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ABSTRACT

We consider the informed source separation (ISS) problem where,

given the sources and the mixtures, any kind of side-information

can be computed during a so-called encoding stage. This side-
information is then used to assist source separation, given the mix-

tures only, at the so-called decoding stage. State of the art ISS ap-

proaches do not really consider ISS as a coding problem and rely on

some purely source separation-inspired strategies, leading to per-
formances that can at best reach those of oracle estimators. On the

other hand, classical source coding strategies are not optimal either,

since they do not benefit from the mixture availability. We introduce

a general probabilistic framework called coding-based ISS (CISS)
that consists in quantizing the sources using some posterior source

distribution from those usually used in probabilistic model-based

source separation. CISS benefits from both source coding, thanks

to the source quantization, and source separation, thanks to the use
of the posterior distribution that depends on the mixture. Our ex-

periments show that CISS based on a particular model considerably

outperforms for all rates both the conventional ISS approach and

the source coding approach based on the same model.

Index Terms— Informed source separation, source coding,

constrained entropy quantization, probabilistic model.

1. INTRODUCTION

Assume J signals (the sources) s have been mixed through I chan-

nels to produce I signals (the mixtures) x. The goal of source sep-

aration is to estimate the sources s given their mixtures x. Many
advances were recently made in the area of audio source separation

[1]. However, the problem remains challenging in the undetermined

setting (I < J), including the single-channel case (I = 1), and for

convolutive mixtures. Finally, it is also quite clear now that source
separation performances strongly depend on the amount of avail-

able prior information about the sources and the mixing process

one can introduce in the source separation algorithm [2]. Motivated

by this observation a new setting called informed source separation
(ISS) [3, 4, 5, 6] was recently considered, where both the sources

and the mixtures are assumed known during a so-called encoding

stage. This knowledge enables the computation of any kind of side-

information that should be small and should help the source separa-
tion at the so-called decoding stage, where the sources are no longer

assumed to be known. The side-information can be either embed-

ded into the mixtures using watermarking methods [5] or just kept
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aside. ISS has numerous applications including, e.g., active remix-

ing, gaming, etc.

Several approaches were proposed for the ISS problem [3, 4, 5],

and a common point of these methods is that they all rely on some

source model θ transmitted as a side-information. Assuming the
sources to be sparse in a given time-frequency (TF) representation,

Parvaix et al. [4] construct a model θ that for each TF point in-

cludes the indices of the sources supposed active in this TF point.

A TF molecular dictionary is used as model θ in [3]. Liutkus et
al. [5] go beyond the sparsity assumption, that is hardly verified

for real-world mixtures, and rather consider probabilistic models θ
such as local Gaussian models (LGM) [1, 2] with structured or free

variances.

Note that the ISS problem stands in between source separation

[1, 2] and source coding [7, 8, 9], since the sources are available
at the encoding stage, as in source coding, and the mixtures are

available at both the encoding and the decoding stages, as in source

separation. However, to the best of our knowledge, none of the state

of the art ISS methods fully benefits from this double knowledge.
Indeed:

1. The performances of source separation and most of conven-

tional ISSmethods, depending on the underlying models and
assumptions, are bounded by those of oracle estimators [10].

The best (the minimal) achievable distortion produced by

conventional ISS methods [4, 5] is incompressible, i.e., it is

bounded below. This remark does not concern [3], where the
distortion can be always decreased by increasing the size of

the corresponding molecular dictionary, which would lead,

however, to an excessive rate needed to transmit such a dic-

tionary. Figure 1 gives a simplified interpretation of several
model-based methods applied to a mixture of two sources in

one TF point, TF indices being omitted (see figure’s legend

for details about notations). Note from Figure 1 (top, left)

that the estimated sources ŝ reconstructed as maximum of
the a posteriori distribution p(s|x, θ) can in general never

reach the true source values s∗ whatever the precision of the

model θ. At the same time, with an efficient source coding

strategy the distortion should always go down with increas-
ing rate [7, 8] (see Fig. 1 (top, right)).

2. Source coding methods are usually based on a source a pri-

ori distribution that can be also described by some proba-

bilistic model θ [8, 9]. As mentioned above, the distortion is

unbounded below and can be optimally governed by design-
ing an appropriate quantizer. However, the knowledge of the

mixture x is not exploited, which leads to a significant over-

head in the rate. Indeed, source coding alone would spend

an extra rate for codewords lying far away from the mixing
equation hyperplane x = s1 + s2 (see Fig. 1 (top, right)),



2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

while it is known that the data of interest lie on this hyper-

plane or close to it in the case of a noisy mixture (see Fig. 1
(top, left)).

A hybrid approach was proposed in [6], where some sources

are encoded using a source coding method and the remaining
sources are recovered by a conventional ISS method. However,

such a straightforward hybridization does not allow to overcome

the abovementioned drawbacks that are still valid for individual

sources.

In this work we introduce a general probabilistic framework for

ISS called coding-based ISS (CISS) that allows to overcome the lim-
itations of the state-of-the-art methods mentioned above. This ap-

proach consists in quantizing the sources, as in source coding, while

using the a posteriori source distribution p(s|x, θ), as in source

separation (see Fig. 1, bottom). That way, CISS allows both the
distortion to be unbounded below as in source coding, and a de-

creased rate as in source separation, thanks to the use of the mixing

equation. To derive practical adaptive quantizers relying on the a

posteriori distribution, we use probabilistic model-based quantiza-
tion under high-rate theory assumptions (see, e.g., [8, 9]). Finally,

it should be noted that the goal of ISS is close to that of the spa-

tial audio object coding (SAOC) [11]. However, to the best of our

knowledge, such a probabilistic framework was not yet proposed
for the SAOC.

This paper is organized as follows. Section 2 introduces CISS
in a very general manner. A particular CISS scheme for single-

channel mixtures based on the local Gaussian model is described in

details and analyzed in section 3. Experimental results are presented

in section 4 and the conclusions are drawn in section 5.

2. CODING-BASED INFORMED SOURCE SEPARATION

Figure 2 gives a high-level representation of the CISS approach.

At the encoding stage, the model parameter θ̂ specifying the poste-

rior distribution p(s|x, θ̂) from a particular family of distributions

is estimated, given the sources s and the mixtures x. θ̂ is then en-

coded and transmitted as a side-information yielding its quantized
version θ̄. This encoding can optionally use the knowledge of the

mixtures x. Finally, using the posterior p(s|x, θ̄) the sources s are

encoded and transmitted as a side-information. At the decoding

stage, the model parameter θ̄ and then the quantized sources ŝ are
reconstructed.

Note that both the conventional ISS methods [3, 5] and model-
based source coding approaches [8, 9] are just partial cases of this

general scheme. Indeed, this scheme reduces to conventional ISS

when the sources are not encoded but simply reconstructed from

the posterior p(s|x, θ̄), e.g., by maximizing it [5], and this scheme
reduces to model-based source coding when the posterior p(s|x, θ̄)
is replaced by some prior distribution p(s|θ̄).

3. CISS WITH LOCAL GAUSSIAN MODEL

We here investigate the proposed approach in the case of single-
channel mixtures (I = 1) using the local Gaussian models (LGM),

as in [2, 5]. However, the approach is more general and not re-

stricted to this particular case.

All the signals are represented in the modified discrete cosine

transform (MDCT) domain, since the MDCT is usually used for

coding thanks to its orthogonality and the fact that it defines a criti-
cally sampled filterbank. In the MDCT domain the mixing equation

Figure 1: Simplified visualization of the following probabilistic

model-based methods applied in one TF point: conventional ISS

(top, left), source coding (top, right) and the proposed coding-based
ISS (CISS). Notations: x: mixture, s = [s1, s2]

T : sources, p(s|θ):
a priori source distribution, p(s|x, θ): a posteriori source distribu-

tion, s∗: true sources, ŝ: estimated sources.

writes

xfn =
XJ

j=1
sjfn + bfn, (1)

where j = 1, . . . , J , f = 1, . . . , F and n = 1, . . . , N denote,

respectively, the source index, the MDCT frequency index and the

MDCT time-frame index; and xfn, sjfn and bfn denote, respec-
tively, the MDCT coefficients of the mixture, of the sources and of

an additive noise representing, e.g., a background or a quantization

noise.

3.1. Local Gaussian model

The source and noise coefficients sjfn and bfn are assumed mutu-

ally independent, i.e., over j, f and n, and distributed as follows
[2, 5]:

sjfn ∼ N (0, vjfn), bfn ∼ N (0, σ2
b ), (2)

where the noise variance σ2
b is assumed to be known and fixed. This

model can be parameterized as θ = {{vjfn}j,f,n, σ2
b}.

Let sfn = [s1fn, . . . , sJfn]T be a vector of sources corre-

sponding to the same MDCT coefficient (f, n), its prior and pos-
terior distributions write, respectively, as [2]

p(sfn|θ) = N
`

sfn; µpr

fn,Σpr

s,fn

´

, (3)

p(sfn|xfn; θ) = N
`

sfn; µpst

fn ,Σpst

s,fn

´

, (4)

where N(·; µ,Σ) denotes the probability density function (pdf) of
a Gaussian random vector with mean µ and covariance matrix Σ;
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Figure 2: Coding-based informed source separation scheme.

and

Σ
pr

s,fn = diag
h

{vjfn}j

i

, µ
pr

fn = 0, (5)

Σ
pst

s,fn = (IJ − gfn1J )Σpr

s,fn, (6)

µ
pst

fn = gfnxfn, (7)

gfn = Σ
pr

s,fn1
T
J

“

1JΣ
pr

s,fn1
T
J + σ2

b

”

−1

, (8)

with IJ and 1J denoting, respectively, the J × J identity matrix
and the J-length row vector of ones.

3.2. Source encoding and reconstruction

Each source vector sfn, given its posterior distribution specified

by (4) (for CISS) or its prior distribution specified by (3) (for

source coding) f(sfn|xfn; θ) = N
`

sfn; µfn,Σs,fn

´

, is en-

coded using model-based constrained entropy quantization relying
on scalar quantization in the mean-removed Karhunen-Loeve trans-

form (KLT) domain, as described in [9] and summarized below.

Let Σs,fn = UfnΛfnUT
fn be the eigenvalue decomposi-

tion of the covariance matrix, where Ufn is an orthogonal matrix
(UT

fnUfn = IJ ) and Λfn = diag{λ1fn, . . . , λJfn} is a diago-

nal matrix of eigenvalues. The linear transform UT
fn decorrelating

sfn is the KLT. Assuming the mean squared error (MSE) distortion,

uniform quantization is asymptotically optimal for the constrained

entropy case [7]. Thus, we consider here scalar uniform quantiza-

tion with a fixed step size ∆ in the mean-removed KLT domain,
which can be summarized as follows:

1. Remove the mean and apply the KLT

yfn = U
T
fn(sfn − µfn). (9)

2. Quantize each dimension yfn = [y1fn, . . . , yJfn] with a

uniform scalar quantizer Q∆ : yjfn → ŷjfn having a con-

stant step size ∆. Using an arithmetic coder as an entropy

coder [9], the effective codeword length (in bits) is given by

L(sfn|xfn; θ) = −
XJ

j=1
log2

Z ŷjfn+∆/2

ŷjfn−∆/2

N(y; 0, λjfn)dy.

3. Reconstruct the quantized source vector ŝfn

ŝfn = Ufnŷfn + µfn. (10)

3.3. Rate-distortion relations for high rates

Let us consider the source coding (SC) scheme and the CISS

scheme described above. It can be shown [8] that under high-rate
theory assumptions the total rate Rtot (in bits) relates to the mean

distortion D = E[|ŝjfn − sjfn|
2] = Cs∆

2 (per dimension), re-

spectively, for these two schemes, as follows:

RSC
tot = R(θ̄) −

JFN

2
log2

DSC

Cs
− log2 p(s|θ̄), (11)

RCISS
tot = R(θ̄) −

JFN

2
log2

DCISS

Cs
− log2 p(s|x, θ̄)(12)

where Cs = 1/12 is the coefficient of scalar quantization and R(θ̄)
denotes the rate required to encode the model parameter.

3.4. Model estimation and encoding

In this subsection, by analyzing rate-distortion relations (11) and

(12), we figure out how the LGM parameters θ should be estimated

and how they should be quantized (see Fig. 2). To simplify this anal-

ysis in the case of CISS we are using (11) for both source coding

and CISS. While it is not exact, it leads to a reasonable and satisfac-
tory approximation. Following derivations from [8], applied here to

the LGM instead of the autoregressive model considered in [8], one

can show (these derivations are omitted here and will be included in

a longer paper on CISS) that

1. The model should be estimated in the maximum likelihood

sense, and we simply have v̂jfn = |sjfn|
2.

2. Model variances v̂jfn should be quantized so as to minimize

the MSE of their logarithms.

These results are quite similar with what was done in [5],

where the log-spectrograms were compressed using the JPEG im-
age coder. However, while [5] does not justify this particular choice,

we provide here a theoretical explanation of its appropriateness.

4. EXPERIMENTS

We here present a “proof of concept” evaluation of CISS on a single-

channel mixture of five synchronized music sources: bass, chorus,

drums, guitar and vocals. These signals together with coding re-
sults are available from our demo web page at www.irisa.fr/

metiss/ozerov/ciss_demo.html.

We compare the following three coding schemes that can be

seen as particular instances of the CISS scheme on Figure 2:

1. Conventional ISS: All the rate is spent to encode the model

parameter θ̂, and the sources are reconstructed via Wiener
filtering (7). This scheme is very similar to the JPEG-based

scheme presented in [5].

2. Source Coding: Sources are encoded using prior distribution
p(s|θ̄) (3) instead of the posterior one p(s|x, θ̄) (4). Note

that this source coding scheme is certainly not an efficient

one, and it should not be comparable with the state-of-the-

art audio source coders. It is only considered here to demon-
strate the advantage of CISS over source coding using the

same parametric model θ.

3. CISS: The scheme of Figure 2, where both the model and the
sources are encoded with non-zero rates.
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Figure 3: Rate-distortion performance of the conventional ISS

scheme (dashed line), the source coding scheme (dash-dot line) and
the CISS scheme (solid line).

For all schemes considered, the logarithms of model variances

were quantized uniformly and then the resulting images (every

quantized variance corresponds to a pixel color in the correspond-
ing image) were encoded using the JPEG lossless coder. Redun-

dancy of the audio sources is thus exploited at this level. In order to

improve the efficiency of the JPEG lossless coder, the model vari-

ances were thresholded, so that v̂jfn from section 3.4 is chosen as
v̂jfn = max

`

|sjfn|
2, 10−5

´

. This leads to better rates, while in-

troducing some interferences from other sources for low rates. Fu-

ture work will focus on this issue, by designing better models for

the sources and including perceptual models.

For the source coding and the CISS schemes, it is known from
[8] that under high-rate theory assumptions the optimal rate needed

for model encoding is constant and independent of the overall rate.

However, since we consider here any rate (low and high), the rate

allocation between model and sources was optimized for every dis-
tortion specified by source quantization step size ∆. No such opti-

mization is needed for the conventional ISS scheme, since all avail-

able rate is spent for model encoding.

Simulation results are shown on Figure 3. Note that for all to-

tal rates, the model rate (needed to transmit θ̄) was about 60 kbps.
As expected, the distortion of conventional ISS is bounded below.

Source coding performs worse than the conventional ISS at low

rates (below 70 kilobit per second (kbps) for five sources) and out-

performs it for high rates. CISS outperforms both conventional ISS
and source coding for all rates with 100 kbps advantage in rate, as

compared to source coding, at high rates. Finally, source coding and

CISS reach their asymptotic high-rate behaviors predicted by equa-

tions (11) and (12) at 400 kbps and 800 kbps respectively. This is
not reflected on Fig. 3. At this regime the advantage in rate of CISS,

as compared to source coding, is about 250 kbps. Of course, these

comparisons apply for the MSE only: a more thorough evaluation

will include listening tests in future work, when perceptual models
will be considered.

5. CONCLUSION

We have introduced coding-based ISS (CISS), a new general prob-

abilistic framework for informed source separation (ISS), that takes

advantages from both source coding and source separation. A pre-
liminary experimental investigation of CISSwith a particular source

model has shown the advantages of this approach, as compared

to both conventional ISS and source coding methods based on the

same model. Note also that this probabilistic framework is not re-
stricted to ISS, and can be used to encode any signal s conditionally

on some other signal x correlated with s. For example, the approach

can be used to encode one or several remixes, given the original

recording, or in the context of the parametric stereo coding, where
the goal is to encode a stereo recording, given its mono downmix.

Further research will include the following directions. First,

more advanced audio-specific structured source models, such as the

nonnegative matrix factorization of spectrograms [5] and its exten-
sions [2] should be investigated. Second, new criteria and algo-

rithms for model estimation and encoding that directly optimize the

rate-distortion relation (12) should be proposed. Third, CISS should

be investigated in the case of multichannel mixtures. Finally, to en-
hance the perceived sound quality, perceptual models, as in audio

coding, should be applied.
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