
Contents lists available at ScienceDirect

Acta Psychologica

journal homepage: www.elsevier.com/locate/actpsy

Guided by gaze: Prioritization strategy when navigating through a virtual
crowd can be assessed through gaze activity

Meerhoff L.A.a,b,⁎, Bruneau J.a, Vu A.a, Olivier A.-H.a,b, Pettré J.a

a Inria, Univ Rennes, CNRS, IRISA - UMR 6074, F-35000 Rennes, France
bUniv Rennes, Inria, M2S - EA 7470, F-35000 Rennes, France

A R T I C L E I N F O

Classification codes:
2300 Human experimental psychology
2323 Visual perception
2330 Motor processes
2346 AttentionKeywords:
Crowd navigation
Pareto optimality
Pedestrian
Virtual reality
Locomotion
Interaction neighborhood

A B S T R A C T

Modelling crowd behavior is essential for the management of mass events and pedestrian traffic. Current mi-
croscopic approaches consider the individual's behavior to predict the effect of individual actions in local in-
teractions on the collective scale of the crowd motion. Recent developments in the use of virtual reality as an
experimental tool have offered an opportunity to extend the understanding of these interactions in controlled
and repeatable settings. Nevertheless, based on kinematics alone, it remains difficult to tease out how these
interactions unfold. Therefore, we tested the hypothesis that gaze activity provides additional information about
pedestrian interactions. Using an eye tracker, we recorded the participant's gaze behavior whilst navigating
through a virtual crowd. Results revealed that gaze was consistently attracted to virtual walkers with the
smallest values of distance at closest approach (DCA) and time to closest approach (TtCA), indicating a higher
risk of collision. Moreover, virtual walkers gazed upon before an avoidance maneuver was initiated had a high
risk of collision and were typically avoided in the subsequent avoidance maneuver. We argue that humans
navigate through crowds by selecting only few interactions and that gaze reveals how a walker prioritizes these
interactions. Moreover, we pose that combining kinematic and gaze data provides new opportunities for
studying how interactions are selected by pedestrians walking through crowded dynamic environments.

1. Introduction

As with collective animal behavior (Couzin & Krause, 2003),
movements of human crowds emerge from the combination of the local
interactions between neighboring pedestrians in the crowd (Moussaïd
et al., 2012). The effect of single interactions on the formation of
human locomotion trajectories has been extensively studied, for ex-
ample during collision avoidance (Croft & Panchuk, 2017; Knorr,
Willacker, Hermsdörfer, Glasauer, & Krüger, 2016; Olivier, Marin,
Crétual, & Pettré, 2012), following (Lemercier et al., 2012; Rio, Rhea, &
Warren, 2014), or grouping (Moussaïd, Perozo, Garnier, Helbing, &
Theraulaz, 2010; Rio, Dachner, & Warren, 2018). However, the notion
of an interaction neighborhood needs to be developed to fully explain
the structure of the collective motion. Interaction neighborhoods in
human crowds are typically designed somewhat arbitrarily according to
the modeler's beliefs, based on for example distance (Helbing & Molnar,
1995), topology (Van den Berg, Guy, Lin, & Manocha, 2011), or vision
(Ondřej, Pettré, Olivier, & Donikian, 2010). These assumptions are
necessary as the high number of potential interaction sources make it
nearly impossible to infer any causality based on the combined

interactions. An interaction neighborhood is a formalization of which
neighbors are likely to have an effect on the walker's trajectory. A
formalization solely based on kinematics cannot be achieved without
arbitrary hypotheses, therefore additional measurements are required
to fully understand the process.

Gaze activity, in addition to kinematics, may provide a good in-
dication of where humans get their (visual) information from for the
control of human locomotion (e.g., Patla, 1997; Warren Jr, 1998;
Nummenmaa, Hyönä, & Hietanen, 2009). Marigold and Patla (2007)
showed that gaze is drawn towards task relevant aspects of the en-
vironment, as walkers fixated on locations where they would eventually
step arguably to maximize the amount of information available for a
safe foot placement. Moreover, gaze behavior changes depending on
the risk of collision (Jovancevic-Misic & Hayhoe, 2009). In an experi-
ment where participants came across confederates that would either
seek collision or avoid collision, Jovancevic-Misic and Hayhoe (2009)
showed that participants adapted their gaze behavior depending on
which confederate was approaching them. The risky confederates
would draw more attention, whereas the confederate that did not pose a
collision risk was gazed at less. Additionally, gaze behavior provided
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information about how a pedestrian engaged an interaction (Croft &
Panchuk, 2017). In a collision avoidance task where an interferer
crossed a participant's trajectory at 90°, Croft and Panchuk (2017)
showed that the gaze behavior revealed whether the participant would
cross in front or behind the interferer. Participants tended to pass be-
hind when they looked at the interferer early in the interaction and
when the duration of the fixation was long. It has even been shown that
people use the gaze behavior of others to adjust their behavior (Dicks,
Clashing, O'Reilly, & Mills, 2016; Colombi, Scianna, & Alaia, 2016;
Colombi & Scianna, 2017), likely because it informs about the action
intentions. Therefore, we focus on understanding how a person inter-
acts with its environment based on its gaze activity. More specifically, it
can thus be surmised that gaze activity may shed light onto which
walkers prompt collision avoidance when walking through a crowded
environment.

The risk of collision with another pedestrian can for example be
quantified with distance- or time-based metrics such as the Distance at
Closest Approach (DCA, also referred to as Minimal Predicted Distance;
Olivier et al., 2012; Olivier, Marin, Crétual, Berthoz, & Pettré, 2013)
and the Time to Closest Approach (TtCA; Dutra, Marques, Cavalcante-
Neto, Vidal, & Pettré, 2017). Assuming that, at each time step, both
pedestrians maintain their current heading and velocity, the future
closest approach can be computed through linear extrapolation of each

walkers' heading and velocity. DCA is then the predicted distance be-
tween these walkers at-, and TtCA the time until-, the instant of closest
approach. As DCA and TtCA can be computed at every time step and
simultaneously incorporate the action of two walkers, these metrics
provide an interesting descriptor of the dynamics of an interaction
between two walkers. In previous experiments, walkers have been
shown to avoid collision when DCA is below a threshold of about 1m in
real-world conditions (e.g., Olivier et al., 2012, 2013), which has been
replicated in virtual reality (Lynch et al., 2017). To avoid collisions, it is
evident that typically lower TtCA or DCA values correspond to an in-
creased necessity to interact to avoid collision. However, it is challen-
ging to quantify this necessity to interact as it requires combining dis-
tance- and time-based metrics. Collision can be avoided with small
continuous adjustments early in the interaction, but also with a late
abrupt adjustment a short time before the closest approach. As such, in
isolation neither TtCA nor DCA provides a full description of when a
walker needs to respond to another walker. If there is not a lot of time
left until the closest approach (i.e., low TtCA), it may well be that the
distance at closest approach will be large (i.e., high DCA), and therefore
no action would be required. On the other hand, it may be that the
distance at closest approach is predicted to be small (i.e., low DCA), but
with a lot of time left until closest approach (i.e., high TtCA) it may not
(yet) be necessary to take action (due to the uncertainty of what

Fig. 1. Top) Participants sat in front of a 24″ screen (1). An eye tracker below the screen recorded participant's gaze (2). Participants moved through the virtual
environment using a joystick (3). An additional screen (4) allowed the researcher to monitor the experiment. Bottom) Screenshot of the virtual environment through
which participants navigated.
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happens in the meantime). Therefore, describing the necessity to in-
teract with a walker should incorporate both distance- and time-based
metrics.

Most studies on pedestrian interactions are based on kinematics
alone, making it difficult to infer what constitutes the interaction
neighborhood. As gaze plays an important role in locomotion and pe-
destrian interactions, we aim to examine the hypothesis that gaze
guides the interaction between pedestrians. In the current study we
propose to combine the distance- and time-based metrics using Pareto
optimality (Keller, 2017), which is a granular method to rank cases
based on the combination of two parameters. This Pareto ranking al-
lows us to assess the risk of collision, without making arbitrary as-
sumptions about how distance- and time-based metrics relate. We aim
to investigate whether gaze activity informs about how pedestrian in-
teractions unfold. More specifically, we hypothesized that, during lo-
comotion through a crowd, gaze is drawn towards the walkers that pose
a risk of collision. Secondly, we hypothesized that an avoidance man-
euver was initiated to avoid the walker fixated upon immediately prior
to initiating the maneuver. To have full control over the crowd parti-
cipants were exposed to, as well as kinematics of all neighbors' motion,
we performed experiments in a virtual environment, which has been
used previously in similar experiments (Schwarzkopf et al., 2013).

2. Methods

2.1. Participants

Nineteen participants (6 women, 13 men) volunteered for this ex-
periment with a mean age of 25 (SD=4) years. They were naive with
respect to the purpose of the experiment. All had normal or corrected-
to-normal vision. They gave written and informed consent and the
study conformed to the declaration of Helsinki.

2.2. Apparatus

Participants were seated in front of a 24″ screen, under which a
desktop Eye Tribe eye tracker device was positioned (see Fig. 1, top).
The eye tracker accuracy was 0.5–1° and the sampling frequency was
60 Hz. Before the start of the experiment, the eye tracker was cali-
brated. Participants controlled their virtual motion using a joystick
which was previously validated as a locomotion metaphor for pedes-
trian avoidance behavior in virtual reality (Olivier, Bruneau, Kulpa, &
Pettré, 2018). The longitudinal axis of the joystick controlled speed
linearly from 0.8 m·s−1 to 2.0m·s−1. The lateral axis controlled the
angular rotation speed linearly from −25° s−1 to 25° s−1. When no
action was applied on the joystick, the speed was 1.33m·s−1 and the
angular rotation speed was 0° s−1. That is, without moving the joystick,
the participant moved straight and at constant speed through the vir-
tual world. We designed a populated virtual environment using Unity
software (see Fig. 1, bottom). The virtual walkers navigated in a
straight line and were performing collision avoidance using the RVO2
library (Van den Berg et al., 2011). Parameters were set for a late
avoidance by the virtual walkers to ensure active collision avoidance of
the participant while preventing any collision that would disturb the
participants (between virtual walkers or from a virtual walker coming
from a blind spot). The virtual walkers were projected uniformly in
terms of color, appearance and speed (1.33 m·s−1).

2.3. Task

Participants had to move through a populated virtual environment
towards a distant target (see Fig. 1, bottom) without colliding into the
virtual walkers as they would in real conditions. After the participants
were habituated to the task with two practice trials, the participants
performed two experimental trials; all trials lasted 2min. Directly
afterwards, the participants completed a trial to evaluate the quality of

the eye tracker. During the evaluation trial, participants did not control
their movements through the virtual world (and were put on a collision-
free trajectory). Additionally, one of the visible virtual walkers was
randomly selected to be colored red. Rather than navigating towards a
target, the participants had to fixate their gaze upon the walker that
was colored red. By matching the eye tracker data with the known red
walker, we assessed the accuracy of the algorithm that determined gaze
fixations.

2.4. Data analysis

2.4.1. Pareto ranking
We ranked the risk of collision of each virtual walker by combining

a distance- and a time- based metric. More specifically, we used a
Pareto ranking (Keller, 2017) as a method to rank each virtual walker
based on their combination of DCA and TtCA. A Pareto rank was allo-
cated to each agent at each timestep following two iterative processes.
During the lower order iteration, the virtual walkers on the Pareto
frontier were identified. The higher order iteration repeated this pro-
cess, but only with the remaining walkers. The Pareto rank was de-
termined as the nth higher order iteration (i.e., virtual walkers found in
the first iteration were ranked 1, virtual walkers found in the second
iteration were ranked 2, and so on). The Pareto frontier (see connected
data points in Fig. 2, top) contained all virtual walkers that were ‘Pareto
efficient’: they had a potentially optimal trade-off of both TtCA and
DCA. This frontier was determined iteratively by first selecting the
virtual walker with the lowest X-score (e.g., A46 in Fig. 2) and subse-
quently identifying the walker with the lowest X-score of the remaining
walkers and a lower Y-score than the previously identified walker (e.g.,
A35 after A46 in Fig. 2). This process was repeated until no virtual

Fig. 2. Top) DCA and TtCA values of the virtual walkers at one instant during
the experiment. The dotted vertical and horizontal lines visualize that no other
walker had a more Pareto-efficient combination of TtCA and DCA. Bottom)
Screenshot of the virtual walkers colored according to their corresponding
Pareto ranks.
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walker remained (i.e., the remaining virtual walkers had a higher Y
than the last selected virtual walker, e.g., A49). Note that it was in-
different whether X or Y represents TtCA or DCA. To clarify, the highest
rank (i.e., 1) was given to the walkers with the lowest combinations of
TtCA and DCA. As an example, we visualized the Pareto ranks of the
virtual walkers in Fig. 2 (bottom). A virtual walker with a high rank
(i.e., closer to 1) would demand to be interacted with as the risk of
collision would be high relative to the walkers with lower rankings.

2.4.2. Fixation
The fixation location of the participant's gaze was derived by in-

terpreting the 2D on-screen gaze location as the line of sight in the 3D
virtual world. Additionally, we had to correct for the movements of all
the virtual walkers which posed three challenges: 1) gaze location was
not fixed because the virtual walkers are moving, 2) other virtual
walkers might walk into the line of sight whilst gaze was tracking a
virtual walker further back, and 3) gaze behavior alternated between
scanning and fixating. To tackle these problems effectively, we build an
algorithm to classify the participants' gaze behavior.

First, we computed a distance score for every virtual walker based
on the distance of each walker to the line of sight (derived from the 2D
on-screen gaze location), similar to determining gaze fixations in static
images. However, a virtual walker that was walking past at a different
depth but not gazed upon may have been closer to the line of sight than
the virtual walker that was being tracked. Therefore, as the second step,
we computed a continuity score with which the distance score was
boosted whenever a virtual walker was tracked over time. This prior-
itized virtual walkers that were close to the line of sight over a longer
period of time. The virtual walker with the highest score was de-
termined as the virtual walker that the participant fixated upon. The
third step was to exclude fixations lasting shorter than 0.2 s to omit
scanning and random variations (Salvucci & Goldberg, 2000). We va-
lidated the algorithm by computing the percentage correctly identified
fixations using an evaluation trial. We excluded two participants as only
1% and 38% of the fixations were correctly identified, indicating the
eye tracker data as unreliable. The fixations of the remaining partici-
pants were correctly identified with an average score of 84%
(SD=12%).

2.4.3. Relative Fixation Frequency (RFF)
To avoid any bias in our interpretations, we computed the Relative

Fixation Frequency (RFF) because the absolute fixation frequency may
by definition differ per Pareto rank since the number of walkers per
rank can differ. RFF is the ratio between the number of observed (i.e.,
absolute fixation frequency) and expected fixations in each rank. The
number of expected fixations was determined by looking at how many
virtual walkers there were in each rank at each time step, multiplied by
the total number of fixations. If the participant would randomly look at
a virtual walker on-screen, RFF would thus be 1. Alternatively, an RFF
of 2 implied that the participant gazed upon a virtual walker in that
ranking twice as often as expected by chance; conversely, an RFF of 0.5
only half as often.

2.4.4. Avoided virtual walkers
To establish the onset and end of an adjustment, we used the par-

ticipant's input on the joystick. First, we computed the participant's
linear and rotational speed. Then we identified every non-zero se-
quence of at least 10 frames (0.17 s). Avoided walkers were defined as
walkers that ended with an increased DCA at the end of a participant's
adjustment. Lastly, we matched the avoidance behavior with the gaze
fixations to identify the ranks of the walkers fixated upon before the
onset of an avoidance maneuver, the corresponding fixation duration
and the time difference between the end of the fixation and the start of
the avoidance maneuver.

2.5. Statistics

Statistics were performed using SPSS 20. We used a χ2-test to test
whether RFF was randomly distributed across Pareto ranks.
Additionally, we computed the 95% confidence intervals to indicate
whether the participant average RFF scores were different from chance-
level (i.e., RFF=1). We used a Kruskall-Wallis test to assess the dif-
ference in fixation duration per Pareto rank. For the average fixation
duration during each adjustment, a paired samples t-test was adopted to
assess the difference between virtual walkers that were and were not
avoided. Cohen's d was computed as a measure of effect size. The sig-
nificance level was set at p=0.05.

3. Results

3.1. Fixations

In Fig. 3 (top) we provided a descriptive overview of how often each
rank of the pareto front was fixated upon. It stands out that Pareto Rank
1 was fixated upon most often in absolute numbers (as indicated by n in
Fig. 3, bottom) as well as when considering the Relative Fixation Fre-
quency (RFF). More specifically, Pareto Rank 1 was fixated upon 2.3
times more than expected by chance (based on the number of virtual
walkers in each rank during each fixation). A χ2-test revealed that the

Fig. 3. Top) The average Relative Fixation Frequency (RFF) per participant
(n=17) specified per Pareto rank (whiskers indicating the 95%-CI). Values
above chance-level (i.e., RFF > 1) indicate that the number of fixations was
higher than expected by chance (based on the number of walkers visible in each
Pareto rank relative to the total number of virtual walkers visible). Bottom)
Average duration of a fixation on a walker in each Pareto rank, across all
fixations. The number of fixations per Pareto rank is denoted by n.
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distribution of the relative fixation along the Pareto ranks was not
random (χ2(8)= 6214.8, p < 0.001). The 95%-CIs, based on the
participants' average RFF, with 207 (SD=41) fixations per participant,
revealed that all scores were different from chance-level. Only in Pareto
rank 9, with only 3 fixations in total, was RFF not significantly different
from chance-level. Moreover, there was a statistically significant dif-
ference in the fixation duration for the different Pareto ranks (H
(8)= 186.221, p < 0.001): the higher the pareto rank, the longer the
fixation duration (see Fig. 3, bottom). Note that RFF can also be com-
puted based on DCA and TtCA separately. However, this would com-
plicate a direct comparison with the Pareto ranking, as each Pareto rank
may contain multiple agents. See the appendix for further detail.

3.2. Avoidance maneuvers

During all trials combined, a total of 997 maneuvers were regis-
tered. Of these maneuvers, 493 were away from the target and there-
fore considered as avoidance maneuvers; maneuvers towards the target
were not necessarily avoidance maneuvers. At the onset of these
avoidance maneuvers, there were on average 35 virtual walkers visible
and we focus our analysis on the last agent that was fixated upon. The
labels of all of these visible virtual walkers at the onset of the avoidance
maneuver are presented in Table 1.

When examining specifically the fixations before the participant
initiated an avoidance maneuver, it stands out that 88.1% of the
avoidance maneuvers were preceded by a fixation on a walker that
belonged to the first Pareto rank at the onset of the maneuver (see
Fig. 4). Furthermore, Fig. 4 describes whether walkers that were fixated
upon prior to an avoidance maneuver were indeed avoided; for ex-
ample, of all fixations, 74% were upon avoided walkers in rank 1.
Across all ranks, 79% of the walkers fixated upon before an avoidance
maneuver were indeed avoided during the subsequent avoidance
maneuver.

An independent t-test comparing the duration of fixations before an
avoidance (M ± SD=1.25 ± 1.94s, 95% CI[0.75 1.35], n=493)
and the duration of fixations not before an avoidance
(M ± SD=0.72 ± 0.71s, 95% CI[0.70 1.16], n=3521) revealed
that the duration of fixation was significantly higher when a fixation
was followed by an avoidance maneuver, (t(557)= 10.963, p < 0.001,
Cohen's d=0.77).

Lastly, we described the distribution of three important character-
istics of the walker that is assumed to have triggered the avoidance
maneuver based on whoever was last fixated upon before an avoidance
maneuver was initiated (see Fig. 5). Given the relatively constant ve-
locities, the Distance- and TtCA-based histograms are fairly similar. In
terms of DCA, walkers with lower values were clearly more likely to
trigger an avoidance maneuver.

4. Discussion

The objective of our study was to investigate whether gaze under-
pins the interactions with other pedestrians as a step towards analyzing

the interaction neighborhood of a pedestrian walking through a crowd.
We examined what can be deduced from gaze activity about pedestrian
interactions. We analyzed the gaze behavior when navigating through a
dynamic virtual environment (i.e., a crowd of virtual walkers), as well
as the characteristics of the walkers fixated upon prior to an avoidance
maneuver. We hypothesized that the risk of collision, as determined by
a combination of a spatial (DCA) and temporal (TtCA) measure, would
attract the participant's gaze. Moreover, we hypothesized that the
fixation before an avoidance maneuver likely triggered that avoidance.

4.1. Fixations

Our results clearly revealed that most of the gaze fixations were
directed towards the virtual walkers with the highest risk of collision
with the participant (see Fig. 3, top). Even when correcting for the
number of walkers per Pareto rank, the virtual walkers with Pareto rank
1 were gazed upon 2.3 times more often than expected by chance.
Moreover, the average fixation duration was significantly higher for
walkers with Pareto rank 1 compared to walkers with a lower ranking
(except for rank 9, but it had only 3 fixations; see Fig. 3, bottom). These
results are in accordance with the study of Jovancevic & Hayhoe (2009)
where participants, in a constrained oval path, looked longer (also
sooner) to potentially dangerous pedestrians (i.e., walking on a colli-
sion path with the observer). It was previously shown in static en-
vironments that walkers fixate on locations that maximize the in-
formation that can be integrated by the nervous system to ensure a safe
foot placement (Marigold & Patla, 2007). Therefore, we suggest that
risk of collision is salient and influenced the gaze behavior of the par-
ticipants.

Previously, Andersen and Kim (2001) showed that observers can
accurately detect upcoming collisions. In their experimental design,
participants had to press a button to indicate that they perceived a
collision. In our study, we showed that observers looked at virtual
walkers that showed a risk of collision but also adapt their trajectories
to these virtual walkers. However, it is important to note that we have
displayed to participants relatively uniform crowds of walkers, walking

Table 1
Categorization of the visible virtual walkers at the onset of all of the 493
avoidance maneuvers.

Avoided Not avoided Totals

Counts Fixated upon 391 102 493
Not fixated upon 4,627 3,487 8,114
Totals 5,018 3,589 17,214

Percentages Fixated upon 79% 21% 100%
Not fixated upon 57% 43% 100%

Fig. 4. The percentage of the virtual walkers fixated upon before an avoidance
maneuver was initiated per Pareto rank. The shading of the bars indicates the
portion of the virtual walkers that was indeed avoided during the subsequent
avoidance maneuver.
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at the same speed, performing linear trajectories, with a similar level of
density along the path. Future work is required to investigate the in-
fluence of additional features such as relative speed, angle of approach
or the geometry of the path performed.

Although it is difficult to objectively quantify a walker's risk of
collision with another walker, we suggest that it should be based on the
notions of space and time, defined in our study by DCA and TtCA. We
combined space and time features and were able to rank characters by
the risk of collision using Pareto fronts (see appendix for a more de-
tailed analysis of ranking virtual walker based on DCA and TtCA alone).
The advantage of the Pareto ranking is that no assumptions have to be
made about the relative importance of DCA and TtCA with regard to the
risk of collision. However, one of the disadvantages of this technique is
that several walkers will have the same rank. Additional research is
required to provide a more accurate definition of risk of collision and
how to enable more precise evaluation of this risk with respect to the
relative position and motion of pedestrians. Dedicated experiments
could exploit the relation between collision avoidance and gaze to
further tease apart the temporal and spatial components underpinning
risk of collision. Future research could for example refine the definition
of the walker that triggered an avoidance maneuver. Currently, we
investigated the hypothesis that whoever was gazed at immediately
before an adaptation was the one that triggered an adaptation.
Additionally, one could explore what the influence may have been of
the n last walkers that were fixated upon. Furthermore, although it is
difficult to establish concrete thresholds, it may also be possible to
better identify who triggered an adaptation by excluding any walkers of
which it is safe to assume that it could not have triggered an avoidance
maneuver (e.g., DCA > 3m).

4.2. Avoidance maneuvers

We checked the existence of a relation between gaze behaviors and
avoidance maneuvers. To this end, we decomposed virtual walkers in
sets of avoided and not-avoided virtual walkers, as well as sets of gazed
and non-gazed virtual walkers. Of the last fixated upon walkers, a vast
majority (79%) was indeed avoided, see Table 1. This indicates that the
walker last fixated upon was likely to be the walker that triggered an
avoidance maneuver. In 21% of the avoidance maneuvers on the other
hand, the last fixated upon walker was not avoided. This could be be-
cause of the simplistic definition of ‘avoided’ (i.e., increased DCA at the
end compared to the start of an avoidance). Alternatively, it is possible
that the fixation that actually triggered the avoidance was not long
enough to be included as a fixation (only fixations longer than 0.2 s
were considered). Croft and Panchuk (2017) also reported avoidance
behavior without fixation, which may be explained as the result of
parafoveal gaze (Croft, Button, & Dicks, 2010) Parafoveal gaze would

not typically be registered as a fixation, but may indeed allow trajectory
adjustments. Alternatively, it is also possible that these virtual walkers
were indeed avoided without being gazed upon as a result of an ad-
justment to one of the other virtual walkers. Not only was the last
fixated upon virtual walker indeed avoided most of the time, this last
avoided virtual walker also belonged to Pareto rank 1 in most cases. As
can be seen in see Fig. 4, virtually all fixated upon virtual walkers be-
long to Pareto rank 1 and 2. This highlights that combining the dis-
tance- and time-based metric (DCA and TtCA) using a Pareto ranking
yields a meaningful categorization of risk of collision.

Although the specific definition of interaction neighborhood needs
to be more closely examined, the histograms in Fig. 5 reveal that the
walker that triggered a reaction is not that well described only based on
distance. It seems that DCA would be the best classifier for determining
which walkers may elicit an avoidance maneuver. Future work on in-
teraction neighborhoods should examine how the combination of the
proposed measures can inform which walkers influence how interac-
tions between pedestrians emerge.

Additionally, the results revealed that the fixation duration of the
fixations before an avoidance was initiated were significantly longer
than fixations not prior to an avoidance maneuver. This provides fur-
ther support that avoidance maneuvers are in fact guided by gaze.
During the avoidance maneuver the participant attuned its adjustments
to the information provided by fixating its gaze upon the walker that is
being avoided. In our study, fixating on the walkers who have the
highest risk of collision within a crowded environment may maximize
the information available to ensure a safe navigation. By combining
gaze and kinematic analyses, one can better assess the underlying
process of these individual-level interactions. As such, any model for
understanding how pedestrian interactions emerge could benefit from
the information provided by a walker's gaze fixations.

4.3. Conclusion

While previous studies showed the importance of visual information
in the control of locomotion (Patla, 1997; Warren, 1998) and the re-
lation between gaze behavior and trajectory adjustments to another
walker (Croft & Panchuk, 2017), our study showed for the first time
that the combined analysis of gaze and trajectory data provides new
insights on interaction neighborhoods and collision avoidance. The
notion of interaction neighborhood is important in the design of crowd
simulation algorithms, and the hypotheses made about it should be
revisited in light of our current results. It would be interesting to ex-
plore more deeply the relations between gaze and avoidance behaviors,
and for example, examine whether agents are fixated upon to evaluate
the risk of collision associated with them, or to use the perceived in-
formation to control the avoidance maneuver. While performing a

Fig. 5. The probability distributions for Distance to the participant (left), TtCA (mid), and DCA (right) of the walkers that were fixated upon prior to an avoidance
maneuver. The distributions were normalized between 0 and 1, with the sum of all bars of one subplot being equal to 1.
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navigation task in a highly dynamic environment, humans need to
adapt their motion to avoid collision. The gaze activity is clearly or-
iented to serve this task and informs about the strategy of humans in
their selection of most threatening interactions. Such information has
many applications, such as the design of crowd simulation algorithms,
the importance of which is crucial today for urbanism, safety, and ar-
chitecture.

Our work opens several avenues for future research. One direction is
to better understand what makes the risk of collision salient in complex
settings such as navigating through a crowd of pedestrians. Specifically
using more ecologically valid methods such as eye tracking in a
Computer Assisted Virtual Environment (CAVE) could enhance the
generalizability of the findings. Visually speaking, the features of the
optical flow can indicate to the walker the risk of collision with all the
moving objects around him. One question to determine is whether those
features are salient to the human vision. Another direction is to explore
the nature of the information gazed upon in the environment. Our scene
was uniform in terms of density and virtual walkers' motion. Probably,
the gaze behavior would be affected by changing scene features, such as
density: would we be able to observe a change in the strategy from such
data? A final direction would be to search for new relations between

gaze behaviors and the kinematics of avoidance maneuvers, especially
in the case of multiple simultaneous interactions. Combining gaze
tracking with motion data has the potential to enable exploring those
difficult questions, previously left unanswered by considering only one
of these two methods separately.
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Appendix

The following section provides some detailed analyses of our paper on the role of gaze in locomotor collision avoidance. In our paper, we use a
Pareto ranking to support our claim that gaze reveals important insights on how collision is avoided.

Most of these claims are based on the idea that it is necessary to interact with certain virtual walkers that yield a high risk of collision. To quantify
this necessity to interact, both DCA and TtCA play a role, but it is unclear what the importance is of DCA and TtCA with respect to each other.
Therefore, we used the Pareto ranking to combine the two measures without making a clear choice about their relative importance.

Rather than using the combination of DCA and TtCA in a Pareto ranking, it is of course also possible to compute the results from the paper based
on DCA and TtCA alone. Although it was not the main focus of the paper, it is worth checking if one of these two criteria has more importance than
the other, and if one of these two would be sufficient to support the same conclusion. Here, we present more detailed results to discuss these two
questions concerning fixations (Figs. A1 and A2) and concerning fixations in relation to avoidance maneuvers (Fig. A3).

Fig. A1. The Fixation Duration (top) and RFF (bottom) based on the DCA (left) and TtCA (right) rank at the onset of the fixation with one walker allocated to each
rank (NB, at each instant, there was only one walker in each rank). Whiskers indicate the 95%CI.
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Fig. A1 shows that neither DCA nor TtCA alone provide a clear insight to why a walker may have been fixated upon. The RFF of the DCA ranking
shows a trend that the higher ranks (i.e., closer to 1) were more fixated upon, but it is not as clear-cut as the Pareto ranking (see Fig. A2, top left). For
TtCA it stands out that walkers with the lowest TtCA were certainly not fixated upon more often. This was likely because walkers with a very low
TtCA have a high DCA and are therefore not posing a risk of collision.

Fig. A2. The RFF (top) and Fixation Duration (bottom) based on the Pareto rank (left), DCA rank (mid) and TtCA rank (right) at the onset of the fixation. The number
of walkers allocated to each DCA and TtCA rank is based on the number of walkers allocated to the Pareto ranks (i.e., the number varies per rank and per fixation).
The figures on the left are similar to the figures presented in the main paper. Whiskers indicate the 95%CI.

The combined Pareto ranking (Fig. A2, left) clearly reveals that the participants' gaze was attracted to the walker that scored high on both DCA
and TtCA. However, a completely honest approach would need to correct for the increased number of walkers allocated to each rank in a Pareto
ranking compared to the DCA and TtCA ranking of Fig. A1. In Fig. A2 (middle and right column), the results of the main paper are presented for the
DCA and TtCA rankings. It stands out that when the rankings are corrected for the number of virtual walkers, the difference between the Pareto and
other rankings decreases.
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Fig. A3. The extended analysis of the fixations preceding an avoidance maneuver. The top row shows the fixation percentage at each rank (where the number of
walkers in each rank is equal to the number of walkers allocated to the Pareto ranks). The middle row shows the duration of the fixation to each of the ranks. The
bottom row shows the difference (in seconds) between the end of the fixation and the start of the avoidance maneuver (where positive values indicate that the
fixation lasted until after the avoidance maneuver was initiated). The left column shows the Pareto ranking, the middle column the DCA ranking and the right column
shows the TtCA ranking. Whiskers indicate the 95%CI.

Finally, Fig. A3 provides more in-depth information about the fixation immediately before an avoidance maneuver was initiated. In this case, the
effect of ranking method clearly holds. Note that in this analysis the number of walkers per rank was adjusted to the number of walkers per Pareto
rank (i.e., the number varies per rank and per fixation). The Fixation durations show that – typically – higher ranked virtual walkers are fixated upon
longer. Together with the trend that fixations end sooner after the maneuver was initiated in lower ranks, it seems that the fixation upon the highly
ranked virtual walkers before an adaptation was initiated was really to guide the avoidance maneuver.
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