementation, though any other
collision avoidance approach can be used too.

6 Result

The proposed algorithm was implemented on a personal
computer with Intel Core2 Due 3.00 GHz CPU, 4G mem-
ory and NVIDIA GeForce 9800GTX+ graphics card and
our system runs at an average of 15 fps. We first conduct
comparisons of our simulation result with that by tradi-
tional method, and then analysis the efficiency. Finally we
demonstrate the result of integrating virtual pedestrians into
videos.

6.1 Simulation

Figure 7 simulates the scene of a pedestrian, on the same
road, there is a group. If a group moves along the direc-
tion opposite to the pedestrian, the pedestrian will often
try to steer clear of the group. If the group moves along
the same direction as the pedestrian, the pedestrian will
choose to follow or exceed the group according to his rel-
ative speed to the group. Figure 8 makes a comparison be-
tween results simulated by our method and that by tradi-
tional method which use RVO as collision avoidance ap-
proach. In Fig. 8(a), the agent adopts only the local colli-
sion avoidance algorithm and eventually he squeezes into
the group. Figure 8(b) shows our simulation result on the
same case, the agent tries to steer clear of the group at an
early time. Figures 8(c) and (d) show another scene, tra-
ditional methods [17] cannot detect the congested regions
in advance. However, by adopting the method proposed in
this paper the agent tries to avoid congested regions, and
his trajectory is quite similar to a vortex in fluid simula-
tion.

Next we analyze the performance of dynamic path plan-
ning algorithm. Because the path adjustment process is dis-
persed to a period of time, the overhead of our method is

Fig. 8 Comparison displayed in 2D

Fig. 9 Performance graph

mainly on the environmental information maintenance. Let
the pedestrians distribute randomly in the scene, we check
the computational cost of information update under differ-
ent conditions. As shown in Fig. 9, the performance varies
depending on both the number of agents and the grid resolu-
tion. As our path adjustment is implemented at a low resolu-
tion grid, the overhead of integrating dynamic path planning
module into simulation can be ignored.

6.2 Integrating virtual pedestrian into videos

Figure 10 shows a few frames of a video with a presence of a
pedestrian group. Several virtual pedestrians are integrated
into the video. In Fig. 10(a), the virtual pedestrian has de-
tected the group and chooses to steer clear of it. During the
way, he also tries to avoid collisions with other pedestrians
nearby. In Fig. 10(b), two groups of pedestrians crisscross,
the virtual pedestrian follows the group which moves along
the same direction.

Some groups are small scale groups, the pedestrians
within each group have social relevance with each other
[27], such as friends, family members. This kind of group
often consists of two–four members. Sometimes the mem-
ber does not keep a closed form during walking, even though
they are often recognized as a crowd in the space, and the
pedestrian often chooses to steer clear of it. We can simu-
late such phenomenon by adjusting the ε in Eq. (1). A larger
ε for members within the group will make the space more
crowded, leading other pedestrian steer clear of it. This case
is simulated by Fig. 11.
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Fig. 10 Mixed videos

Fig. 11 Simulation of small
group. In the left column, the
pedestrian marked by red disk
walks through the group if ε is
small. In the center column, the
virtual pedestrian chooses to
steer clear of the group instead
of passing through it when
increasing ε. The right column
shows examples in video with
small group

Fig. 12 Compatible scenes

Figure 12 compares the compatible scenes of our system
with previous work. The left image is extracted from the
demo of Zhang et al. [25] indicating a scene with a sparse
distribution of individuals, while the center image shows the
scene containing a pedestrian group. In [25], accurate posi-
tion of every individual should be available in order to per-
form the simulation, and this requirement can hardly be sat-
isfied in case of a scene with groups since the current seg-
mentation method cannot robustly segment each individual

in the group. Therefore, the approach presented in [25] is
not applicable to the scene as shown in the center image of
Fig. 12, on the contrary, our approach, however, is capable
of dealing with this kind of scenes and the result of our sys-
tem is shown in the right image.

7 Conclusion and future work

We have proposed a mixed reality approach allowing virtual
pedestrians to be integrated into a real scene video which
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contains pedestrian groups with behavior consistency. This
is achieved by dynamic path planning of virtual pedestrians.
Our method tries to detect and track the real pedestrians on
each frame of the video and stores their moving condition
in a sparse grid. During the way of a virtual pedestrian, the
respective agent frequently emits the detection rays through
the environment cells to find both the macroscopic and the
microscopic information about the real pedestrians ahead of
him and adjust the original path if necessary. The adoption
of the grid cell data structure accelerates the searching pro-
cess and improves the efficiency of collision avoidance. Our
dynamic path planning module is not dependent on any col-
lision avoidance algorithm, thus can be integrated into exist-
ing simulation frameworks easily.

Our approach has some limitations. First, the accuracy of
the computed density map depends on the performance of
pedestrian detector. In addition, the current approach can-
not segment the individuals in the group accurately. If vir-
tual pedestrians should walk through the group, it cannot
present the correct occlusion due to lack of silhouettes of
some individuals in the group. More robust pedestrian de-
tection and segmentation approaches are preferred. In the
aspect of pedestrian simulation, our proposed path adjust-
ment may fail when the concerned region get blocked, for
example, a corridor is filled with people. Currently we just
let virtual pedestrian stop and wait for a moment, a sophis-
ticated method can be developed to make an appropriate de-
cision.
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