2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2005, New Paltz, NY

@ ONE MICROPHONE SINGING VOICE SEPARATION
USING SOURCE-ADAPTED MODELS
Alexey Ozerov, Pierrick Philippe Réemi Gribonval, Fedéric Bimbot
France Elecom R&D IRISA (CNRS & INRIA) - projet METISS
4, rue du Clos Courtel, BP 91226, Campus de Beaulieu,

35512 Cesson&vigre cedex, France 35042 Rennes Cedex, France
alexey.ozerov@francetelecom.com, remi.gribonval@irisa.fr,
pierrick.philippe@francetelecom.com frederic.bimbot@irisa.fr

ABSTRACT some modifications. Secondly, a new solution for voice model

adaptation is proposed. This new solution assumes that the adapted
voice model is obtained from the general voice model by a lin-
ear transformation of the feature space (short time spectra). In
that case the transformation is a linear filter, which estimation (re-
erred adilter adaptatior) is based on the MLLR framework [5].

A filter-adapted training procedure for a general voice model is
also presented.

The paper is organized in the following way. The GMM-based
one microphone source separation technique [2, 3] is described in
section 2. In section 3, a technique of model adaptation is pre-

1. INTRODUCTION sented, which is based on a segmentation of the mixture into vocal
and non-vocal parts. In section 4 the filter adaptation method and
The problem of one microphone source separation [1] is a chal-filter-adapted training procedure are introduced. The experimental

lenging task. In this paper, this problem is studied in the case conditions and simulation results are given in section 5.

of singing voice extraction from mono audio recordings. The ap-

proach is based oa priori probabilistic models for two sources:

one being the voice to be extracted from the recording, the sec- 2. GMM-BASED SOURCE SEPARATION

ond source being the background music. It is assumed that each

recordingz(n) (calledmixture is a simple sum of a voice signal  In this section we recall the principles of GMM-based source sep-

In this paper, the problem of one microphone source separa-
tion applied to singing voice extraction is studied. A probabilistic
approach based on Gaussian Mixture Models (GMM) of the short
time spectra of two sources is used. The question of source mode
adaptation is investigated in order to improve separation quality. A
new adaptation method consisting in a filter adaptation technique
via the Maximum Likelihood Linear Regression (MLLR) is pre-
sented with an associated filter-adapted training phase.

v(n) and a music signah(n) (calledsource}, wheren is a dis- aration [2, 3]. The separation scheme is represented in figure 1.
crete time index#£(n) = v(n) + m(n)). The aim is to estimate ~ We first recall the notion of GMM and explain how they are used
the voice contributiori(n) in the observed signal(n). to perform adapted Wiener filtering. Eventually, we explain how

For speech enhancement [2] and separation of several sourceSMM are learned from training data.
in a monophonic musical recording [3] it has been proposed to

model the short time spectra of the sources by Gaussian Mixture Voice GMM X3,
Models (GMM). These models are learned from training sources. L v 0
i i i - STFT- ! ——
The performance obtained witbeneral modelsi.e., models z X | Adaptive
learned on training sources issued from recordings different from — STFT *| Wiener filtering
those to be separated, is rather poor. In the case of our task, large T % STFT 1 +—
m

sound classes (voice and music) should be modeled. It may be
more efficient to usedapted modeld.e., models with character-
istics close to those of the mixed sources.

For blind clustering of popular music, Tsai [4] proposes to
adapt music and voice models directly from the recording. In a first
phase each recording is automatically segmented in a succession
of vocal and non-vocal parts. Then, an adapted music model is
learned on the non-vocal parts. Finally, using the adapted music
model as ara priori, an adapted voice model is learned from the
vocal parts. Notice that the singing voice does not appear alone,The short time Fourier spectid at timet of the voice signal are
but polluted with background music. Thus, for correct voice model modeled with a GMM, i.e., the probability density functioniaf
adaptation this background music is attenuated using the adaptegs given by
music model.

The first part of our contribution consists in the application of p(Vi|=0) Z woiN(Vis $
this adaptation technique for the singing voice extraction task with ’

Music GMM X3,

Figure 1: GMM-based separation scheme.

2.1. GMM sources modeling

UZ (1)
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with N(Vi; 8ui) = [ [ 7 o, 2 (f) exp (—IVi( )P /o2: ()], = STET X Vocal / non-vocal
whereV;(f) is the complex value of the short time Fourier spec- segmentation
trum V; at frequencyf ando?;(f), representing the local Power (Xt)tevoc / (Xt = Mt)igvoc
Spectral Density (PSD) at frequengyn the state of the GMM, is
the diagonal element of the diagonal covariance maitix This >, Voice | 2, | Music
GMM is denoted®, = {wwi, Xvi }i- Similarly M is modeled by Generalvoice™  model model
aGMM X, = {wmj, Xmj }j- model adaptation learning
E*
2.2. Separation by adaptive Wiener filtering s+ i 5
Source separation is performed in the Short Time Fourier Trans- Adaptive Vocal / non-vocal
form (STFT) domain with the Minimum Mean Square Error Wiener [— o, congatenation || gTET-1
(%)tEVOC‘Q =Vi,t € voc 1% v

(MMSE) estimator, which can be viewed as a form of adaptive (Xt)tevoc | filtering
Wiener filtering:

Vi =0,t ¢ voc

17t(f) 2 BVi(f)Xe, S0, Bl Figure 2: Source-adapted separation scheme.
2
Z%J %Xt(f), 2

. (Xi)tevom latent dated = {qv,qm, (‘/t)tevoc} and model pa-
with 37, 7i;(t) = 1 and rameterss = X, leading in the case of our GMM models to the
following re-estimation equations [7]:
’V’LJ(t) £ P(q’Ut = ia gmt = j|Xt7 2’07 E’m) (l+1) (l)
X Woiwmy N(Xt; Sus + Smy)y  (3) wy == 3 Y ®)
voc tevoc j
whereX; is the short time Fourier spectrum of the mixturand
¢yt and g, are hidden states of the modés, and 3, at the
time¢. The time domain source estimatiop is calculated as the

S revoe 25 1 (O (Ve (D))

(I+1) 2 ij

inverse STFT o/ = {V; }. o (" = D S A0 @) > (D)

teEvoc j lig
2.3. Model learning
The modelsS, andX,, are learned by maximization of the like- <|Vt(f)|2>(.l.) ) [IVt(f)\Q ‘Xm ot = i, gt = 5, 0. Em}
lihoodsp(V|X,) andp(M|X,.), givenV and M the STFT of ,
the training signals. This maximization is achieved using the Ex- [o (l>(f)] gmj(f) [Jili>(f)]2
pectation Maximization (EM) algorithm [6] initialized by Vector = o 0] Xe(f)]

izat : - L R, e+ e,

Quantization (VQ). For example, in the case of voice model esti- vl mj vi mj
mation, theobserved datay = V' is completed by théatent data (8)

0 = q. (states sequence), and the model paramétersy,, are
estimated by EM which is an iterative algorithm based on the two whereTy,. is the number of the vocal frames mﬁj (t) are com-
following steps: puted as in (3). The adaptation algorithm is initialized using a

learned general voice model, i.EJSJO) =3,.

Expectation:  Q(£,£W) = E, {bgp(?%@\f)\?%f(l)]

Lo 4 4. FILTER-INVARIANT MODELING
Maximization: WD = arg max Q(&, €M) “)
There are a lot of variability factors between the singing voices in
where¢® denotes the model parameters estimated at-théter- different recordings of the collection from which the general voice
ation. model is learned in the previous approach. In particular, since each

recording might be captured with a specific microphone, in a room
with its specific acoustics, there are sources of variability between
recordings that can be modeled by a global causal linear time-
Let voc denote the indices of the frames where voice is present nvariant filter. Instead of building GMM where many Gaussian
in X. Motivated by [4] we learn the music mod8l,, from the states are spent modeling the inter-recording variability, we pro-
non-vocal frame$X:) ¢vee = (M:):¢voe and then estimate the pose to use the states more to _model'the _mtemal dynam!cs of the
voice models:, from the vocal frames in a maximum likelihood “generic” vocal source, introducing a filter-invariant modeling.
manner as follows:

3. MODEL ADAPTATION

4.1. Voice modeling
3, = arg max p((X¢)tevoc|Xv, Xm) (5) ) . : :
oy With this purpose, we model each voice recordings a convo-

The adaptation procedure is represented in figure 2. In practice,lution v, = h, * o, with h,. a global filter ando,- an “original
the problem (5) is also solved by EM with observed data= voic€. The short time spectra of the original voices are now
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modeled by the same GM®, shared between different record- whereV = {V,.}, denotes the STFT of the training recordings
ings, but each recording has its own filter. In the STFT domain with singing voice.

this convolution becomes approximately: It is difficult to directly apply the EM algorithm (4) with ob-
served data = V, latent daté) = ¢, and estimated parameters
¢ = {H,X,} to solve the problem (13), since the maximization
H:(f) (9) step is not easy to solve jointly d3, andH. Instead a version of
|H- ()] Space-Alternating Generalized EM (SAGE) algorithm [8] is used.

. The set of estimated parameténs split in two partst; = H and
whereO,. and H.- stand for the STFT af,- andh,.. The short time o . . . ; .
spectra@M are modeled by the GMNE,, and it is clear from (9) €2 = 3. The iteration numbet + 1 of this algorithm consists

that the probability density of the recorded voice STFTis that In two EM algorlthm |te(§¢)51t|'ons (4). The first iteration is applied
of the GMM model to updateg; with & = &5 fixed and the second one to updéate

with & = 5{”1) fixed. This leads to the following re-estimation

Ver(f) = [He(D)|Ore (), Ore(f) = Ore(f)

Sor = Hr Sy 2 {woir, Hr i hi (10)  equations:
with 1, 2 diag[|H,(f)|?];. e First EM iteration H updated>, = =" fixed):
. o Vi (
4.2. Filter adaptation via MLLR |HTD(f) =7 Z XZ: | 1(5) J;)] W), (14)
To use this new model at the separation stage on a hew recording
X, the full adaptation of all voice model parameters (5) is replaced wherer " (1) oc W N (Vs HO£W), Zﬂf}i) t) =1
by the only adaptation of the global filter (see figure 3): andT;. denotes the number of frames in the STFT for the

r-th recording.

M = argmax p((Xe)tevoe|HE0, Zim) 11) e Second EM iterationX,, updatedH = H*" fixed):
Such a maximum likelihood estimation corresponds to the Maxi-
mum Likelihood Linear Regression (MLLR) framework [5]. 41) _ ~(l) 15
Wi Z R Z Z (15)
(a) (Xt)t€\7 (b) (Xt)t€\7
O] Vit (£)1?
3w Voice Xm 3 Filter Xm (1+1) ZT 2y e (8) IH”J:1> (N2
model {+— MLLR f— oy, ()] -0 , (16)
adaptatiof adaptatio PO Zt L i (1)
H* _
whered,)) (t) oc wy) N (Ve Hi V), 32,470 (8) =
DI 3 =M%, It should be noted, that during the adapted music model Iearning,

which is performed on the non-vocal parts, the corresponding fil-
Figure 3: Two voice model adaptation approaches. (a): full model ter is implicitly adapted. As a matter of fact, there is no need to

adaptation (b): filter adaptation via MLLR. explicitly make the filter adaptation.
5. RESULTS
Applying of the EM algorithm (4) with observed data =
(Xt)tevoe, latent dated = {qv, gm, (Vi)ievoe} and model pa- This section includes the experimental data description, presenta-
rameters = H yields the re-estimation equation: tion of the performance measure and the simulation results.

5.1. Data description

(OB
1 5 (RN, iy (@) - . .
|[HTD (1) = 7 oy = { - )iy Vo , The training data base for the general voice model includes 34
VOC tevoe i o5:(f) samples of singing men'’s voices from popular music. Each sam-
(12) ple is approximately one minute long. The general music model is

where<|Vt )2 ><l) andy(”( t) are calculated as in (8) and (3), re-  trained on 30 samples of popular music free from voice. Each sam-
placing the modeX:, by H('S,,. The mathematical development pleis qlso about one minute long an_d aII_sampIes come from differ-
of equation (12) is similar to [7]. ent artists. The test database contains five songs of the same genre,
for which the voice and music tracks are available separately. It is
) . therefore possible to evaluate the separation performance by com-
4.3. Filter-adapted training paring the estimated voice with the original one. The test items are

The above filter adaptation technique is also applied to generaimanually segmented in vocal and non-vocal parts.
voice model training. The general voice mod8)} and the un- Since state of the art single channel separation techniques (in-

known filtersH = {#,},. are jointly estimated as follows: cluding ours) so far only provide rather low quality sounds, we
have chosen to work with recordings made at a rather low sam-

(H", =) = arg max Hp (V| Ho S (13) pling frequency of 11025 Hz. This seemed to be a good trade-off
H.X,) re between quality and computational complexity.



2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2005, New Paltz, NY

5.2. Performance measure The full voice model adaptation technique described in section
3 has also been tested. The adapted voice model is obtained with
the EM algorithm (6 - 8) initialized by the general voice moBEi

(the initialization by VQ from(X}):cvoc has also been tested giv-

ing a quite bad result: GNSDR = 2.64 dB). The GNSDR =9.9 dB
is obtained, which is quite close to the result with the MLLR fil-

- — ter adaptation technique (10.05 dB). However, it has been noticed
o117 [lv]|* = (2, v) that in contrast to the MLLR adaptation procedure, the full voice
where(?,v) is the scalar product afandv, ||v||? is the energy of ~ model adaptation technique sometimes leads to certain listening
v. To evaluate the separation performance for one recording, theimpairments.
Normalized SDR (NSDR) is used, it measures the improvement of

the SDR between the non-processed mixtui@nd the estimated

voiced: NSDR(9, z,v) = SDR(9,v) — SDR(z,v). For overall

performance estimation the Global NSDR (GNSDR) is calculated In the context of one microphone source separation applied to
averaging the NSDR over different recordings. singing voice extraction, the question of adaptation ofatpeiori
source models has been studied, in the case where a song is al-
ready segmented into vocal and non-vocal parts. The new MLLR

. ) . L filter adaptation technique for voice model adaptation is proposed
The simulations are performed for different combinations of 32- ygether with a filter-adapted training procedure. The simulation
states voice GMM and 32-states music GMM in order to Show regyits show that each adaptation step leads to improvement of the
the effect of different adaptation steps. The STFT is calculated separation performance. The MLLR filter adaptation method is
using the half-overlapped 93-ms length Hamming windows. The ¢ompared with the full voice model adaptation technique.
separation is only made on the vocal parts. The simulation results |t should be noted that in comparison with the state of the art

are represented in table 1. approaches [1, 3], where the training sources similar to those to
be separated are needed to achieve a satisfactory separation per-

To measure the quality of the estimatidmwith respect to the orig-
inal singing voicev, we use the Source to Distortion Ratio (SDR)
calculated as follows [9]:

(8,0)°

SDR(9,v) = 10log;, a7

6. CONCLUSION

5.3. Simulations

Table 1: Simulation results. The data used for model / filter train-
ing is given in the braces.

The first experiments used a general voice mddgl and a
general music modeL:$ learned from the voice training daté
and music training dath/.

Learning the adapted music modEl: from the non-vocal
parts of each testing son@X:):¢voc increases the GNSDR by
about 4 dB in comparison with the general music mdgg.

The overall performance is again increased by about 0.7 dB
when afilter is adapted on the vocal parts for the same voice model
»¢ (see eq. (11)).

A slight gain about 0.25 dB is observed when the voice model
>F used in the filter-adapted separation is learned using the filter-
adapted training procedure (see sec. 4.3).

For comparison we also computed an empirical performance
upper bound using a reference voice maB&rf learned from the
vocal parts of the singing voice track alone. These tracks, which

are not accessible in a real setting, are here available for evaluation

purposes.
Our proposal is based on:

e music model learning on the non-vocal parts
o filter-adapted learning of the general voice model
o filter adaptation of the voice model at the separation stage

Compared to the use of non-adapted models, it brings a fair 5 dB
improvement and it remains only 2.5 dB below the empirical per-
formance bound.

Voice model Music model | GNSDR (dB) formance, our framework can still be applied in real conditions,
=5 [V] 26 [M] 5.06 since the manual vocal / non-vocal segmentation of songs can be
Y S (Xt tgvoe! 9.09 made by the user. In the future we are going to replace this manual

HE(Xt)tevoe| T [V] | EA1(Xt)tgvoc] 9.81 segmentation by an automatic segmentation module.
H[(Xe)tevoe] T4 [V] | Zin[(Xe)tgvoc] 10.05
0 [(Vi)revoe] o [(X)igvoe] 12.54 7. REFERENCES
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