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Adaptation of Bayesian Models for Single-Channel
Source Separation and its Application to Voice/Music

Separation in Popular Songs
Alexey Ozerov, Pierrick Philippe, Frédéric Bimbot, and Rémi Gribonval

Abstract—Probabilistic approaches can offer satisfactory solu-
tions to source separation with a single channel, provided that the
models of the sources match accurately the statistical properties
of the mixed signals. However, it is not always possible to train
such models. To overcome this problem, we propose to resort to
an adaptation scheme for adjusting the source models with respect
to the actual properties of the signals observed in the mix. In this
paper, we introduce a general formalism for source model adapta-
tion which is expressed in the framework of Bayesian models. Par-
ticular cases of the proposed approach are then investigated experi-
mentally on the problem of separating voice from music in popular
songs. The obtained results show that an adaptation scheme can
improve consistently and significantly the separation performance
in comparison with nonadapted models.

Index Terms—Adaptive Wiener filtering, Bayesian model, expec-
tation maximization (EM), Gaussian mixture model (GMM), max-
imum a posteriori (MAP), model adaptation, single-channel source
separation, time–frequency masking.

I. INTRODUCTION

THIS PAPER deals with the general problem of source sep-
aration with a single channel, which can be formulated as

follows. Let and be two sampled audio signals (also
called sources) and the sum of these two signals

(1)

also called mix. Given , the source separation problem in
the case of a single channel consists in estimating the contribu-
tions of each of the two sources .

Several methods (for example [1]–[4]) have been proposed in
the literature to approach this problem. In this paper, we con-
sider the probabilistic framework, with a particular focus on
Gaussian mixture models (GMMs) [5], [6]. The GMM-based
approach offers the advantage of being sufficiently general and
applicable to a wide variety of audio signals. These methods
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have indeed shown good results for the separation of speech sig-
nals [5] and some particular musical instruments [6].

The underlying idea behind these techniques is to represent
each source by a GMM, which is composed by a set of char-
acteristic spectral patterns. Each GMM is learned on a training
set, which contains samples of the corresponding audio class
(for instance, speech, music, drums, etc.). In this paper, we refer
to these models as general or a priori models, as they are sup-
posed to cover the range of properties observable for sources
belonging to the corresponding class.

An efficient model must be able to yield a rather accurate de-
scription of a given source or class of sources, in terms of a
collection of spectral shapes corresponding to the various be-
haviors that can be observed in the source realizations. This re-
quires GMMs with a large number of Gaussian functions, which
raises a number of problems:

• trainability issues linked to the difficulty in gathering and
handling a representative set of examples for the sources
or classes of sources involved in the mix;

• selectivity issues arising from the fact that the particular
sources in the mix may only span a small range of observa-
tions within the overall possibilities covered by the general
models;

• sensor and channel variability which may affect to a large
extent the acoustic observations in the mix and cause a
more or less important mismatch with the training condi-
tions;

• computational complexity which can become intractable
with large source models, as the separation process re-
quires factorial models [5], [6].

A typical situation which illustrates these difficulties arises
for the separation of voice from music in popular songs. For
such a task, it turns out to be particularly unrealistic to ac-
curately model the entire population of music sounds with a
tractable and efficient GMM. The problem is all the more acute
as the actual realizations of music sounds within a given song
cover much less acoustic diversity than the general population
of music sounds.

The approach proposed in this paper is to resort to model
adaptation in order to overcome the aforementioned difficulties.
In a similar way, as it is done for instance in speaker (or channel)
adaptation for speech recognition, the proposed scheme consists
in adjusting the source models to their realizations in the mix

. This process intends to specialize the adapted or a pos-
teriori models to the particular properties of the sources as ob-
served in the mix, while keeping the model complexity tractable.
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In the first part of this article, we propose a general formalism
for model adaptation in the case of mixed sources. This for-
malism is founded on Bayesian modeling and statistical esti-
mation with missing data.

The second part of the work is dedicated to experiments and
assessment of the proposed approach in the case of voice/music
separation in popular songs. We show how separation perfor-
mance can be significantly improved with model adaptation.

The remainder of the paper is structured as follows. In
Section II, the principles of probabilistic single-channel source
separation are presented, the limitations of this approach are
discussed and the problem studied in this paper is defined.
Then, in Section III, a general formalism for source model
adaptation is presented and further developed in the particular
case of a maximum a posteriori (MAP) criterion. Section IV
is dedicated to the customization of the proposed approach to
the problem of voice/music separation in monophonic popular
songs. Finally, Section V presents the experimental results,
with simulations and evaluations which validate the proposed
approach. All technical aspects of the paper, including the
precise description of the adaptation algorithms, are gathered
in an Appendix.

II. PROBABILISTIC SINGLE-CHANNEL SOURCE SEPARATION

A. Source Separation Based on Probabilistic Models: General
Framework

The problem of source separation with a single channel, as
formulated in (1), is fundamentally ill-posed. In fact, for any
signal , the couple
is a solution to the problem.

Therefore, it is necessary to express additional constraints or
hypotheses to elicit a unique solution. In the case of the proba-
bilistic approach, the sources and are supposed to have a
different statistical behavior, corresponding to different known
source models , with . Therefore, among
all possible solutions to (1), one can choose the pair minimizing
some distortion measure given these models. This can be ex-
pressed as the optimization of the following criterion, subject to
the constraint (1):

(2)

where is a distortion measure between the sources and
their estimates . Since the sources are not observed, the value
of this function is replaced by its expectation conditionally on
the observed mix and the source models.

The source models are generally trained on databases of ex-
amples of audio signals, the characteristics of which are close to
those of the sources within the mix [5], [7]. In this paper, such
models will be referred to as general models.

The separation problem of (1) can be reformulated in the
short-time Fourier transform (STFT) domain [5], [6]. Since the
STFT is a linear transform, we have

(3)

where , and denote the STFT of the
time-domain signals , , and for each signal

Fig. 1. Source separation based on general a priori probabilistic models.

frame number and each frequency index
( being the index of the Nyquist frequency). In the

rest of the paper, the presentation will take place in the STFT do-
main, knowing that the OLA (Overlap and Add) method can be
used to reconstruct the signal (see for instance [8]). Time-do-
main signals will be systematically denoted by a lower-case
letter, while STFT-domain quantities will be denoted by their
upper-case counterpart.

The formulation of the problem in the STFT domain is
motivated by the fact that audio sources are generally weakly
overlapping in the time–frequency domain. This property has
been illustrated for instance in [9]. In fact, if the sources do not
overlap at all in the STFT-domain, i.e., if
for any and , the following masking operation yields the
exact solution for the estimation of the th source:

(4)

where , if , and ,
otherwise.

As, in practice, the sources overlap partly, this approach can
be adjusted by using a masking function (or mask) that takes
continuous values and choosing
close to 1 if the th source is dominant in the time–frequency
region defined by and close to 0 if the th source is dom-
inated. In that case, the masking approach does not yield the
exact solution, but an optimal one in some weighted least-square
sense. The operation expressed in (4) is called time–frequency
masking, and it also corresponds to an adaptive filtering process.

However, the main difficulty is that the knowledge on the re-
spective dominance of the sources within the mix is not avail-
able, which makes it impossible to obtain an exact estimation
of the optimal masks . In the conven-
tional probabilistic approach, the source models are used to es-
timate masking functions according to the observed behavior of
the sources.

Fig. 1 summarizes the general principles of probabilistic
source separation. The general models and are trained
independently on sets of examples and . The source
estimates and are obtained by filtering the mix (cf.
(4)) with masks estimated from the general source models
and and the mix itself .

1) GMM Source Model: As mentioned earlier, the approach
reported on in this article is based on Gaussian mixture models
(GMMs) of the audio sources. A number of recent works have
been using GMMs or, more generally, hidden Markov models
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(HMMs) to account for the statistical properties of audio sources
[5]–[7], [10]–[13], the latter being a rather natural extension of
the former. The GMM/HMM-based framework allows to model
and to separate nonstationary audio sources, as considered here,
assuming that each source is locally stationary and modeled by a
particular Gaussian within the corresponding mixture of Gaus-
sians.

The underlying idea is to represent each source as the realiza-
tion of a random variable driven by a finite set of characteristic
spectral shapes, i.e., “local” power spectral densities (PSDs).
Each local PSD describes some particular sound event. Under
the GMM formalism, model for the th audio source
is composed of states corresponding to local PSDs

, .
Conditionally, to state , the short-term spectrum is

viewed as some realization of a random Gaussian complex
vector with zero mean and diagonal covariance matrix
corresponding to the local PSD, i.e., .
Such a GMM can be parameterized as ,
where are the weights of each Gaussian density satis-
fying . Altogether, the GMM probability density
function (pdf) of the short-term spectrum can be written
as

(5)

where denotes the pdf of a complex Gaussian
random vector with mean vector
and diagonal covariance matrix ,
defined as in [14] (pp. 503–504)

(6)

2) Model Learning: A conventional framework for learning
the GMM’s parameters , from training data
(for th source) is based on optimizing the maximum-likelihood
(ML) criterion

(7)

This approach is used for source separation, for instance, in
[5]–[7]. In practice, the optimization of the ML criterion is ob-
tained with an expectation-maximization (EM) algorithm [15].

3) Source Estimation: Once the source models trained, the
sources in the mix can be estimated in the minimum mean
square error (mmse) sense, i.e., with the distortion measure
from (2) defined as .
This leads to a variant of adaptive Wiener filtering, which is
equivalent to the time–frequency masking operation (4) with
the mask being calculated as follows [6] (and similarly for

):

(8)

where denotes the a posteriori probability that the
state pair has emitted the frame , with the property that

, and

(9)

where the symbol denotes proportionality, the short-
term spectrum of the mix, and , the hidden states in
models and .

B. Problem Statement

In the approach presented in the previous subsections, a diffi-
culty arises in practice from the fact that the source models
tend to perform poorly in realistic cases, as there is generally a
mismatch between the models and the actual properties of the
sources in the mix.

To illustrate this issue, let us take an example where one of
the sources is a voice signal (as, for instance in [5], [7], [10],
and [12]). Either the voice model has been trained on a par-
ticular voice but its generalization ability tends to be poor to
other voices, or it is trained on a group of voices but then it re-
quires a large number of parameters, and even though, it tends
to lack selectivity to a particular voice in a particular mix, not to
mention the variability problems that can be caused by different
recording and/or transmission conditions.

The same problem is reported also with other classes of sig-
nals, in particular, musical instruments [6], [11], all the more
acute as the separation problem is formulated with less a priori
knowledge, for instance, separating singing voice from music,
where the class of music signals is extremely wide.

Thus, the practical use of statistical approaches to source sep-
aration requires the following problems to be addressed:

1) deal with the scarcity of representative training data for
wide classes of audio signals (for instance, the class of
music sounds);

2) specialize a source model to the particular properties of
a given source in a given mix (for instance, a particular
instrument or combination of instruments);

3) account for recording and transmission variability which
can affect significantly the statistical behavior of a source
in a mix, w.r.t. its observed properties in a training data set
(for instance, the type of microphone, the room acoustics,
the channel distortion, etc.);

4) control the computational complexity which arises when
dealing with large-size statistical models (for instance,
hundreds or thousands of Gaussian functions in a GMM).

These problems can be formulated more strictly in terms of
statistical modeling. Suppose that the source observed in
the mix is the realization of a random process , and that the
training data is the realization of a (more or less slightly) dif-
ferent random process . Let us denote as and
the pdfs of these two processes.

In order to reliably estimate , (Section II-A3),
the ideal situation would be to know their exact pdfs .
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However, the sources are not observed separately, which makes
it impossible to access or even estimate reliably their pdfs. These
pdfs are therefore replaced by those of the training data
and approximated by GMMs optimized according to the
ML criterion as in (7). In summary

(10)

Model learning with a training scheme requires the training
data to be extremely representative of the actual source proper-
ties in the mix, which means very large databases with high cov-
erage. However, the effective use of the models for source sepa-
ration implies that they are also rather selective, i.e., well-fitted
to the actual statistical properties of each source in the mix.

In order to overcome these limitations, we propose to resort,
when possible, to an adaptation scheme which aims at adjusting
a posteriori the models by tuning their characteristics to those of
the sources actually observed in the mix. As it will be detailed
further, this approach makes it possible, under certain condi-
tions, to improve the quality of the source model, while keeping
its dimensionality reasonable.

III. MODEL ADAPTATION WITH MISSING ACOUSTIC DATA

The goal of model adaptation is to replace the general models
(which match well the properties of the training sources, but not
necessarily those of the corresponding sources in the mix), with
adapted models adjusted so as to better represent the sources
in the mix, thus leading to an improved separation ability. In
this section, model adaptation is introduced in a general form.
The principle is then detailed in the case of a MAP adaptation
criterion.

A. Principle

In contrast with the general models and , adapted
models have their characteristics tuned to those of the sources
in the mix. Although, adapted and general models have exactly
the same structure, new notations are introduced for adapted
models and for their parameters, in order to distinguish between
these two types of models. Thus, the adapted models are denoted

, and parameterized as with
being weights of Gaussians and

covariance matrices.
The ideal situation for model adaptation would be to learn

the models from the test data, i.e., from the separated sources
, or at least from some other sources having characteristic

extremely similar to those of . For example, Benaroya et al.
[6] evaluate their algorithms in such a context. They learn the
models from the separated sources (available in experimental
conditions) issued from the first part of a musical piece, and
then they separate the second part of the same piece. While the
results are convincing, such a procedure is only possible in a
rather artificial context.

Another interesting direction is to try to infer the model pa-
rameters directly from the mix . For example, Attias [16] uses
such an approach in the multichannel determined case, when
there are at least as many channels (or mixes) as sources. In this
case, the spatial diversity (i.e., the fact that the sources come
from different directions) creates a situation which allows to es-
timate the models without any other a priori knowledge. In the

Fig. 2. Source separation based on adapted a posteriori probabilistic models.

single-channel case studied here, this approach cannot be ap-
plied as it is, since the spatial diversity is not exploitable. In-
deed, one could try to look for the models and optimizing
the following ML criterion:

(11)

but this would certainly not lead to any good model estimates,
since in this criterion there is no a priori knowledge about the
sources to distinguish between them. For example, swapping the
models and in this criterion does not change the value of
the likelihood, i.e., .

An alternative approach is to use the MAP adapta-
tion approach [17] widely applied for speech recognition
[18] and speaker verification [19] tasks. The MAP es-
timation criterion consists in maximizing the posterior

rather than the likelihood , as in
(11). Using the Bayes rule, this posterior can be represented
as with a proportionality
factor which does not depend on the models , and
therefore has no influence on the optimization of the criterion.
In contrast to the ML criterion, the model parameters are now
considered as realizations of some random variables and their a
priori (or prior) pdf should be specified. We suppose
that the parameters of model are independent from those
of model and that the pdf of the parameters of each model
depends on the parameters of the corresponding general model,
which can be summarized as .
Finally, we have the following MAP criterion:

(12)

Note that the MAP criterion (12), in contrast to the ML criterion
(11), involves the prior pdfs , which forces
the adapted models to stay attached to the general ones. Thus,
the general models play the role of a priori knowledge about the
sources.

Better separation performance may be achieved with the
MAP criterion (12) and appropriate priors compared to what
can be obtained with general models. Fig. 2 illustrates the
integration of the a posteriori adaptation unit into the baseline
separation scheme (Fig. 1).

For the sake of generality, we do not give here any func-
tional form for the prior pdfs . A discussion concerning
the role of the priors is proposed in Section III-A1, together
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Fig. 3. Bayesian networks representing model learning, source estimation, and
a posteriori model adaptation (Fig. 2). Recall that q = fq (t)g , k = 1; 2
denote GMM state sequences. Shadings of nodes: observed nodes (black), es-
timated hidden nodes (gray), and other hidden nodes (white). (a) Learning. (b)
Source estimation. (c) A posteriori model adaptation.

with some ideas on how to choose them. In Section IV-D1,
these priors are represented as parametric constraints, thus intro-
ducing a class of constrained adaptation techniques. Two par-
ticular adaptation techniques (i.e., filter and PSD gains adapta-
tion) belonging to this class are introduced in Sections IV-D2
and IV-D3 and evaluated in the experimental part of this paper.

The general adaptation scheme can be represented as in Fig. 3
using Bayesian networks (or oriented graphical models) [20],
[21] in order to give some graphical interpretation of the de-
pendencies. Different shadings are used in order to distinguish
between different types of nodes. Observed nodes are in black,
hidden nodes estimated conditionally on the observed nodes are
in gray, and all other hidden nodes (nonestimated ones) are in
white.

We propose to call the approach presented in this article
model adaptation with missing acoustic data. This expression
reflects two following ideas.

1) Model adaptation corresponds to the attachment of the
adapted models to the general models, for instance by
means of prior pdfs , as in (12).

2) The use of missing acoustic data corresponds to the fact
that the model parameters are estimated from the mix ,
whereas the actual acoustic data (the sources ) are un-
known (i.e., missing). The adjective acoustic is added in
order to avoid any confusion with missing data from the
EM algorithm’s terminology [15].

1) Role of Priors in the MAP Approach: In the case of the
MAP approach, the choice of the prior pdfs results
from a tradeoff. On the one hand, since the adaptation is carried
out from the mix , the priors should be restrictive enough to
attach well the adapted models to the general ones . On the
other hand, the priors should still give some freedom to models,
so that they can be adapted to the characteristics of the mixed
sources. Two extreme cases of this tradeoff are as follows.

1) The models could be completely attached to the general
models , i.e., there is no adaptation freedom and

. This is equivalent to the separation scheme without
adaptation (Fig. 1).

2) The adapted models could be completely free, i.e., the
priors are noninformative uniform .

This is the case of the ML criterion (11) which, as already
discussed, may not lead to a satisfactory adaptation.

A good choice of the priors is therefore crucial, and some
examples of potentially applicable priors could be inspired
by many adaptation techniques used for speech recognition
and speaker verification, such as MAP [17], [19], maximum
likelihood linear regression (MLLR) [22], [23], structural MAP
(SMAP)[4], eigenspace-based MLLR (EMLLR) [25], etc. Lee
and Huo [18] propose a review of all these methods.

Note that the MAP adaptation as presented in [17] and [19]
corresponds to a particular choice of conjugate priors (normal
inverse Wishart priors for covariance matrices, and Dirichlet
priors for Gaussian weights). In this paper, we call MAP adap-
tation any procedure which can be represented in the form of
the MAP criterion (12) whatever the priors.

2) Comparison With the State of the Art: For source separa-
tion with a single channel, some authors propose to introduce in-
variance to some physical characteristics into source modeling.
For example, Benaroya et al. [26] use time-varying gain fac-
tors, thus introducing an invariance to the local signal energy.
For musical instruments separation, Vincent et al. [11] propose
to use other descriptive parameters representing the volume, the
pitch, and the timbre of the corresponding musical note. These
additional parameters are estimated a posteriori for each frame,
since they are time varying. Thus, these approaches can also be
considered as an adaptation process. Note, however, that this
type of adaptation is based on the introduction of additional pa-
rameters which modify the initial structure of the models.

In order to complete the positioning of our work, it must be
underlined that the approach formalized in this article groups
two aspects together. The adaptation aspect is inspired by the
adaptation techniques used for instance for speech recognition
and speaker verification tasks [17]–[19], [22]–[25]. The infer-
ence of model parameters from the mix shares some common
points with works concerning speaker identification in noise
[27] and blind clustering of popular music recordings [28]. In
these two works, the first model is estimated from the mix with
the second one fixed a priori, but there is no notion of adapta-
tion, i.e., no attachment of the estimated models to some general
ones.

Therefore, our article proposes two main contributions. As
developed above, it is possible to group in a same formalism
the adaptation aspect and inference of model parameters from
the mix. Details on the corresponding algorithms, in the MAP
framework, are provided in the Appendix.

The second contribution is the customization, experimen-
tation, and application of this formalism in a particular case
of single-channel source separation. This is detailed in the
upcoming sections.

IV. APPLICATION TO VOICE/MUSIC SEPARATION

IN POPULAR SONGS

The proposed formalism concerning model adaptation is fur-
ther developed in this section, with the purpose to customize it
to a particular separation task: the separation of singing voice
from music in popular songs.

This separation task is particularly useful for audio indexing.
Indeed, the extraction of metadata used for indexing (such as
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Fig. 4. A posteriori model adaptation block (compare to Fig. 2) for voice/music
separation.

melody, some keywords, singer identity, etc) is likely to be much
easier using separate voice and music signals rather than voice
mixed with music.

As in (1), it is assumed that each song’s recording
is a mix of two sources now denoted (for

voice) and (for music). The problem is to estimate the
contribution of voice and that of music given the
mix .

For this particular task, the source separation system is
designed according to Fig. 2. Model learning and source
estimation blocks are implemented as they are described in
Sections II-A2 and II-A3. The remainder of this section is
devoted to the description of the model adaptation block.

A. Overview of the Model Adaptation Block

In popular songs, there are usually some portions of the signal
when music appears alone (free from voice). We call the corre-
sponding temporal segments nonvocal parts in contrast to vocal
parts, i.e., parts that include voice. A key idea in our adapta-
tion scheme is inspired by the work of Tsai et al. [28] and is
to use the nonvocal parts for music model adaptation. Then, the
obtained music model and the general voice model are further
adapted on the totality of the song.

The proposed model adaptation block is represented in Fig. 4
and consists of the following three steps.

1) The song is first segmented into vocal parts
and nonvocal parts (here

denotes the set of vocal frames indices).
2) An acoustically adapted music model is estimated from

the nonvocal parts (see Section IV-C).
3) The acoustically adapted music model and the general

voice model are further adapted on the entire song
with respect to adaptation of filters and PSD gains (pre-
sented in Section IV-D).

The resulting models are then used to separate the sources ac-
cording to Fig. 2.

In summary, the music model is first adapted alone so that
it better reflects the acoustic characteristics of the very type of
music in the song and then both music and voice models are
adapted in terms of gain level and recording conditions.

The functional blocks of this adaptation scheme (Fig. 4) are
described in the following sections.

B. Automatic Vocal/Nonvocal Segmentation

The practical problem of segmenting popular songs into vocal
and nonvocal parts was already studied [29]–[32], and some re-
ported systems give reasonable segmentation performance.

In the work reported in this paper, a classical solution based
on GMMs [28], [32] is used. The STFT of processed song

, which is a sequence of short-time spectra, is trans-
formed into a sequence of acoustic parameters
(typically MFCCs [33]). Two GMMs and modeling, re-
spectively, vocal and nonvocal frames are used to decide if the
vector is a vocal or a nonvocal one.1 The GMMs and

are learned from some training data, i.e., popular songs man-
ually segmented into vocal and nonvocal parts. These models
are used for segmentation without any preliminary adaptation
to the characteristics of the processed song. These are indeed
general segmentation models.

The vocal/nonvocal decision for the th frame can be obtained
by comparing the log-likelihood ratio with some threshold :

(13)

However, the segmentation performance can be increased sig-
nificantly by averaging the frame-based score over a block of
several consecutive frames [28], [32]. For this block-based deci-
sion, the log-likelihood ratio (13) over each block of
frames is computed as

(14)

C. Acoustic Adaptation of the Music Model

The acoustically adapted music model is estimated from the
nonvocal parts using a MAP criterion

(15)

where, following [17], the prior pdf is chosen as the
product of pdfs of conjugate priors for the model parameters
(i.e., normal inverse Wishart priors for covariance matrices, and
Dirichlet priors for Gaussian weights). These priors involve a
relevance factor as a parameter representing the
degree of attachment of the adapted model to the general
one . This MAP criterion, with such a choice for the priors,
can be optimized using the EM algorithm [15] leading to the
reestimation formulas which can be found in [17].

1Note that the structure of these GMMs is slightly different from that of the
GMMs � and � used for separation. In particular, the observation vectors
are real (not complex), and the mean vectors are not zero.
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This way of estimating an acoustically adapted music model
calls for both prior knowledge and auxiliary information, thus
fitting in the general formalism introduced in the previous sec-
tion:

• the pretrained model , which expresses prior statistical
knowledge on the music source and translates into an at-
tachment constraint of the observed source parameters to
the general model;

• the segmentation of the mix between vocal and nonvocal
parts, where the latter represents auxiliary information in-
dicating when the mix can be considered as pertaining
to the music source only, which can be resorted to for im-
proving the estimation of the music model.

In the general case, these two sources of knowlege and in-
formation are combined in the maximization of criterion (15).
However, two extreme cases may occur in particular practical
situations.

• Full-Retrain : The nonvocal parts are in a sig-
nificant and sufficient quantity to allow a complete rees-
timation of the music model without resorting to the prior
knowledge from the general music model: in that case, the
MAP approach degenerates into an ML estimation of the
adapted music model.

• No-Adapt : Very few or even no nonvocal parts
at all are detected in the mix ; no auxiliary information
is thus available, and therefore the general model consti-
tutes the only source of knowledge that is exploitable to
constrain the solution of the separation procedure.

D. Adaptation of Filters and PSD Gains

In this section, an adaptation technique called adaptation of
filters and PSD gains (Fig. 4) is presented. This technique falls
in the proposed adaptation formalism (Section III).

It can be viewed as a constrained adaptation technique,
which is presented below in a general form. Next, it is ex-
plained how such a technique fits in our proposed adaptation
formalism. Then, the techniques of filter adaptation and PSD
gain adaptation are introduced separately. Finally, it is shown
how these techniques can be assembled to form a joint filter
and PSD gain adaptation.

1) Constrained Adaptation: Constrained adaptation is based
on the assumption that the parameters of each adapted model
belong to some subset of admissible parameters which
depends on the parameters of the corresponding general model

. It is supposed as before that the parameters of the model
possess some prior density, which is defined on this subset

and depends also on the general model . For example, the
parameters of the adapted model can depend on those of the
general model via some parametric deformation with free
parameters , i.e., . The goal of constrained
adaptation is to find the free parameters and satisfying
the following MAP criterion:

subject to and

(16)

where , are the prior pdfs for the
free parameters.2 The adapted models are then obtained as

, .
From a strict mathematical point of view, the MAP criterion

(16) is different from criterion (12), but from a practical point
of view they are similar. Indeed, the additional parametric con-
straints (i.e., ) play a similar role to that of
the prior pdfs and the EM algorithm (see the Appendix) is still
applicable for criterion (16).

2) Filter Adaptation: In our previous work [34], we intro-
duced a constrained adaptation technique consisting in the adap-
tation of one single filter. With this adaptation, the modeling
becomes invariant to any cross-recording variation that can be
represented by a global linear filter, for example variation of
room acoustics, of some microphone characteristics, etc. The
mismatch between the general model and the adapted one

can be modeled as a linear filter. In other words, each source
modeled by is considered as a result of filtering with a filter

of some other source modeled by . The filter is sup-
posed to be unknown, and the goal of the filter adaptation tech-
nique is to estimate it.

Let be the Fourier transform of the impulse
response of the filter . We have the following relation between
the PSDs of adapted and general models:

(17)

Introducing the diagonal matrix with

(hereafter, this matrix will be called
filter) expression (17) can be rewritten as follows, linking the
model together with the model :

(18)

In the context of constrained adaptation presented in the pre-
vious subsection, the filter plays the role of the free parame-
ters , and plays the role of the parametric deformation

. The following criterion, corresponding to criterion
(16), is used to estimate the filter :

(19)

Note that, since the adaptation is done in two steps (see
Fig. 4), the acoustically adapted music model is used in
this criterion (19) instead of some general music model .
Let us also remark that there is no additional constraint on
the filter , i.e., there is a noninformative uniform prior

. However, thanks to constraint (18), the
adapted model remains attached to the general one . In
Appendix D1, we describe in details how to perform the EM
algorithm to optimize criterion (19).

Note that the filter adaptation can be considered as a sort
of constrained MLLR adaptation. Indeed, the MLLR technique
[22], [23] consists in adapting an affine transform of the feature

2For the particular constrained adaptation techniques introduced in this paper
(cf. Section IV-D2 and IV-D3) noninformative uniform priors are used, i.e.,
p(C j� ) / const. In other words, no particular knowledge is assumed on
the values taken by the free parameters C .
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space, while for filter adaptation, only dilatations and contrac-
tions along the axes of the STFT (feature) space are allowed.

3) PSD Gains Adaptation: Each state of a GMM is described
by some characteristic spectral pattern (or local PSD) corre-
sponding to some particular sound event, for example, a mu-
sical note or chord. The relative mean energies of these sounds
events vary between recordings. For example, in one recording,
the A note can be played on average louder than the D note,
while it can be the opposite for another recording. In order to
take into account this energy variation, a positive gain
is associated to each PSD of the model . This gain
is called PSD gain and corresponds to the mean energy of the
sound event represented by this PSD. Since each PSD is the di-
agonal of the corresponding covariance matrix , this matrix
is multiplied by the PSD gain . Thus, the PSD gains adapta-
tion technique consists in looking for the adapted model in
the following form:

(20)

where is a vector of PSD gains and the symbol
“ ” denotes a nonstandard operation used here to distinguish
between the application of the PSD gains and that of
the filter (18) .

Comparing to the filter adaptation technique, where the goal
is to adapt the energy for each frequency band , the goal of the
PSD gains adaptation is to adapt the energy for each PSD .

The following explication is very similar to the one given for
filter adaptation. The PSD gains play the role of free param-
eters and the following criterion is used to estimate them

(21)

Again, the EM algorithm can be used to reestimate the gains, as
explained in Appendix D2.

4) Joint Filters and PSD Gain Adaptation: This section de-
tails how to adapt the filters and PSD gains jointly for both
models. The adapted voice and music models are represented
in the following form: and ,
where and denote, respectively, the filter and the PSD
gains of the music model . The following criterion is used to
estimate all these parameters:

(22)

The direct application of the EM algorithm (29), (30) to opti-
mize criterion (22) is not possible, since it is difficult to solve the
M step (cf. (30) in the Appendix) jointly on the filters
and the PSD gains (see Appendix D3).

One solution to this problem would be to use the space-alter-
nating generalized EM (SAGE) algorithm [35], [36] alternating
the EM iterations between and . However,
in contrast to the EM algorithm, this approach requires two EM
iterations instead of one to reestimate once all the parameters

. Thus, the computational complexity dou-
bles.

Analyzing separately the computational complexities of the
E and M steps (29), (30), we see that the M step computa-
tional complexity is negligible in comparison with that of the
E step. Indeed, the complexity of the E step (calculation of the
natural statistics expectations) is [see
(38) and (39)] and that of the M step (parameters update) is

[see, for example, (42) and (43)]. Thus,
in order to avoid doubling the complexity, instead of using the
SAGE algorithm, we propose for each iteration to do one E step
followed by several M steps alternating between the updates of

and . Algorithm 2 in the Appendix summa-
rizes this principle.

V. EXPERIMENTS

Experiments concerning model adaptation in the context of
voice/music separation are presented in this section. First, the
module for automatic vocal/nonvocal segmentation is evaluated
independently from the adaptation block (Fig. 4). Then, the ex-
periments on model adaptation and separation are developed,
using a manual vocal/nonvocal segmentation in the first place,
and an automatic segmentation in the second place.

A. Automatic Vocal/Nonvocal Segmentation

1) Data Description: The training set for learning and
GMMs, modeling vocal and nonvocal parts, contains 52

popular songs. A set of 22 other songs is used to evaluate the
segmentation performance. All recordings are mono, sampled
at 11 025 Hz, and manually segmented into vocal and nonvocal
parts.

2) Acoustic Parameters: Classical MFCC-based acoustic pa-
rameters are chosen for this segmentation task. In particular,
the vector of parameters for each frame consists of the first 12
MFCC coefficients [33] and the energy (13 parameters), their
first- and second-order derivatives and (which repre-
sents 39 parameters in total). The MFCC coefficients are ob-
tained from the STFT, which is computed using a half-over-
lapped 93-ms length Hamming window. Parameters are normal-
ized using cepstral mean subtraction (CMS) and variance nor-
malization (VN) [37] in order to reduce the influence of convo-
lutive and additive noises.

3) Performance Measure: The performance of vocal/non-
vocal segmentation is evaluated using detection error tradeoff
(DET) curves [38]. For a given segmentation threshold [see
(13), (14)], the segmentation performance can be evaluated in
terms of two types of errors: the vocal miss error rate (VMER),
which is the rate of vocal frames identified as nonvocal and the
vocal false alarm rate (VFAR), which is the rate of nonvocal
frames identified as vocal.

These error measures are computed comparing the automatic
segmentation with a manual one. Frames localized in a 0.5-s in-
terval around a manually marked switch-point are not taken into
account for the calculation of VMER and VFAR. This tolerance
is justified by the fact that it is difficult to mark accurately the
switch-points between vocal and nonvocal parts by hand. The
coordinates of each point of a DET curve are the VMER and
the VFAR as the segmentation threshold varies.

4) Simulations: A 32-Gaussian GMM and a 32-Gaussian
GMM are learned from the training data using 50 iterations
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Fig. 5. DET curves for vocal/nonvocal automatic segmentation. Dotted line:
random segmentation, EER = 50%. Dashed line: frame-based decision [see
(13)], EER = 29%. Solid line: block-based decision [see (14)] with 1-s block
length, EER = 17%. Square: operating point chosen for model adaptation ( =

0, VMER = 15%, VFAR = 19%).

of the EM algorithm,3 which is initialized by the K-means (or
Lloyd) algorithm [39]. Segmentation results are represented on
Fig. 5. With the frame-based decision (13), the equal error rate
(EER) (i.e., when VMER VFAR) is 29%. Note that a random
segmentation gives an EER of 50%. When the block-based de-
cision (14) with 1-s block length is used, the EER significantly
falls down to 17%.

Since one goal of this work is to improve the separation per-
formance, the threshold (corresponding to some operating
point on the DET curve) for segmentation system integrated in
the model adaptation scheme (Fig. 4) should be chosen on the
basis of the separation performance. This issue is addressed in
the following section.

Note that, in the choice of the segmentation threshold, there is
a tradeoff between purity and quantity of data. Indeed, since the
nonvocal parts are used for the music model acoustic adaptation
(Fig. 4), from one side the nonvocal parts should be quite pure,
or not much disturbed by vocal frames detected by mistake, i.e.,
the VMER should be low. On the other side, a sufficient quantity
of nonvocal frames should be detected correctly in order to have
enough data to adapt the music model, i.e., the VFAR should be
low.

B. Adaptation and Separation

1) Data Description: The training database for the general
voice model includes 34 samples of “pure” singing voice
from popular music. The general music model is trained
on 30 samples of popular music free from voice. Each sample
is approximately one minute long. The test database contains
six popular songs, for which voice and music tracks are avail-
able separately. It is therefore possible to evaluate the separation

3The numbers of the EM algorithm iterations (here 50) reported hereafter
were found suitable for guaranteeing appropriate convergence of the algorithm
in each particular implementation.

performance by comparing the estimated voice with the original
one. The test items are manually segmented into vocal and non-
vocal parts (automatic segmentation is also performed in the ex-
periment). All recordings are mono and sampled at 11 025 Hz.

2) Parameters: As for segmentation, the STFT is computed
using a half-overlapped 93-ms-length Hamming window.

3) Performance Measure: Separation performance is esti-
mated using the Normalised SDR (NSDR) [34], which measures
the improvement of the source to distortion ratio (SDR) [40] in
decibels

SDR (23)

between the nonprocessed mix and the estimated source :
NSDR SDR SDR (24)

The aim of this normalization is to combine the absolute mea-
sure SDR and the “difficulty” of the separation task for
processed recording SDR . This difficulty is expressed as
the performance of “inactive separation,” i.e., when the mix
itself is taken instead of the estimate . The higher the NSDR,
the better the separation performance.

In the context of audio indexing, we are mainly interested
in voice estimation (Section IV). Therefore, the separa-
tion performance is evaluated using the voice NSDR (i.e.,
NSDR ) and not the music one. Note, at the same
time, that the order of the music NSDR is quite similar to that
of the voice NSDR. The overall performance is estimated by
averaging the voice NSDRs calculated for all songs from the
test database.

4) Simulations: In order to estimate the efficiency of each
step in the proposed adaptation scheme, as well as the effi-
ciency of the adaptation of different parameter combinations
(filters, PSD gains), the separation experiments are performed
with 32-state voice GMM and 32-state music GMM in the fol-
lowing configurations.

1) General models: and are learned from external
training data (50 iterations of the EM algorithm, initialized
by the K-means algorithm).

2) Acoustically adapted models:
• Voice model: As mentioned in Section IV-A, the mix

is segmented into vocal and nonvocal parts. The
vocal parts correspond to portions of the signal that
include voice, but only an unsignificant part of these
portions may contain only voice signals (most of them
are composed of voice music). Therefore, these data
are not used in the acoustic adaptation of the voice
model. The voice GMM is kept constant, i.e., ,
which corresponds to the degenerate case “no-adapt” of
Section IV-C.

• Music model: Experiments have been run to determine
the optimal relevance factor (see Section IV-C) for
adapting the music GMM in the MAP framework.
For our test data set, the optimal value was observed
to be zero, i.e., the “full-retrain” degenerate case of
Section IV-C.4 The EM algorithm run in this context

4This situation may arise from the fact that the general music model is not very
elaborate and that the number of music-only frames (about 200–500) segmented
from the mix is in sufficient quantity for every song.
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TABLE I
AVERAGE NSDR ON THE SIX SONGS OF THE TEST DATABASE OBTAINED WITH DIFFERENT MODEL TYPES (Q = Q = 32)

was iterated 40 times after initialization by the K-means
algorithm.

3) Filter/Gain Adapted models: and are obtained
from the models and via an adaptation of the fol-
lowing parameter combinations:5

a) filter-adapted for voice model ;
b) filter- and gain-adapted for voice model ;
c) filter-adapted for voice model and gain-adapted for

both models ;
d) filter- and gain-adapted for both models

.
(Five iterations of EM algorithm 2 described in
Appendix D, initialized as follows: ,

for , where is the identity matrix.)
4) Ideal models: and are learned from the separated

sources and , which are available for evaluation pur-
poses (40 iterations of the EM algorithm, initialized by the
K-means algorithm). The separation performance obtained
with these “ideal” models (inaccessible in a real applica-
tion context) acts as a kind of empirical upper bound for
the separation performance, which can be obtained with
adapted models.

Since the estimation of the acoustically adapted music model
is based on some vocal/nonvocal segmentation, the tests in-

volving this model are performed using both manual and auto-
matic segmentation.

Automatic segmentation is done by a block-based decision
system (14) with 1-s block length and with a segmentation
threshold . These parameters were chosen since they lead
to the best separation performance with acoustically adapted
models. The segmentation performances of this system are
VMER and VFAR (see Fig. 5).

The average results on the six songs of the test database are
summarized in Table I. A main performance improvement is
obtained with the acoustic adaptation of the music model
from the nonvocal parts. There is a 5.8 and 4.1 dB improvement
for manual and automatic segmentations, respectively.

The voice model filter adaptation increases further the
performance by 1.0 and 0.7 dB for the two types of segmen-
tation. An additional adaptation of the PSD gains for this
model leads also to a slight performance improvement. Adapta-
tion of the music model parameters (i.e., and ) does not
increase the performance any further. This can be explained by

5Note that Algorithm 2 is still applicable with slight modifications, when
only a part of parameters fH ; g ;H ; g g is adapted. For example, to adapt
fH ;H ; g g, (45) should be skipped.

Fig. 6. Average NSDR on the six songs of the test database for different num-
bers of states Q = Q = Q and for different types of models. Plain: general
models. Dotted: adapted models with automatic segmentation. Dashed: adapted
models with manual segmentation.

the fact that the music model is already quite well adapted
by the acoustic adaptation step.

Altogether, compared with the general models, adaptation
improves the separation performance by 7.4 dB with a manual
segmentation and still by 5.1 dB when the segmentation is com-
pletely automatic. One can note that these results are 3.1 and
5.4 dB below the empirical upper bound obtained using ideal
models. It remains a challenge to reduce this gap with improved
model adaptation schemes.

The effect of model dimensionality (i.e., number of states
) on the separation performance is evaluated

in the following configurations:
1) general models and ;
2) adapted models and (giving the

best separation results according to Table I) with manual
segmentation;

3) adapted models and with
automatic segmentation.

The results are represented in Fig. 6. Note that increasing the
number of states in the case of general models does not lead
to performance improvement, compared with one-state GMMs

. A one-state GMM consists of only one PSD,
thus for the Wiener filter defined by (8) is a
linear filter, which does not vary in time. It was noticed that
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Fig. 7. Detailed NSDR on the six songs of the test database for different numbers of states Q = Q = Q and for different types of models. Plain: general
models. Dotted: adapted models with automatic segmentation. Dashed: adapted models with manual segmentation.

for voice estimation, this is merely a high-pass filter with its
cutoff frequency around 300 Hz. Thus, for the voice/music sep-
aration task, the general models cannot give better performance
than 5-dB NSDR obtained with a simple high-pass filtering, and
therefore there is no interest to use general models with several
states. Probably, this is because of the problem of weak repre-
sentativeness of training data for wide sound classes mentioned
in Section II-B.

As illustrated by our experiments, the model adaptation al-
lows to overcome these limits. Indeed, with adapted models,
the separation performance can be significantly improved by
increasing the number of model states, and the added compu-
tational complexity pays off. This experiment indicates that for
source separation tasks with wide sound classes (such as music),
model adaptation is essential.

As can be seen in Fig. 7, a deeper investigation of the behavior
of the NSDR for each of the six test songs separately shows a
consistent behavior of the proposed adaptation scheme.

Concerning computational complexity, it is worth mentioning
that the proposed system needs about 4 h to separate 23 min
(total duration of six test songs) using a laptop equipped with
Pentium M processor 1.7 GHz, which is quite reasonable.

Note that the problem of voice/music separation in mono-
phonic recordings is a very difficult task which was not much
studied ([34], [41], [42]). For this task, we have developed a
separation system, which, thanks to model adaptation, has the
following advantages.

• Compared with general models, the separation perfor-
mance is improved by 5 dB.

• The system is completely automatic.

• The computational complexity is quite reasonable (less
than ten times RT).

• Experiments were carried out with no special restrictions
about music style (while staying in pop/rock songs) nor
about the language of the songs.

However, there are also some limitations, which should be
mentioned. First, the processed song must contain nonvocal
parts of reasonable length in order to have enough data for
the acoustic adaptation of music model. Second, the music
from nonvocal parts should be quite similar to that from vocal
parts. Finally, it is preferable that there is only one singer at a
time, i.e., no chorus or back vocals. At first sight, a majority of
popular songs verify these assumptions.

VI. CONCLUSION AND FURTHER WORK

In the context of probabilistic methods for source separation
with a single channel, we have presented a general formalism
consisting in a posteriori model adaptation. This formalism is
introduced in the general form of Bayesian models, and further
clarified in terms of a MAP adaptation criterion which can be
optimized using the EM algorithm.

To show the relevance of model adaptation in practice, a
model adaptation system derived from this formalism has been
designed for the difficult task of separating voice from music
in popular songs. This system is based on vocal/nonvocal
segmentation, on adapting acoustically a music model from the
nonvocal parts, and on a final adaptation of voice and music
models from the mix using filters and PSD gains adaptation
technique.
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Compared to general (nonadapted) models, the adaptation al-
lows, in our experiments, to consistently improve the separation
performance. It yields on average a 5-dB improvement which
bridges half of the gap between the use of general models on
the one hand and ideal models on the other hand.

More generally, by formulating the adaptation process in a
rather general way, which integrates prior knowledge, struc-
tural constraints, and a posteriori observations, the work re-
ported in this paper may contribute to the solution of a number
of problems, whether they resort to blind, knowledge-based or
data-driven source separation.APPENDIX

In this Appendix, the EM algorithm [15] is applied to opti-
mize the MAP criterion (12). This algorithm is first presented in
its general form, then precisions are given in the case of expo-
nential families. Finally, some additional calculations are done
for the GMMs studied in this article.

A. EM Algorithm in its General Form

The following notations are introduced with their names
given according to the terminology of the EM algorithm [15],
[36]:

• observed data;
• complete data (recall that

, denote GMM state sequences);

• estimated parameters;
• prior pdf

Note that the observed and complete data are chosen in an ap-
propriate way to use EM. Indeed, according to (3), the observed
data are expressed in a unique manner from the complete data

.
With these new notations, the MAP criterion (12) can be

rewritten in a more compact form

(25)

In order to optimize this MAP criterion, the EM algorithm is
used. This algorithm is an iterative procedure, and in its general
form can be expressed as follows [15], [36]:

(26)

(27)

where denotes the parameters estimated at the th iteration.
The E step (expectation) (26) consists in computing an auxiliary
function , and the M step (maximization) (27) consists
in estimating the new parameters maximizing this function.

B. EM Algorithm for Exponential Families

The EM algorithm takes a particular form if the families of
complete data pdfs , are exponen-
tial families, as recalled in Definition 1 below. This is the case
for the GMMs (as shown in Appendix C1), as well as for the
HMMs. In this paper, we present the EM algorithm for this par-
ticular case of exponential families, since we believe that in this
form, the algorithm is easier to understand, and its derivation
for the GMMs, as well as for the HMMs, becomes very com-
pact and straightforward.

Definition 1: References [15], [36]. The family of pdfs
parameterized by is called an exponential family

if can be expressed in the following form:

(28)

where are scalar functions,
vector functions, and denotes scalar product. The function

is called natural statistics for this exponential family.
The natural statistics are also sufficient [14] for the pa-

rameter . For any sufficient statistics, the following property is
fulfilled.

Property 1: If is a sufficient statistics for , then the
MAP parameter estimator
must be a function of .

Here, denoting the respective natural statistics of
, it can be shown [15], [36] that the EM algorithm

(26), (27) can be represented in a form which is easier to under-
stand, to interpret and to use, specifically

(29)

(30)

with the functions , defined as solutions
of the following complete data MAP criteria

(31)

The existence of such functions depending only on the natural
(sufficient) statistics is guaranteed by Property 1.
Note that the MAP criteria (31) correspond to the MAP crite-
rion (12) assuming the complete data are
observed.

The following simple interpretation can be given to this EM
algorithm. If the complete data were observed, we would use
the complete data MAP criteria (31), and their solutions are

. However, since the complete data are
not observed, the values of natural statistics are re-
placed by their expectations (29) conditionally on the observed
data and the models estimated at the previous iteration. Thus,
the E step (29) consists of computing the conditional expecta-
tions of the sufficient statistics, and the M step (30) consists of
estimating the new model parameters using these expectations.

C. EM Algorithm for GMMs

1) Natural Statistics for GMMs: For the GMMs used
throughout this paper, the families of pdfs
are exponential families and their natural statistics are

(32)

with
(33)

and

(34)
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where is the Kronecker delta function, which equals to 1
if , and equals to 0 otherwise.

Indeed, using the GMM definition (5), the log-likelihood of
the complete data can be expressed as follows:

(35)

where the statistics are are defined according to
(33) and (34). Equation (35) can be rewritten as

, where is some vector func-
tion, and the statistics are defined as in (32).

The statistics count the number of times that state has
been observed, and the statistics represent the energy of
the STFT associated to state and calculated in the frequency
band .

2) Conditional Expectations of Natural Statistics for GMMs:
The conditional expectations (29) of the natural statistics
(32)–(34) are calculated using Algorithm 1. Indeed, (36) is
analogous to (9), and (37) can be found in the article of Rose et
al. [27]. The proof for (39) is given in (40) using a shorthand

, and (38) can be proven in a similar way.

Algorithm 1 Calculation of the conditional expectations of
natural statistics for (and similarly for )

1) Compute the weights satisfying
and

(36)

2) Compute the expected PSD for state ,

(37)

3) Compute the conditional expectation of

(38)

4) Compute the conditional expectation of

(39)

(40)

D. EM for Filters and/or PSD Gains Adaptation

We now have tools to express the EM algorithm in the pro-
posed framework for filters and/or PSD gains adaptation. In
order to obtain the reestimation formulas using the EM algo-
rithm (29), (30), one should solve the complete data MAP cri-
teria (31) and express their solutions as functions of natural sta-
tistics .

1) Filter Adaptation: In the case of filter adaptation (19),
these MAP criteria become (finally, there is only one criterion,
since only one model is adapted)

(41)

Injecting into expression (35) and zeroing the derivative
according to , one can show that the solution of (41) is given
by . Then, replacing the
statistics by their conditional expectations (39), we have
the reestimation formula

(42)

where the expectations are calculated using Algorithm

1, conditionally on the models and .
2) PSD Gains Adaptation: The very same reasoning brings

the reestimation formula for PSD gains adaptation

(43)

with the expectations and calculated using Al-

gorithm 1, conditionally on the models and
.

3) Joint Filters and PSD Gains Adaptation: Doing the same
developments for the criterion (22), i.e., putting into
expression (35) and zeroing the derivatives according to and
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, one can show that the filter is expressed via the PSD
gains and vice versa, i.e.,

and

Thus, we decide to look for the solution alternating between
these two expressions, which leads to the reestimation formulas
(44)–(47) of Algorithm 2.

Algorithm 2 Joint filters and PSD gain adaptation for models
and

1) E step: Compute the expectations

and of the natural statistics

conditionally on the models and
using Algorithm 1.

2) M step: Update the parameters.
a) Initialize , ;
b) Perform maximization steps: for

(44)

(45)

(46)

(47)

c) Set , ,
,
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