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Abstract

In this paper, we propose a novel idea to address the problem of fast computation of stable force-closure grasp
configurations for a multi-fingered hand and a 3D rigid object represented as polygonal soup model. The proposed
method performs a low-level shape exploration by wrapping multiple cords around the object in order to quickly
isolate promising grasping regions. Around these regions, we compute grasp configurations by applying a variant
of the close-until-contact procedure to find the contact points. The finger kinematics and the contact information
are then used to filter out unstable grasps. Through many simulated examples with three different anthropomorphic
hands, we demonstrate that, compared with previous grasp planners such as the generic grasp planner in Simox,
the proposed grasp planner can synthesize grasps that are more natural-looking for humans (as measured by the
grasp quality measure skewness) for objects with complex geometries in a short amount of time. Unlike many
other planners, this is achieved without costly model preprocessing such as segmentation by parts and medial axis
extraction.

I. INTRODUCTION

Grasp planning research has long been focused on theoretical analysis of grasping using idealized
models of both the robotic hand and object. With the arrival of more affordable robotic manipulation
platforms and sensors, the study of robotic grasping has advanced towards the development of algorithms
that work with real data (e.g., point clouds from RGBD sensors and images from stereo cameras) [1]–[5].
However, these algorithms are often limited to simple grippers and/or simple objects (e.g., books, water
bottles, and wine glasses).

With the introduction of next generation of 3D laser scanners and Microsoft’s Kinect, and algorithms
such as Kinect-Fusion [6] that merges several low resolution point clouds of one scene into a high
definition cloud, we believe it is time to proceed to the next step that is grasp planning of complex
objects represented by imperfect but detailed mesh models built using 3D laser scanners or Kinect. These
meshes can even be non-manifold and have holes. Furthermore, we intend to give researchers, who are
not familiar with robotic grasping (e.g., researchers who are in the field of digital character animation),
an easy-to-implement grasp planner.

In this paper, we present an innovative and intuitive grasp planner to synthesize grasps for objects
with complex shapes such as objects consisted of multiple parts (e.g., a pair of pliers). The strategy is
to tightly wrap multiple sets of cords [7] around an object in order to quickly obtain information about
its shape and extract the promising grasping regions. By placing a non-stiff cord that is made up of a
sequence of linear segments around the object and then tightening it, the object’s local geometry under the
cord is revealed. To find out more about the local geometry, several parallel or almost parallel cords are
added. The procedure of cord generation is conceptually similar to the computation of a two-dimensional
convex hull [8]. The main reason for choosing cords is their ability to provide a not only intuitive, but
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also interactive technique for specifying curves with physics-like properties [7]. For example, to lift an
object with major surface bumps, ridges, and grooves such as a Stegosaurus toy with its dermal plates,
non-stiff cords used in this paper can be replaced with stiff cords. A stiff cord’s resistance to bending
sharply around object increases with increasing stiffness. When stiffness is equal to zero, a stiff cord is
equivalent to the corresponding non-stiff cord.

This paper is an extension of [9]. Apart from more extensive evaluation of the cord-driven grasp planner
and the addition of comparison with grasps synthesized by the generic grasp planner in Simox [10] (a
C++ toolbox containing, among other libraries, a grasp planning library), the main difference between
this version and the previous one [9] is the introduction of grasp measure XOR �: This new measure is
based on polygon clipping instead of the lengths of the cords. Furthermore, our implementation is now
built on top of Simox and relies on it for many standard grasp planning functions such as grasp stability
evaluation.

The paper is organized as follows. After a comparison to previous work in Section II, the proposed grasp
planner is presented in two sections. Section III explains how cords are constructed around sections of an
object and how candidate hand poses are obtained, whereas Section IV details how finger configurations
are computed and how the resulting grasps’ stability is checked. Simulation results obtained with various
household objects from the KIT ObjectModels Web Database [11], among others, are shown in Section V.

II. A COMPARISON TO PREVIOUS WORK

Compared with previous planners that synthesize grasps for complex objects [12]–[19], our cord-driven
grasp planner has several advantages.

First, the proposed grasp planner enables the grasping of objects with more complex geometries. For
example, our grasp planner can synthesize grasps that grab both handles of a pair of pliers by wrapping
multiple sets of cords around it. A grasp region is then defined as the region spanned by a set of cords.
After evaluating all grasp regions, our grasp planner tends to choose the grasp that is synthesized around
a set of cords that wraps around both handles. Grasp planners that look for shapes that are likely to fit
into the robotic hand and maximize the surface area of contact [14], [16], [17] can not make such a grasp.

Second, the proposed grasp planner eliminates the need for costly preprocessing such as shape segmen-
tation/approximation [13], [15] and medial axis computation [18]. For example, our grasp planner can not
only synthesize grasps for a bottle without having to approximate it with a cylinder, but also synthesize
grasps for a sickle-shaped object without computing its medial axis.

Third, grasps synthesized by the proposed grasp planner are more similar to human-planned grasps
compared with grasps synthesized by previous approaches such as the generic grasp planner in Simox [10],
because the most promising grasp regions will be covered by similar cords [16] and the grasp measure
XOR � enables us to find these regions. To evaluate how natural-looking a grasp is for humans, we use
the grasp quality measure skewness [20]. For example, given a long cylinder to be grasped, most people
align the wrist almost perpendicularly to the largest principal axis of the cylinder and grasp the smallest
principal axis, which corresponds to low skewness. Furthermore, it is also shown in [20] that grasps with
low skewness were significantly more robust, and they were preferred by the human subjects independent
of the task. Even though it is certainly possible to add grasp quality measure skewness into existing
grasp planners, how to integrate it with other grasp quality measures such as epsilon [21] and our grasp
measure XOR � is beyond the scope of this paper. In [22], a novel grasp synthesis method for solving the
configuration problem (i.e., configure the hand relative to the object so that each hand region establishes
contact on its corresponding object region) was presented. It was then extended in [23] with a procedure
for optimizing the quality of the obtained grasps. Even though the resulting grasp configurations in [22],
[23] appear quite natural-looking for humans, the final result produced by these methods is in some sense
guided by a given set of contact constraints, because they require that both regions on the surface of the
hand, and corresponding regions on the surface of the object are given as inputs.

Fourth, unlike [14], [17], [19], the proposed grasp planner works with objects represented by non-
manifold polygonal meshes. The test cases demonstrate that objects with small surface bumps, ridges, and
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grooves can be easily handled. In fact, even polygon meshes with holes can be used to represent objects.
Furthermore, unlike [22], [23], our grasp planner makes no assumption that the surface normal vectors
always point outward from the surface.

Fifth, the proposed grasp planner can be implemented easily, because the computation consists mostly of
geometrical calculations. Our grasp planner is now built on top of Simox, thus we have greatly reduced the
number of lines of code. Furthermore, our grasp planner does not require grasp prototypes (i.e., example
grasps), unlike [12]. Finally, compared to the methods in [22], [23], our grasp planner is not only much
easier to be implemented, but also less computationally involved.

III. THE EXPLORATION STAGE

In this section, we detail how multiple sets of non-stiff cords are wrapped around an object to delineate
its geometry. First, we describe how we construct one cord by tightening a seed guide curve in the
shape of a triangle around the object (Section III-A). If the grasping region under the cord is promising,
we construct the rest of the set by rotating the seed guide curve around one of its vertices to generate
additional guide curves (Section III-B) and tightening them. Next, we explain how we synthesize the seed
guide curve by random sampling the corresponding triangle’s three vertices in Section III-C. Lastly, we
present grasp measure XOR � to compare and sort the promising grasping regions (Section III-D).

A. Cord Generation
To generate a cord, we follow the algorithm presented in [7]. The cord’s resistance to bending is

modeled by its stiffness property. In this paper, we are only interested in non-stiff cords because we seek
to use cords to reveal the overall surface geometry of objects and non-stiff cords wrap more tightly around
objects, whereas stiff cords are resistant to bending [7]. Before a non-stiff cord can be constructed, a guide
curve that does not intersect with the object must be created. In Fig. 1, the black curve on top of the
cyan rectangular object with 3 indentations is the guide curve. After choosing one of the two extreme
points of the guide curve as the initial point, and adding it to the empty cord, rays are repeatedly cast
towards the guide curve, away from the most recently added point in the cord. Whenever a ray intersects
with the object, a grazing intersection is added to the cord. The process is repeated until the final point
of the guide curve is reached. The green curve in Fig. 1 is the generated non-stiff cord that is made up
of a sequence of linear segments. For full details relating to the cord generation algorithm, we refer the
reader to [7].

Guide Curve

Non−stiff Cord

Fig. 1. Geometric construction of a non-stiff cord.

In order to grasp an object stably, it is preferable that a cord encloses the object or part of it completely.
However, if the object or part of it to be grasped is too big or wide for the hand, a cord that does not
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entirely enclose the object or part of it can be constructed instead. Consequently, we distinguish a cord
enclosing the object or part of it completely, and enclosing the object or part of it only partially.

Case I As shown in Fig. 1, the cord constructed by the standard cord generation algorithm does not
enclose the rectangular object. In fact, in two line segments out of three they do not follow the overall
object geometry. Here, we present a two-step procedure that encloses the target object or part of it using
two cords. For the first step, an acute triangle 4P1P2P3 (formed by line segments P1P2, P2P3, and P3P1)
is chosen as the guide curve as shown in Fig. 2, where segments P1P2 and P1P3 can be compared to the
thumb and index finger, respectively. After executing the standard cord generation algorithm, we obtain a
cord (the red one in the left subfigure in Fig. 2) that wraps around the object geometry except for its first
and last segments. We obtain the red cord shown in the right subfigure by removing these two segments
from the cord. In the second step, the guide curve is defined by the following segments: P

r

P3, P3P1,
P1P2, and P2Pl

. The second cord (the green one in the right subfigure) is then constructed by applying
the standard cord generation algorithm. As shown in the right subfigure, after removing the first and last
segments, the red and green cords wrap around the object geometry completely. Since these two cords are
connected at points P

l

and P
r

and they separate the visible part from the hidden part as seen from point
P1, we denote the green and red cords as the front and back cords, respectively, where the front cord
is defined by a sequence of points {P

r

, P
⇢

, . . . , P
�

, P
l

}. Consequently, P
r

and P
⇢

bind the first segment
of the front cord, whereas P

�

and P
l

bind the last segment. If the front cord is made up of three line
segments, then P

⇢

and P
�

represent the same point (i.e., the middle one). If there is only one line segment
in the front cord, P

⇢

and P
�

are not defined, and the only segment is bounded by P
r

and P
l

.

Guide Curve
Back Cord

Front Cord

P1

Pl Pr

P2

P1

Pl Pr

P3 P2 P3

P� P⇢

Fig. 2. Geometric construction of two non-stiff cords that completely encloses an object.

The border points P
l

and P
r

are not the actual contact points between the hand and object. The contact
points are determined later in Section IV. However, if P

l

and P
r

meet the eligibility criterion described
below, these two points are denoted as virtual grasping points. Let variable ⇠ characterize the size of the
front cord, where ⇠ is the maximum distance between the midpoint of line segment P

l

P
r

and the front
cord. The eligibility criterion is then defined as: ⇠

min

 ⇠  ⇠
max

. Essentially, variable ⇠ is used to quickly
assess that the part of the object under the front cord is neither too small nor too large for the hand.
Because the stability of each grasp will be checked later in the finger configuration computation stage
(Section IV), there is no need to determined the exact values of ⇠

min

and ⇠
max

. In this paper, three different
dexterous hands, the Schunk Anthropomorphic Hand (SAH), the iCub (right) hand, and the ARMAR-III
(right) hand are used to test our cord-driven grasp planner. The values of ⇠

min

= 1.5cm and ⇠
max

= 7.5cm
are used for all three dexterous hands. If P

l

and P
r

meet the eligibility criterion, P1 gives the initial hand
position, whereas the triangle 4P1Pr

P
l

defines the hand orientation, as will be described in detail later.
Case II In the previous case, we have assumed that the virtual grasping points P

l

and P
r

are always
visible from P1. Unfortunately, this assumption is restrictive, because virtual grasping points that are not
visible from P1 are necessary when, for example, grasping a wide object such as a book as shown in
Fig. 3. To handle this case, we start from an acute triangle 4P1P2P3 as before, but line segment P2P3

must intersect with the object this time. The two intersection points that are closest to P2 and P3 are
denoted as P

l

and P
r

(see Fig. 3), respectively. The front cord is then constructed by using line segments
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P
r

P3, P3P1, P1P2, and P2Pl

as the guide curve; therefore, the local geometry of the object under the front
cord is delineated despite the fact that P

l

and/or P
r

may be invisible from P1. Pl

and P
r

are classified
as virtual grasping points if and only if the above criterion mentioned before is met in addition to the
following criterion: The angle between vectors

��!
P
�

P
l

and
��!
P
⇢

P
r

should be as small as possible if rays
��!
P
l

P
�

and
��!
P
r

P
⇢

intersect, because the object is more likely to slip if the angle is too big, imagining that the
fingertips of the thumb and index finger are placed at P

l

and P
r

, respectively. In all the experiments, the
maximum threshold of the angle was set to a reasonably conservative value: 1

4⇡. The exact value of this
threshold depends on many factors such as coefficients of friction of the object and hand, whether soft
contacts are enabled, and the object’s center of mass. Fortunately, there is no need to determine the exact
value of the threshold, as the stability of each grasp will be checked later in Section IV.

Guide Curve

Front Cord

P1P1

P2 P3P2 P3

PrPl

P� P⇢

Fig. 3. Geometric construction of a non-stiff cord that wraps around part of a wide object.

B. Object Scanning Using Cords
In Section III-A, we presented a method for generating two virtual grasping points on the surface of an

object with a front cord that wraps around the object. However, the information contained in this single
cord is not sufficient to verify whether the region around the cord is a promising grasping region. Similar
to the way a single laser beam is used to scan an object, we can shift the guide curve up and down in
order to construct additional front cords, and hence obtain more information about the region.

To construct a set of front cords, we start with a seed cord: a promising front cord along with two
corresponding virtual grasping points found in Section III-A. The guide curve from which the seed cord
is derived is called the seed guide curve (i.e., t0 in Fig. 4). As shown in Fig. 4, t0 is then shifted up
and down to generate additional guide curves called upper / lower guide curves, respectively. The shift
is accomplished by rotating the seed guide curve around the axis defined by P1 and the cross product of
two vectors. This first vector is the normal of the plane of the seed guide curve. The second vector is
the one that points from P1 to the midpoint of line segment P

l

P
r

(defined in Section III-A). As will be
described further in this paper, the second vector defines the approach direction for the hand, whereas P1

gives the initial hand position. For each shift upward, the seed guide curve is rotated by angle i
up

✓, where
✓ > 0 and i

up

is the current number of upward shifts. For each shift downward, the seed guide curve is
rotated by �i

down

✓ instead, where i
down

is the current number of downward shifts. If segment P2P3 on
the seed guide curve intersects with the object, the corresponding segment of any additional guide curve
must also intersect with the object. Similarly, if P2P3 on the seed guide curve does not intersect with the
object, the corresponding segment of any additional guide curve is considered to be invalid if it intersects
with the object. Essentially, we separate the two cases mentioned in the previous subsection due to the
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fact that the most promising grasp regions will be covered by similar front cords [16]. When the object
is scanned with guide curves and a guide curve of one case is followed by a guide curve of another case,
the two resulting front cords are unlikely to be similar to each other. This process is repeated until enough
front cords are generated so that the distance traveled by the line segment P2P3 is roughly equal to the
width of the palm. Note that the number of additional guide curves we generate around the seed guide
curve depends not only on the chosen hand, but also on angle ✓. Lastly, we stipulate that the numbers of
additional guide curves in both directions must be equal, because the front cord derived from the seed
guide curve defines the initial orientation of the hand; hence, the seed guide curve should always lie in
the middle.

rotation axis

Guide Curves

P1

t+2

t+1

t0

t�1

t�2

P3P2

Fig. 4. The seed guide curve t0 is shifted up and down in order to generate additional guide curves.

C. Random Sampling of Guide Curves
Thus far, we have simply stated that the guide curve is given. In this subsection, we present a method

that randomly samples guide curves for household objects such as items from the KIT ObjectModels Web
Database. Different random sampling schemes are required to grasp other kinds of objects (e.g., larger
ones such as tables), although they are beyond the scope of this paper.

First, we construct a bounding sphere s for the object. As shown in Fig. 5, the bounding sphere is
centered at the object’s barycenter C and its radius is r. Second, two additional spheres that are also
centered at C are constructed: sphere s1 with radius r1 and sphere s2 with radius r2, where r2 is slightly
greater than r and r1 = r2 +�r, where �r = 10cm and 10cm is the average length of a male’s fingers.
The value of r2 was chosen such that when a cord is wrapped around sphere s2 (with its medial axis on
the surface of the sphere), the cord does not intersect with sphere s, whereas the value of r1 was chosen
such that it is unlikely that the object and hand would collide when the hand is placed on s1 and its
opening is facing the object. If the hand collides with the object, our cord-driven grasp planner simply
moves the hand away from the object until there is no collision before closing the fingers around the
object. Consequently, we are able to utilize �r = 10cm for all three robotic hands in the experiments.
Third, a deterministic sampling method [24] is employed to sample three uniform deterministic sequences
of samples �1, �2, and �3 on the surfaces of spheres s1, s2, and s2 (again), respectively. Fourth, in
order to generate a guide curve, three points are randomly selected among the points in the deterministic
sequences �1, �2, and �3 as P1, P2, and P3, respectively. Among the three points, P1 defines the initial
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position of the hand. Finally, if 4P1P2P3 is acute, it is used as the guide curve to scan the object (as
described in Sections III-A and III-B). The whole process is summarized in Algorithm 1, where the outer
loop iterates at most M times, whereas the inner loop iterates at most N times, which is also the size
of sequences �1, �2, and �3. We set M and N to 1000 and 10000, respectively. Instead of this brute
force method to sample acute triangles in 3D, a more involved solution can be derived from the procedure
in [25]. Furthermore, in our current implementation, the sequences of sampled acute triangles are not
stored and hence we re-sample for every object even if two objects’ bounding spheres have the same
radius. Since the spheres are quasi-independent from the object, the sequences of sampled acute triangles
could be stored.

r1

P1

C

r2
S1

r P3

P2

S2

Fig. 5. Sampling of a guide curve on the surfaces of two spheres.

Algorithm 1: Random sampling of guide curves.
input : An object and its bounding sphere defined by a barycenter C and a radius r;

1 s1  a sphere of radius r1, centred at C;
2 s2  a sphere of radius r2, centred at C;
3 �1  a uniform deterministic sequence of samples over sphere s1;
4 �2  a uniform deterministic sequence of samples over sphere s2;
5 �3  a uniform deterministic sequence of samples over sphere s2;
6 for i = 1 to M do

7 Rearrange elements in �1, �2, and �3 randomly;
8 for j = 1 to N do

9 P1  �1[j], P2  �2[j], P3  �3[j];
10 if 4P1P2P3 is acute then

11 Scan object surface with 4P1P2P3 as the guide curve;

After a set of front cords have been generated in Algorithm 1, a local improvement procedure is
applied to improve the performance of our grasp planner such that additional sets of front cords are
generated by sampling further poses for 4P1P2P3 around its current pose. This inspiration comes from
the field of motion planning: Non-uniform measures are employed by most probabilistic roadmap (PRM)
planners in order to dramatically improve performance, whereas the basic PRM uses the uniform sampling
measure [26].

D. Evaluating Grasp Regions
In order to check whether the region covered by a set of front cords generated in Section III-B is a

promising grasping region or not, we propose a polygon-clipping-based grasp measure XOR � to determine
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how similar the front cords are to each other, because a promising grasp region will be covered by similar
front cords according to [16]. In this subsection, we explain the grasp measure XOR through one example.

Suppose that we want to synthesize a grasp for the cylinder shown in Fig. 6. After constructing a set
of guide curves around the seed guide curve 4P1P2P3 and then generating the corresponding front cords
by tightening the guide curves, we need to evaluate whether P1 is a correct initial position for the hand
and the region covered by the front cords is a promising grasping region. From each front cord (shown
as blue curves in Fig. 6), we construct a convex polygon by connecting its two endpoints. All convex
polygons are then projected orthogonally onto the plane spanned by 4P1P2P3. We denote the resulting
2D convex polygon as Q

i

, where i 2 {�n,�(n � 1), . . . , 1, 0, 1, . . . , n � 1, n} and n is the number of
upper / lower front cords. Note that Q0 is the one derived from the seed front cord. Next, we compare
each projected 2D convex polygon Q

i

with Q0. To measure the difference between the two polygons, we
perform the Boolean XOR operation (exclusive-or) on both convex polygons. The smaller the area of the
resulting polygon, the more similar are the two input polygons. Fig. 7 shows the result of the Boolean
XOR operation applied to two convex polygons. Consequently, our polygon-clipping-based grasp measure
XOR � is defined as

� =
1

2n

nX

i=�n

A(Q
i

�Q0), (1)

where A is the area symbol and � represents the XOR operator. Note that the sum is averaged over
the total number of upper and lower front cords (i.e., 2n).

In the left subfigure in Fig. 6, the red polygon represents the intersection between the cylinder and the
plane defined by the given 4P1P2P3 (points P2 and P3 not shown), whereas the green represents the
intersection between the cylinder and the plane spanned by an upper / a lower guide curve. The right
subfigure in Fig. 6 shows the intersections for a different 4P1P2P3. The projected 2D convex polygons
corresponding to the right subfigure in Fig. 6 are shown in Fig. 7 along with the polygon outputted by the
polygon clipper after performing the Boolean XOR operation. In the two examples shown in Fig. 6, the
left one is preferable because the angle between the approaching direction of the hand and the cylinder’s
largest principal axis is closer to 90�; hence, its grasp measure XOR score is lower.

We use the Vatti clipping algorithm [27] for clipping because it is extremely fast as a result of: (1) The
2D polygons used in our calculations have only a small number of edges; (2) Our polygons are convex,
and hence there are no self intersecting polygons to be taken account of.

Fig. 6. Intersections (ellipses) between a cylinder and two sets of guide curves. For clarity, only two ellipses are shown for each set. Front
cords are drawn in blue.



9

Fig. 7. The two 2D polygons shown in the first two subfigures originate from the intersections shown in the right subfigure of Fig. 6. After
performing the Boolean XOR operation on these polygons, the polygon clipper outputs one 2D polygon (the striped region shown in the
third subfigure).

IV. COMPUTING FINGER CONFIGURATION FROM A GRASP REGION

Around the promising grasping regions identified in Section III, we look for a stable force-closure grasp
in this section. In other words, after finding out the wrist pose, which is given by a previously identified
grasp region, we now need to calculate how the fingers should be placed/closed on the object. A common
procedure is to set the hand in a preshape configuration and then close the fingers until they contact the
object surface. The closing motion is predefined from the knowledge of the hand specific kinematics. This
method has been widely used in the literature (e.g., in [4], [10], [18], [28]) and in grasping simulators
such as GraspIt! and Simox. Its main advantages are its simplicity and that it allows contact anywhere
on the finger surface. The procedure described in this section is based on the one implemented in Simox
and hence suitable for robot hands built with rigid parts. If an adaptive and soft hand such as the Pisa/IIT
SoftHand [29] is used instead, the procedure needs to be modified accordingly. For example, soft finger
contact must be considered instead of hard finger contact.

A. Synthesizing Grasps from the Seed Front Cord
If the region under a set of front cords is considered to be a promising grasping region, points

{P1, Pl

, P
r

} define the initial position and orientation of the hand relative to the object, where P
l

and
P
r

are located on the seed front cord (i.e., the middle one of the set), whereas P1 is on the seed guide
curve (i.e., the guide curve that gave rise to the seed front cord). More specifically, the hand’s approach
direction is given by

���!
P1Pm

, where P
m

is the midpoint of line segment P
l

P
r

and the rotation of the hand
around the approach direction is determined by the normal to the plane spanned by points {P1, Pl

, P
r

},
instead of being randomly sampled as done by the generic grasp planner in Simox. To close the hand
around the object, the hand is moved towards the object until the hand’s Grasp Center Point (GCP) [10]
reaches the object surface or the hand intersects with the object. In the latter case, the hand is moved
away until it no longer intersects with the object. Finally, the fingers are closed around the object.

B. Assessing the Grasp Stability
In order to check grasp stability, we rely on the grasp wrench space computation implemented by

Simox. First, Simox constructs 6D wrenches from the contact information [28], [30], [31] to represent the
contact force and torque. Second, a quality measure is obtained from the analysis of the convex hull of
all contact wrenches. The resulting grasp is considered to be force-closure by Simox, if the convex hull
contains the origin of the wrench space as an interior point. Third, the minimum distance between the
origin of the wrench space and the convex hull surface demonstrates the ability of the grasp to compensate
for external disturbances; hence, it is used by Simox as the grasp quality metric.

V. TEST CASES

In this section, we show that grasps synthesized by our cord-driven grasp planner are more similar
to human-planned grasps than those synthesized by the generic grasp planner in Simox. We chose 26
objects (Fig. 9), such as Toothpaste (the left subfigure in Fig. 8) and ToyCarYelloq (the right subfigure in
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Fig. 8), from the KIT database [11] plus 5 computer-designed objects (Fig. 10). The KIT database was
built from real objects by scanning them with a 3D digitizer, and polygon mesh of each KIT object has
800 faces (triangles). The 26 KIT objects in the subset were selected because they offer a wide diversity
of shapes, and some objects even have small surface bumps, ridges, and grooves. In addition, Toothpaste
is given as a non-manifold mesh, whereas ToyCarYelloq contains several holes. The computer-designed
objects were chosen for their complex shapes. The chosen hand models are the Schunk anthropomorphic
hand, the iCub (right) hand, and the Armar-III (right) hand. The grasp planner was built on top of Simox
and executed on a workstation with the following configuration: Ubuntu 12.04 (x86 64), 8 GB memory
(RAM), and an Intel Core i5 CPU at 3.40 GHz.

In Section V-A, we describe briefly grasp quality measure skewness ↵ [20] and determine experimentally
the optimal number of front cord sets that are needed in the exploration stage. In Section V-B, we analyze
the performance of our cord-driven grasp planner by synthesizing grasps for both the 26 KIT objects and
the 5 computer-designed objects.

Fig. 8. Left: KIT Toothpaste is a non-manifold mesh. Note that the zoomed-in section of the object is shown inside the rectangle. Right:
KIT ToyCarYelloq has several holes.

A. Evaluation of Grasps Using Grasp Quality Measure Skewness
In this subsection, we determine experimentally the optimal number of sets of front cords that are

needed in the exploration stage after a brief description of grasp quality measure skewness ↵.
The grasp quality measure skewness ↵ is defined as follows in [20]:

↵ =

8
>><

>>:

� if �  ⇡

4
⇡

2 � � if ⇡

4 < � < ⇡

2
� � ⇡

2 if ⇡

2 < � < 3⇡
4

⇡ � � if � � 3⇡
4 ,

(2)

where � is the angle between the axis that points from the palm of the hand and the object’s largest
principal axis. We choose this measure because the skewness for human-planned grasps was significantly
smaller than for grasps synthesized by an automated technique (i.e., GraspIt! [32]) according to [20],
whereas no significant difference was observed when other measures listed in [20] were used.

Next, we determine experimentally the optimal number of sets of front cords (not counting the local
improvement) that are needed in the exploration stage. To grasp a long circular cylinder, most people align
their wrists perpendicular to the cylinder’s largest principal axis. To check whether grasps synthesized
by our cord-driven grasp planner also aligns the wrist in a similar way, we randomly generated multiple
sets of front cords. After each run, the best set of front cords (based on the grasp measure XOR �) was
chosen and the skewness measure ↵ for the corresponding grasp computed. The upper subfigure in Fig. 11
illustrates the mean and standard deviation (pooled over 100 runs) of the skewness measure ↵. Clearly,
↵ is much lower with local improvement and it decreases with the additional number of sets of front
cords. However, as shown in the lower subfigure in Fig. 11, the running time of the exploration stage
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Fig. 9. 26 KIT objects used in the evaluation of our cord-driven grasp planner. All objects are rendered at the same scale to facilitate
comparisons.

increases linearly with local improvement. In the rest of this section, 20 sets of front cords are generated
in the exploration stage (plus local improvement), because it strikes the best balance between quality (as
measured by the skewness measure) and running time (in seconds).

Lastly, we evaluate grasps synthesized by our cord-driven grasp planner for 5 KIT objects with simple
shape and clearly defined principal axes using grasp quality measure skewness ↵, and compared them to
grasps synthesized by the generic grasp planner in Simox. In [20], the objects chosen for the experiments
were simple household items: wine glass, one-liter bottle, soda can, cereal box, coil of wire, phone,
pitcher, soap dispenser, and CD pouch. We selected 5 KIT objects among the 26 KIT objects we use
in this paper: CoffeeFilters (Cereal box), CokePlasticLarge (One-liter bottle), KoalaCandy (Soda can),
Pitcher (Pitcher), and Wineglass (Wine glass), where the objects in the parentheses are the look-alikes
in [20]. For each object, we synthesized 10 grasps with the proposed grasp planner and 10+10+10 grasps
with the generic grasp planner (with 3 different running time). The means and standard deviations (shown
in the parentheses) of the total running time of our cord-driven grasp planner are 2.43 sec (0.57 sec),
5.70 sec (0.36 sec), 2.44 sec (0.36 sec), 4.65 sec (4.65 sec), and 3.75 sec (0.52 sec) for CoffeeFilters, Coke-
PlasticLarge, KoalaCandy, Pitcher, and Wineglass, respectively. The skewness data for the objects with
simple shape shown in Fig. 12 indicates that, in the vast majority of cases, the mean value and standard
deviation of ↵ are lower for grasps synthesized by the proposed grasp planner.
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Fig. 10. 5 computer-designed objects, from left, Decor, Desk Lamp, Pliers, Sai Weapon, and Spike Weapon. Top: stable grasps synthesized
by the generic grasp planner in Simox. Bottom: stable grasps synthesized by our cord-driven grasp planner.

B. Analysis of Our Cord-driven Grasp Planner
In this subsection, we analyze the performance of our cord-driven grasp planner that synthesizes a

stable grasp in two stages with the SAH: the exploration and the finger configuration computation stages.
Initially, we synthesized grasps for the 26 KIT objects. Additional sets of front cords were generated

in addition to the initial 20 sets during the local improvement phase. During the finger configuration
computation stage, the sets of front cords for each object are processed one by one until a stable grasp is
found, where the sets are sorted by their grasp measure XOR scores. Since there are 26 KIT objects to be
grasped and 10 attempts were made for each object, we made a total of 260 attempts and found 260 stable
grasps. A histogram of the number of sets of front cords processed until a stable grasp was found is shown
in the upper subfigure in Fig. 13. This shows that stable grasps were found among the top-ranked sets of
front cords for the vast majority of the 260 cases. Furthermore, in the finger configuration computation
stage, stable grasps were found within 0.2 sec for almost all cases as shown in the lower subfigure in
Fig. 13. Time (averaged over 10 attempts for each KIT object) taken by the proposed grasp planner to
find a stable grasp is shown in Fig. 14.

We also synthesized grasps for the 26 KIT objects with the iCub (right) and ARMAR-III (right) hands.
Three sets of stable grasps, one for each robotic hand, synthesized by the proposed grasp planner for
all 26 KIT objects can be found in the supplementary digital video. In Fig. 15, 3 stable grasps using 3
different hands for 3 KIT objects are shown. The right subfigure shows that, given a smaller object with
a handle such as a coffee cup (or the water jar in the subfigure), our grasp planner prefers to grasp the
cup instead of just the handle, because a grasp around the cup has lower skewness and hence it is more
stable. Furthermore, such a grasp is also much easier to be executed by a robotic hand. However, given
a kettle, our grasp planner will synthesize grasps that grab the handle instead of the body of the kettle
as shown in Fig. 16, because grasps around the handle are more robust in this case; on the contrary, the
generic grasp planner in Simox does not have a preference for the kettle handle.

Next, we synthesized grasps for the 5 computer-designed objects. Since there are 5 computer-designed
objects to be grasped and 10 attempts were made for each object, we made a total of 50 attempts and
found 50 stable grasps. The average time taken by our cord-driven grasp planner to find a stable grasp for
Decor, Desk Lamp, Pliers, Sai Weapon, and Spike Weapon is 31.25 sec (4.58 sec), 31.80 sec (5.95 sec),
13.36 sec (0.99 sec), 16.16. sec (3.63 sec), and 9.59 sec (1.21 sec), respectively, where the values shown in
the parentheses are the corresponding standard deviations.
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Fig. 11. Upper: The mean values of the skewness measure ↵ and the corresponding standard deviations for the grasps synthesized by our
cord-driven grasp planner for a cylinder. Lower: The running time (in seconds) of the exploration stage of our cord-driven grasp planner
when it was used to synthesize grasps for a cylinder.

Finally, we compared stable grasps synthesized by our cord-driven grasp planner for the 5 computer-
designed objects to grasps synthesized by the generic grasp planner in Simox. For each object, we set
the timeout of the generic grasp planner to the maximum running time of the cord-driven grasp planner
for the same object. Furthermore, we enabled the force closure option and set the minimum quality to 0.
Stable grasps synthesized by the generic grasp planner and the proposed grasp planner for these 5 objects
are shown in the top and bottom row in Fig. 10, respectively. These stable grasps can also be found
in the supplementary digital video. The skewness data for these objects with complex shape shown in
Fig. 17 indicates that both the mean value and standard deviation of ↵ are lower for grasps synthesized
by the proposed grasp planner. Therefore, stable grasps synthesized by the proposed grasp planner are
more natural-looking for humans. For example, given a spike weapon, the generic grasp planner tends to
grasp the spikes, whereas the proposed grasp planner tends to grasp the handle, as most people would do.
Furthermore, stable grasps synthesized by the proposed grasp planner for these 5 objects are in general
easier to be executed on real robotic platforms. In Fig. 10, the grasp synthesized by the generic grasp
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Fig. 13. Upper: Histogram of number of sets of front cords processed in the finger configuration computation stage until stable grasps are
found for all KIT objects. Lower: Histogram of time taken by the finger configuration computation stage to find stable grasps for all KIT
objects.

planner for object Decor is difficult to be executed on real robotic platforms, especially when the object
is localized from uncertain point cloud data.

VI. CONCLUSION

We have presented an innovative and intuitive grasp planner that synthesizes stable grasps after quickly
identifying promising regions for force-closure grasps by wrapping multiple sets of cords around an object
in order to obtain information about its shape. The proposed planner has several advantages compared



15

0

1

2

3

4

5

6

7

P
la

n
n
in

g
 t
im

e
 (

se
c)

C
h
o
co

Ic
in

g
 

C
le

a
n
in

g
C

lo
th

s 

C
lo

w
n
 

C
o
ff
e
e
F

ilt
e
rs

 

C
o
ke

P
la

st
ic

L
a
rg

e
 

C
o
ke

P
la

st
ic

S
m

a
ll 

D
a
n
is

h
H

a
m

 

D
o
g
 

D
w

a
rf

 

F
is

h
 

G
la

ss
b
o
w

l 

G
re

e
n
C

u
p
 

H
e
a
rt

1
 

K
o
a
la

C
a
n
d
y 

L
e
tt
e
rP

 

M
o
o
n
 

N
u
te

lla
G

o
 

P
itc

h
e
r 

P
o
n
y 

S
e
a
l 

S
o
ft
C

h
e
e
se

 

S
p
ra

yf
la

sk
 

T
o
o
th

p
a
st

e
 

T
o
rt

o
is

e
 

T
o
yC

a
rY

e
llo

q
 

W
in

e
g
la

ss
 

Fig. 14. Time (averaged over 10 attempts for each object) taken by the cord-driven grasp planner to find a stable grasp for each KIT object.

Fig. 15. Three stable grasps for three KIT objects with three different robotic hands.

Fig. 16. Left: A grasp synthesized by the generic grasp planner in Simox for a kettle. Right: A grasp synthesized by our cord-driven grasp
planner that grasps the kettle handle.

to previous approaches: it can be easily and rapidly implemented; it operates on polygon soup meshes;
it can handle objects with complex shapes; and it does not require costly preprocessing such as shape
segmentation and medial axis computation. Furthermore, grasps synthesized by our cord-driven grasp
planner are more similar to human-planned grasps as measured by grasp quality measure skewness
compared to grasps synthesized by previous approaches such as the generic grasp planner in Simox.



16

0

5

10

15

20

25

30

S
ke

w
n
e
ss

 (
d
e
g
)

 

 

D
e
co

r 

D
e
sk

 L
a
m

p
 

P
lie

rs
 

S
a
i W

e
a
p
o
n
 

S
p
ik

e
 W

e
a
p
o
n
 

The Generic Grasp Planner in Simox
The Cord−driven Grasp Planner

Fig. 17. Both mean and standard deviation of the skewness grasp measure ↵ are lower for grasps synthesized by our cord-driven grasp
planner for the 5 objects with complex shape than grasps synthesized by the generic grasp planner in Simox.

Consequently, the proposed planner is particularly suitable for the fast computation of grasps in the
context of human-robot interaction and interactive synthetic characters.

There are several ways to improve the proposed planner. The current sampling approach is optimized
for grasping of smaller household items. By utilizing a different sampling strategy, the planner can be
adapted to grasp larger household items such as chairs and tables. Naturally, multiple hands are needed
to lift a table. Another possible improvement of the planner would be its adaptation to the synthesis of
precision grasps in order to for example pick up small items such as pens and small action figures. For
example, non-stiff front cords can be supplemented with stiff front cords [7] so that the proposed grasp
planner becomes more suitable for synthesizing of precision grasps. Furthermore, the cord model used
in this paper can be extended to have more width or thickness to represent flat ribbons or thick tubes,
respectively [7]. This way, even grasps for objects such as an extended Slinky (a toy in the form of a
pre-compressed helical spring) can be synthesized. Finally, in addition to rely on the grasp quality measure
skewness to evaluate how natural-looking a grasp is for humans, we would like to perform perceptual
studies to compare grasps synthesized by our cord-driven grasp planner with grasps generated by human
subjects and see if the subjects could identify the synthesized grasps. We would also like to investigate
whether our grasp planner can synthesize even more natural-looking grasps with access to a database of
grasp knowledge.
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