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Asymptotically Optimal Model Estimation for
Quantization

Alexey Ozerov and W. Bastiaan Kleijn

Abstract—Using high-rate theory approximations we introduce
flexible practical quantizers based on possibly non-Gaussian
models in both the constrained resolution (CR) and the con-
strained entropy cases. We derive model estimation criteria
optimizing asymptotic (with increasing rate) quantizer perfor-
mance. We show that in the CR case the optimal criterion is
different from the maximum likelihood criterion commonly used
for that purpose and introduce a new criterion that we call
constrained resolution minimum description length (CR-MDL).
We apply these principles to the generalized Gaussian scaled
mixture model, which is accurate for many real-world signals.
We provide an explanation of the reason why the CR-MDL
improves quantization performance in the CR case and show
that CR-MDL can compensate for a possible mismatch between
model and data distribution. Thus, this criterion is of a great
interest for practical applications. Our experiments apply the
new quantization method to controllable artificial data and to
the commonly used modulated lapped transform representation
of audio signals. We show that both the CR-MDL criterion and
a non-Gaussian modeling have significant advantages.

Index Terms—Constrained resolution, high-rate theory, model-
based quantization, asymptotically optimal model estimation,
minimum description length, maximum likelihood.

I. INTRODUCTION

H IGH-RATE (HR) theory approximations, as applied to
quantization [1], form a powerful tool allowing to derive

analytical asymptotic expressions of quantizer performance.
These expressions are usually applied in the following con-
texts:

∙ application 1: to analyse asymptotic behavior of Lloyd-
optimal vector quantizers [2], [3],

∙ application 2: to optimize asymptotic performance of
some pre-defined structured quantizers [4], [5],

∙ application 3: to build practical quantizers, given some
parametric representation 𝜃 (also referred to hereafter as
model) of the data distribution 𝑝𝑆(𝑠) [6], [7].

In this work we are mainly interested by the third applica-
tion. It facilitates the design of practical quantizers with the
following attractive properties:
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∙ flexibility: the quantizers can be built in real time for any
value of the rate from the continum of values,

∙ low storage requirements: one does not need to store
codebooks, only model parameters need to be stored,

∙ low computational load: the computational complexities
of both encoder and decoder are low and independent of
the particular rate value.

Such flexible quantizers were recently successfully applied
to audio coding [8]–[10], but can be applied for coding of
any data, e.g., images or video. Moreover, while HR theory is
(asymptotically) valid for high rates, flexible quantizers give
in practice satisfactory results for low rates as well [9], [10].

To build such model-based flexible quantizers it is usually
implicitly assumed that the model is able to represent the data
distribution “perfectly”, and the maximum likelihood (ML)
criterion is generally used for model estimation [6]–[10]. Thus,
except for two works [11], [12] (we discuss the novelty of our
proposal, as compared to these works below), the question
of model estimation is not very carefully addressed in terms
of the best rate-distortion (RD) tradeoff, which is the real
objective of quantization.

Assuming that the HR theory assumption holds, we are
looking in this paper for model estimation strategies leading
to the best RD tradeoff. We consider a 𝑘-dimensional random
source vector 𝑆 and assume that its distribution admits a
probability density function (pdf) 𝑝𝑆(𝑠). Let source vector 𝑆
be quantized (e.g., as in [6] or [7]) using a probabilistic model
𝜃 ∈ Θ from a family of models Θ, characterized by its pdf
𝑓𝑆(𝑠∣𝜃). The problem of optimal model estimation consists
of choosing a particular 𝜃∗ ∈ Θ that leads to the best RD
tradeoff.

It is implicitly assumed in the state-of-the-art [6]–[10] that
there exist 𝜃 ∈ Θ such that 𝑓𝑆(𝑠∣𝜃) = 𝑝𝑆(𝑠). However,
this assumption is almost never verified in practice for the
following (possibly redundant) reasons:

∙ one cannot consider an arbitrary parametric family of
distributions, since we do not know yet how to build
practical flexible quantizers in the most general case,

∙ one cannot use an arbitrary model order, since model
transmission would cost too much [13], or data over-
fitting would lead to a decrease of overall quantization
performance [14],

∙ and may be most importantly, the real data distribution
often does not fit the model distribution in practice,
whatever the parametric family.

In summary, the flexible quantizers of application 3 are
usually derived based on theoretical results from application 1.
However, while in application 1 it is suitable to consider only
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one data distribution 𝑝𝑆(𝑠)
1, it is not suitable for application

3, as explained.
The main goal of this work is to compensate for possible

mismatch between the data and model distributions during
the model estimation step. This goal can be achieved by the
following two options: (i) adjust the model, or (ii) adjust the
resulting quantizer density. Here we chose following the first
option, since, in our opinion, it is the most promising one. To
be more precise, our methodology consists of the following
steps:

∙ assume the model family Θ includes the “right data
model”, i.e., a 𝜃 ∈ Θ such that 𝑓𝑆(𝑠∣𝜃) = 𝑝𝑆(𝑠) exists,
and derive, e.g., as in [3], [15], the quantizer centroid
density function (see Sec. II-A below) expressed in a
parametric form (i.e., via 𝜃) that is optimal in terms of
the RD tradeoff,

∙ keep the parametric form of the obtained quantizers, and
derive the so called operational rate-distortion function
(RDF) 2, for example as in [15], but, in contrast to [15]
and in line with [16], [17], assuming 𝑓𝑆(𝑠∣𝜃) ∕= 𝑝𝑆(𝑠),
i.e., remove the “right data model” assumption,

∙ optimize model 𝜃 such as to have the best RD tradeoff,
i.e., minimize the operational RDF.

In other words, in the last step we approach the philosophy of
application 2. Indeed, we just consider a family of the quan-
tizers parameterized by 𝜃 ∈ Θ, we forget about underlying
probabilistic model, and we are simply looking for the 𝜃∗

optimizing the operational RDF.
We apply the proposed methodology to both constrained

entropy (CE) (variable rate) and constrained resolution (CR)
(fixed rate) quantizers, assuming a quite general (possibly non-
Gaussian) model distribution. Analyzing operational RDFs for
both the CE and CR cases we show that the ML criterion
results in optimal performance for the CE case but not for the
CR case. For the CE case, the result is consistent with the
minimum description length (MDL) principle [18], [19]. We
call the new model estimation criterion for CR quantization
CR-MDL. Our framework is quite general and can be applied
to a large range of model distributions. In the experimental
part we use generalized Gaussian distributions (GGD) and so-
called generalized Gaussian scaled mixture models (GGSMM)
as source models and apply them to synthetic data (sequences
sampled from some GGDs) and real data (modulated lapped
transform (MLT) coefficients of speech).

Concerning the two abovementioned existing works, Duni
and Rao [11] develop a similar CR-quantization framework in
a particular case of GMMs, and [12] is our previous contribu-
tion, where we also consider optimal parameter estimation for
the Gaussian case. Here we formulate our framework first in
the case of any model, and then in a practical case of flexible
quantizers derived from possibly non-Gaussian distributions
including for example GGD, mixtures of GGDs, etc. Both
the formulation of flexible quantizers and the derivation of

1In fact, in application 1 there is no parametric model at all, and non-
parametric (and non-flexible) Lloyd-optimal vector quantizer approaches the
HR theory optimal quantizer for 𝑝𝑆(𝑠), as rate goes up.

2Given a quantizer specified by its centroid density function and some
data specified by its distribution, the operational RDF, as introduced in [15],
represents the expected RD relation for the quantizer, as applied to the data.

optimal parameter estimation criteria for the non-Gaussian
case3 are new results. Moreover, in contrast to [11], in our
experiments we provide a systematic comparison between CE
quantization and CR quantization using both the ML and
CR-MDL criteria. Finally, in contrast to [11] and [12], our
derivations of asymptotically optimal model estimation criteria
are based on theoretical mismatch results in high-resolution
quantization theory [16], [17].

In summary, this paper includes the following contributions,
as compared to the state of the art:

1) Both the CR [6] and the CE [7] probabilistic model-
based quantization schemes are extended to a wider class
of non-Gaussian models.

2) As compared to [11], [12], asymptotically optimal
model estimation criteria are derived in the general
case of any model and for the proposed practical non-
Gaussian model-based quantizers using theoretical re-
sults from [16], [17].

3) The advantages of both non-Gaussian modeling and
optimal estimation criteria are demonstrated for quan-
tization of speech MLT coefficients using GGSMM. To
our best knowledge, while Gaussian models have been
used for quantization of linearly transformed speech
coefficients [8]–[10], [12], such non-Gaussian model-
based schemes were not yet studied in this context.

The remainder of this paper is organized as follows. A
quite general formulation of a model estimation framework
is given in section II. However, in this section we do not
consider how to build flexible quantizers for such a general
case. Thus, in section III the framework is reformulated for the
case of practical flexible quantizers, considering a particular
class of parametric model families. Experiments on CE and
CR GGD model-based quantization of synthetic and real data
using different parameter estimation criteria are presented in
Section IV. In Section V the proposed framework is discussed
and some conclusions are drawn.

II. GENERAL FORMULATION

In order to provide a better understanding of our frame-
work, we use a general formulation. However, such a general
formulation is not directly applicable for practical flexible
quantizers, and the corresponding reformulation will be given
in section III.

To derive operational RDFs and their mismatched versions,
i.e., when 𝑓𝑆(𝑠∣𝜃) ∕= 𝑝𝑆(𝑠), we here follow the results by
Zador [2], Bucklew [16], Gray et al. [3], [15], [17], [20].
Under some assumptions, asymptotic validity of operational
RDFs was shown in [2], and in [16] and [17] for the
mismatched cases. Lower and upper bounds of achievable
performance were studied in [3]. We here leave aside the study
of achievable performance bounds, and, instead, are interested
in optimizing the quantizer’s asymptotic performance, i.e., the
operational RDF. The adverb “asymptotically” in the paper’s
title reflects this point.

3As it will be explained in details later, in this paper we consider GMM-
based quantization as quantization using a single Gaussian with parameters
varying in time. This is in fact the case, since for quantization of one source
vector only one pre-selected Gaussian component is used [6], [7].
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A. Quantizers

We consider again the source vector 𝑆 with data distribution
pdf 𝑝𝑆(𝑠) and model distribution pdf 𝑓𝑆(𝑠∣𝜃) (𝜃 ∈ Θ). We first
suppose that a 𝜃 ∈ Θ exists such that 𝑓𝑆(𝑠∣𝜃) = 𝑝𝑆(𝑠). Let 𝑠
be a particular realization of the source vector 𝑆, and 𝒬(𝑠) be
its quantized version. For quantization we consider the mean
𝑟-th power distortion measure:

𝑑𝑟(𝑠,𝒬(𝑠)) =
1

𝑘
∥𝑠−𝒬(𝑠)∥𝑟 =

1

𝑘

(
𝑘∑

𝑖=1

(𝑠𝑖 −𝒬(𝑠)𝑖)
2

) 𝑟
2

.

(1)
Let {𝒬𝑚}+∞

𝑚=1 be a sequence of quantizers with a total num-
ber of reconstruction points {𝐿𝑚}𝑚 (such that 𝐿𝑚 → +∞
while 𝑚 → +∞). Assuming these quantizers are optimal
for data with pdf 𝑓𝑆(𝑠∣𝜃), point density function Λ(𝑠∣𝜃) is
defined as (see, e.g., [3]) a continuous function such that
for any “reasonable” subset 𝒮 ⊂ ℝ

𝑘 the ratio between
reconstruction points in 𝒮 and 𝐿𝑚 tends to

∫
𝒮 Λ(𝑠∣𝜃)𝑑𝑠 when

𝑚 → +∞. Here we use a so called centroid density function
𝑔𝐶,𝑚(𝑠∣𝜃) that relates to the to point density function Λ(𝑠∣𝜃)
as 𝑔𝐶,𝑚(𝑠∣𝜃) = 𝐿𝑚Λ(𝑠∣𝜃).

It can be shown [3], [20] that the mean distortion 𝐷𝑚 =
𝔼[𝑑(𝑆,𝒬𝑚(𝑆))] can be expressed “asymptotically” as:

𝐷𝑚 =

∫
ℝ𝑘

𝑓𝑆(𝑠∣𝜃)𝐶(𝑟, 𝑘,𝒢𝑘(𝑠))𝑔𝐶,𝑚(𝑠∣𝜃)− 𝑟
𝑘 𝑑𝑠, (2)

where 𝐶(𝑟, 𝑘,𝒢𝑘(𝑠)) is the normalized moment of inertia
or coefficient of quantization [20], and 𝒢𝑘(𝑠) indicates the
geometry of the cell used for quantization of vector 𝑠.

More precisely, equation (2) is valid “asymptotically” in
the sense that the right part of (2) divided by 𝐿𝑚 tends to
𝐷𝑚/𝐿𝑚 when 𝑚 → +∞. For the sake of simplicity, we use
in (2) and in other expressions below the equality sing (=)
instead of the approximation (≈). Moreover, and for the same
reason, we drop the index 𝑚 in all expressions below.

Assuming optimal geometry and that Gersho’s conjecture
[21] holds, i.e., for optimal geometry the normalized moment
of inertia does not vary with the cell index (𝒢opt,𝑘(𝑠) =
𝒢opt,𝑘), we can write:

𝐷 = 𝐶𝑟,𝑘

∫
ℝ𝑘

𝑓𝑆(𝑠∣𝜃)𝑔𝐶(𝑠∣𝜃)− 𝑟
𝑘 𝑑𝑠, (3)

where 𝐶𝑟,𝑘 = 𝐶(𝑟, 𝑘,𝒢opt,𝑘).
We would like to derive the optimal centroid density func-

tion 𝑔𝐶(𝑠∣𝜃) under the following two constraints on the rate:
1) Constrained entropy, when each source vector can be

quantized with any number of bits, and only the first-
order entropy of the quantization indices is constrained.
It can be shown [3], [20] that under HR theory assump-
tions this constraint is equivalent to:

−
∫
ℝ𝑘

𝑓𝑆(𝑠∣𝜃) log2
𝑓𝑆(𝑠∣𝜃)
𝑔𝐶(𝑠∣𝜃)𝑑𝑠 ≤ 𝑅, (4)

with 𝑅 denoting the average rate (in bits per vector).
2) Constrained resolution, when each source vector can be

quantized with at most 𝑅 bits, which in terms of centroid
density function is equivalent to:

log2

∫
ℝ𝑘

𝑔𝐶(𝑠∣𝜃)𝑑𝑠 ≤ 𝑅, (5)

with 𝑅 denoting the constant rate.
To derive optimal centroid density functions one can min-

imize mean distortion 𝐷 expressed by Eq. (3) under the
corresponding rate constraint ((4) or (5)) using, e.g., the
Lagrange multiplier method (see [3], [20]). In the CE case the
optimal centroid density is constant and related to the average
rate as follows:

log2 𝑔
opt,CE
𝐶 (𝑠∣𝜃) = 𝑅+

∫
ℝ𝑘

𝑓𝑆(𝑦∣𝜃) log2 𝑓𝑆(𝑦∣𝜃)𝑑𝑦, (6)

and in the CR case the optimal centroid density can be written
as:

𝑔opt,CR
𝐶 (𝑠∣𝜃) = 2𝑅

𝑓𝑆(𝑠∣𝜃) 𝑘
𝑘+𝑟∫

ℝ𝑘 𝑓𝑆(𝑦∣𝜃) 𝑘
𝑘+𝑟 𝑑𝑦

. (7)

B. Operational rate-distortion functions

By substituting Eqs. (6) and (7) into Eq. (3), it follows
that in both the CR and CE cases and under HR theory
assumptions the (average) rate R (in bits per vector) is related
to the (average) distortion 𝐷 (per dimension) via the following
so-called operational RDF:

𝑅 = −𝑘

𝑟
log2 𝐷 + 𝜓(𝜃), (8)

where in the CE case the term 𝜓(𝜃) is:

𝜓CE(𝜃) =
𝑘

𝑟
log2 𝐶𝑟,𝑘 −

∫
ℝ𝑘

𝑓𝑆(𝑠∣𝜃) log2 𝑓𝑆(𝑠∣𝜃)𝑑𝑠, (9)

while in the CR case it is:

𝜓CR(𝜃) =
𝑘

𝑟
log2

[
𝐶𝑟,𝑘

(∫
ℝ𝑘

𝑓𝑆(𝑠∣𝜃) 𝑘
𝑘+𝑟 𝑑𝑠

) 𝑘+𝑟
𝑘

]
. (10)

Recall that all the derivations above were done under the
assumption 𝑓𝑆(𝑠∣𝜃) = 𝑝𝑆(𝑠) (see Sec. II-A). However, as
discussed in the introduction, in the most practical situations
the true data density 𝑝𝑆(𝑠) does not belong to the family of
model densities {𝑓𝑆(𝑠∣𝜃)}𝜃∈Θ and can only be approximated
by a member from this family (𝑝𝑆(𝑠) ≈ 𝑓𝑆(𝑠∣𝜃)) with more
or less success.

C. Mismatched operational rate-distortion functions

Now we relax the assumption 𝑓𝑆(𝑠∣𝜃) = 𝑝𝑆(𝑠), but we
still consider optimal quantizers derived under this assumption
(i.e., a uniform quantizer in the CE case and a quantizer with
centroid density 𝑔opt,CR

𝐶 (𝑠∣𝜃) (7) in the CR case). Under these
assumptions, we are looking for model parameter estimation
criteria, that are optimal in terms of quantization performance.
The assumption 𝑓𝑆(𝑠∣𝜃) ∕= 𝑝𝑆(𝑠) leads to the replacement of
the first entry of 𝑓𝑆(⋅∣𝜃) in Eqs. (3) and (6) by 𝑝𝑆(⋅). Doing
that and performing similar derivations, one can find, under
certain conditions (see Theorem 2 of [17] and Theorem 2
of [16] or Appendix A), the following operational RDF
(analogous to (8)):

𝑅 = −𝑘

𝑟
log2 𝐷 + 𝜓(𝜃, 𝑆), (11)

with

𝜓CE(𝜃, 𝑆) =
𝑘

𝑟
log2 𝐶𝑟,𝑘 −

∫
ℝ𝑘

𝑝𝑆(𝑠) log2 𝑓𝑆(𝑠∣𝜃)𝑑𝑠, (12)
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𝜓CR(𝜃, 𝑆) =
𝑘

𝑟
log2

⎡
⎢⎣𝐶𝑟,𝑘

∫
ℝ𝑘 𝑝𝑆(𝑠)𝑓𝑆(𝑠∣𝜃)− 𝑟

𝑘+𝑟 𝑑𝑠(∫
ℝ𝑘 𝑓𝑆(𝑦∣𝜃) 𝑘

𝑘+𝑟 𝑑𝑦
)− 𝑟

𝑘

⎤
⎥⎦ . (13)

Such mismatched operational RDFs (i.e., when an optimal
quantizer is derived for model distribution 𝑓𝑆(𝑠∣𝜃), but applied
to data having a different distribution 𝑝𝑆(𝑠)), were already
reported by Bucklew [16] for the CR case and by Gray
and Linder [17] for the CE case. Moreover, these works
provide rigorous mathematical conditions that are sufficient
for asymptotic validity of (11), (12) and (13). Here, we use
these results for model estimation.

D. Optimal model estimation

We see from equation (11) that under HR theory assump-
tions the mismatched operational RDF (for both CR and CE
cases) is a linear function with slope −𝑘/2 and intercept
𝜓(𝜃, 𝑆), relating the rate and the logarithm of distortion. Thus,
to minimize the distortion 𝐷 for any (high) rate 𝑅, one must
look for model parameters 𝜃 minimizing the term 𝜓(𝜃, 𝑆),
which is equivalent to, respectively for the CE and CR case,

𝜃optCE = argmax
𝜃

∫
ℝ𝑘

𝑝𝑆(𝑠) log 𝑓𝑆(𝑠∣𝜃)𝑑𝑠, (14)

𝜃optCR = argmin
𝜃

∫
ℝ𝑘 𝑝𝑆(𝑠)𝑓𝑆(𝑠∣𝜃)− 𝑟

𝑘+𝑟 𝑑𝑠(∫
ℝ𝑘 𝑓𝑆(𝑦∣𝜃) 𝑘

𝑘+𝑟 𝑑𝑦
)− 𝑟

𝑘
. (15)

Note that the criteria for estimation of the optimal model
distribution in the CE and the CR cases are different.

E. Case of empirical data distribution

In many practical situations we do not know the true data
distribution (i.e., 𝑝𝑆(𝑠)), and we have only a sequence of
observed vectors s = {𝑠𝑛}𝑁𝑛=1 (𝑠𝑛 ∈ ℝ

𝑘) that we would
like to quantize. In that case one can obtain the following
empirical mismatched RDF (see Appendix A for derivations):

𝑅 = −𝑘

𝑟
log2 𝐷 + 𝜓emp(𝜃, s), (16)

with

𝜓emp
CE (𝜃, s) =

𝑘

𝑟
log2 𝐶𝑟,𝑘 − 1

𝑁
log2

𝑁∏
𝑛=1

𝑓𝑆(𝑠
𝑛∣𝜃), (17)

𝜓emp
CR (𝜃, s) =

𝑘

𝑟
log2

⎡
⎢⎣𝐶𝑟,𝑘

1
𝑁

∑𝑁
𝑛=1 𝑓𝑆(𝑠

𝑛∣𝜃)− 𝑟
𝑘+𝑟(∫

ℝ𝑘 𝑓𝑆(𝑦∣𝜃) 𝑘
𝑘+𝑟 𝑑𝑦

)− 𝑟
𝑘

⎤
⎥⎦ . (18)

In contrast to (11), which requires knowledge of the under-
lying probability distribution, the operational rate distortion
relation (16) is useful for real-world data. It predicts the rate-
distortion relation for a set of 𝑁 data points s = {𝑠𝑛}𝑁𝑛=1 for
the case that the signal model 𝑓𝑆(⋅∣𝜃) is assumed.

The optimal model estimation criteria (analogous to (14)
and (15)) become:

𝜃optCE = 𝜃ML = argmax
𝜃

𝑁∏
𝑛=1

𝑓𝑆(𝑠
𝑛∣𝜃), (19)

𝜃optCR = 𝜃CR_MDL = argmin
𝜃

∑𝑁
𝑛=1 𝑓𝑆(𝑠

𝑛∣𝜃)− 𝑟
𝑘+𝑟(∫

ℝ𝑘 𝑓𝑆(𝑦∣𝜃) 𝑘
𝑘+𝑟 𝑑𝑦

)− 𝑟
𝑘
. (20)

Thus, in the CE case the ML criterion is optimal in terms of
quantization performance, which is consistent with the mini-
mum description length (MDL) principle [18], [19]. However,
in the CR case we have an optimal model estimation criterion
that in general is not equivalent to ML. We call this new
criterion CR-MDL.

F. Discussion

Unfortunately, except in the scalar case (𝑘 = 1), we do
not know how to design analytically practical flexible coders
(including the quantization and the indexing) in the above-
described general situation4. As a result, the Gaussian model is
usually considered in practice (see, e.g., [9], [10]), i.e., 𝑓𝑆(𝑠∣𝜃)
is set to be Gaussian. The more general GMMs are considered
in [6]–[8], [22]. However, GMM-based quantization consists
of selecting a suitable Gaussian component and using only
this component for quantization, which results in loss of
optimality when the components overlap [7]. In other words
this quantization is locally Gaussian. Thus, while we are
aware that GMMs can approach any distribution with more
or less success, we consider here GMM-based quantization
as quantization using a Gaussian model with time varying
parameters.

The most common approach to build flexible coders in
this case is to first decorrelate quantized source vector using
the Karhunen-Loeve transform (KLT), and then quantize the
vector components independently using corresponding scalar
quantizers (see [7] for CE case and [6] for CR case). For such
schemes, the memory advantage of vector quantization versus
scalar quantization (see, e.g., [20], [23]) is taken into account
because of the KLT. However, the space filling advantage and
the shape advantage (for the CR case) are not used. For the
CE case Zhao et al. [7] proposed also using general lattices
instead of Z-lattices (scalar quantizers) in the KLT domain,
and the resulting scheme takes into account the space filling
advantage. The situation is more complex in the CR case, one
approach taken was to apply scalar companders and general
lattices in the KLT domain [22] (instead of scalar quantization
[6]), but the centroid density of such a quantizer can be
far from the optimal centroid density (7), which in principle
cannot be implemented via scalar companders [24].

For the sake of simplicity and consistency between the CR
and CE cases we here consider scalar quantizers in some
transformed domain (e.g., as in [7] and [6]), but extend them
to a more general case of non-Gaussian distributions.

III. PRACTICAL FLEXIBLE QUANTIZERS

We consider an 𝑁 -length sequence S = {𝑆𝑛}𝑁𝑛=1 of 𝑘-
dimensional real-valued source vectors5, and the correspond-
ing sequence of observations s = {𝑠𝑛}𝑁𝑛=1 (𝑠𝑛 ∈ ℝ

𝑘) to
quantize.

4More precisely, in such a general situation, the quantization is difficult,
but not the indexing, for the CR case, and the indexing is difficult, but not
the quantization, for the CE case.

5In contrast to the previous section we assume here that the random vector
is dependent on the index 𝑛. This is because we want the model (as will be
introduced below) be dependent on 𝑛.
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A. Source model

Let a source vector 𝑆𝑛 be modeled by a distribution with
pdf:

𝑓𝑆𝑛(𝑠∣𝜃𝑛) =
𝑘∏

𝑖=1

𝜆
−1/2
𝑛,𝑖 𝜂

(
[Λ−1/2

𝑛 𝑈𝑇
𝑛 (𝑠− 𝜇𝑛)]𝑖

)
, (21)

where 𝜇𝑛 is a vector, 𝑈𝑛 is an orthogonal matrix (𝑈𝑇
𝑛 𝑈𝑛 = 𝐼),

Λ𝑛 = diag{𝜆𝑛,1, . . . , 𝜆𝑛,𝑘} is a diagonal matrix, and 𝜂(⋅)
is a scalar pdf. In other words, we assume that after some
translation (by 𝜇𝑛), rotation (by 𝑈𝑇

𝑛 ) and dimension-wise
scaling (by Λ

−1/2
𝑛 ), the components 𝑋𝑛

𝑖 (𝑖 = 1, . . . , 𝑘) of
the resulting random vector 𝑋𝑛 = Λ

−1/2
𝑛 𝑈𝑇

𝑛 (𝑆𝑛 − 𝜇𝑛) are
independent and identically distributed (i.i.d.) with pdf:

𝑓𝑋𝑛
𝑖
(𝑥𝑖∣𝜃𝑛) = 𝜂(𝑥𝑖). (22)

Note that the samples 𝑆𝑛
𝑖 are generally not distributed with

pdf 𝜂(⋅) (up to some scaling and shift). The Gaussian case
forms an exception on this rule. Given the pdf 𝜂(⋅), such a
source model can be parameterized as:

𝜃 ≜ {𝜃𝑛}𝑁𝑛=1 ≜ {𝜇𝑛, 𝑈𝑛,Λ𝑛}𝑁𝑛=1. (23)

Let us remark that estimation of such a model, assuming
all parameters are free, is not efficient, since there are more
parameters than data samples and such an estimation would
lead to a serious data overfitting. Thus, there should be
some additional structure that reduces the number of free
parameters. For example, one can assume that the set of
model parameters is limited to {𝜃𝑞}𝑄𝑞=1 (𝑄 << 𝑁 ) and that
they are shared between several observations, i.e., 𝜃𝑛 = 𝜃𝑞(𝑛)

(e.g., as for GMMs [6], [7]). In that case the source vectors
{𝑆𝑛∣𝑞(𝑛) = 𝑞} are i.i.d. and the estimation becomes reliable
if the set {𝑛∣𝑞(𝑛) = 𝑞} is sufficiently large. Particular model
structures will be specified in the experimental section IV, and
we do not do so at that level of presentation for the sake of
generality.

B. Practical quantization schemes

For quantization we consider the average mean squared-
error (MSE) (a particular case of 𝑟-th power distortion measure
(1) with 𝑟 = 2):

𝑑2(𝑠,𝒬(𝑠)) = (1/𝑘) ∥𝑠−𝒬(𝑠)∥2 , (24)

which is a single letter distortion measure, i.e., for a vec-
tor it equals to the mean of the distortions for the vector
components. We consider a quantization scheme based on
scalar quantization of the independent components that can
be summarized as follows:

1) Transform vector 𝑠𝑛 into the “independent” domain:

𝑦𝑛 = 𝑈𝑇
𝑛 (𝑠𝑛 − 𝜇𝑛). (25)

2) Quantize each dimension 𝑦𝑛
𝑖 with a scalar quantizer:

𝑄𝑌𝑖

Λ𝑛,𝜂(⋅) : 𝑦
𝑛
𝑖 → 𝑦𝑛

𝑖 , (26)

that is optimal for the 𝑖-th dimension of source 𝑌 𝑛 =
𝑈𝑇

𝑛 (𝑆𝑛 − 𝜇𝑛) under one of the rate constraints (CR

or CE), assuming that the HR theory assumptions are
valid.6

3) Transmit codeword index of 𝑦𝑛
𝑖 to the decoder to-

gether with side information about model parameters
𝜃𝑛 = {𝜇𝑛, 𝑈𝑛,Λ𝑛}, that can be quantized as well (if
necessary).

4) Reconstruct the quantized vector: 𝑠𝑛 = 𝑈𝑛𝑦
𝑛 + 𝜇𝑛.

The presented quantization scheme is a generalization of
several model-based quantization schemes, such as GMM-
based quantization [6], [7] (we consider GMM-based quan-
tization as Gaussian model-based quantization, see Sec. II-F),
autoregressive model-based quantization [9], [10], and GGD-
based flexible quantization that we would like to explore in
the experimental part of this paper. Note that the GGD model
was already used for quantization (e.g., in [25]). However, the
quantizers used in [25] are not flexible, since they are based
on Lloyd-Max scalar quantization.

C. Optimal scalar quantizers

In this section we derive expressions for optimal (in terms
of minimal overall MSE) scalar quantizers 𝑄𝑌𝑖

Λ𝑛,𝜂(⋅) (26) for
both the CE and CR cases.

1) Constrained entropy: For the CE case with MSE distor-
tion, uniform quantization is asymptotically optimal [1]. Thus,
𝑄𝑌𝑖

Λ𝑛,𝑓(⋅) is a scalar quantizer with a constant step size Δ.
Using an arithmetic coder as an entropy coder of the codeword
indices, the effective codeword length ℒ𝑛 (in bits) is:

ℒ𝑛 = −
∑𝑘

𝑖=1
log2

∫ 𝑦𝑖+Δ/2

𝑦𝑖−Δ/2

𝑓𝑌 𝑛
𝑖
(𝑦𝑖)𝑑𝑦𝑖, (27)

where
𝑓𝑌 𝑛

𝑖
(𝑦𝑖) = 𝜆

−1/2
𝑛,𝑖 𝜂(𝑦𝑖𝜆

−1/2
𝑛,𝑖 ) (28)

is the model pdf of the 𝑖-th component of vector 𝑌 𝑛 =
𝑈𝑇

𝑛 (𝑆𝑛 − 𝜇𝑛).
2) Constrained resolution: Let 𝑅𝑛,𝑖 be the number of bits

spent for 𝑖-th dimension of the 𝑛-th vector. Since the MSE
distortion (24) is a single letter distortion the scalar quantizer
𝑄𝑌𝑖

Λ𝑛,𝜂(⋅) must minimize the MSE of the 𝑖-th dimension.
According to (7) (for 𝑘 = 1) such an optimal scalar quantizer
(under HR assumptions) has the following centroid density:

𝑔𝑛,𝑖(𝑦𝑖) = 𝐿𝑛,𝑖

𝑓𝑌 𝑛
𝑖
(𝑦𝑖)

1
3∫

ℝ
𝑓𝑌 𝑛

𝑖
(𝑧𝑖)

1
3 𝑑𝑧𝑖

, (29)

where 𝐿𝑛,𝑖 = 2𝑅𝑛,𝑖 is the number of levels, and 𝑓𝑌 𝑛
𝑖
(𝑦𝑖) is

given by (28). Substituting (29) into (3) (for 𝑘 = 1) one can
write the average MSE distortion for the 𝑖-th component of
the 𝑛-th vector:

𝐷𝑛,𝑖 =
𝐶𝑠

𝐿2
𝑛,𝑖

(∫
ℝ

𝑓𝑌 𝑛
𝑖
(𝑧𝑖)

1
3 𝑑𝑧𝑖

)3

(30)

where 𝐶𝑠 = 𝐶2,1 = 1/12 is the coefficient of quantization
of a scalar quantizer. Since the MSE distortion is single

6Given that 𝑋𝑛
𝑖 are i.i.d. with pdf 𝜂(⋅) (22) and 𝑌 𝑛

𝑖 = 𝜆
1/2
𝑛,𝑖 𝑋

𝑛
𝑖 , the

resulting expressions for the optimal scalar quantizers 𝑄
𝑌𝑖
Λ𝑛,𝑓(⋅) are indeed

independent of 𝜇𝑛 and 𝑈𝑛, since the MSE distortion measure (24) is invariant
under the transform 𝑈𝑇

𝑛 (⋅ − 𝜇𝑛), as a result of the orthogonality of 𝑈𝑛.
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letter, the average MSE distortion for the vector 𝑌 𝑛 is
𝐷𝑛 = 1

𝑘

∑𝑘
𝑖=1 𝐷𝑛,𝑖.

In order to find 𝐿𝑛,𝑖 = 2𝑅𝑛,𝑖 we minimize MSE distortion
𝐷𝑛 under the rate constraint

∑𝑘
𝑖=1 𝑅𝑛,𝑖 ≤ 𝑅. By using the

Lagrange multiplier method we find:

log2 𝐿𝑛,𝑖 = 𝑅𝑛,𝑖 =
1

2
log2 𝐼𝑛,𝑖 +

1

𝑘

[
𝑅−

𝑘∑
𝑙=1

1

2
log2 𝐼𝑛,𝑙

]
,

(31)

with 𝐼𝑛,𝑖 =
(∫

ℝ
𝑓𝑌 𝑛

𝑖
(𝑧𝑖)

1
3 𝑑𝑧𝑖

)3

. Using (28), equations (29)
and (31) can be rewritten as:

𝑔𝑛,𝑖(𝑦𝑖) = 𝐿𝑛,𝑖

𝜂(𝑦𝑖𝜆
−1/2
𝑛,𝑖 )

1
3∫

ℝ
𝜂(𝑧𝑖𝜆

−1/2
𝑛,𝑖 )

1
3 𝑑𝑧𝑖

, (32)

log2 𝐿𝑛,𝑖 = 𝑅𝑛,𝑖 =
𝑅

𝑘
+

1

2
log2

(
𝜆𝑛,𝑖/

∏𝑘

𝑙=1
𝜆
1/𝑘
𝑛,𝑙

)
. (33)

We see that equation (33) is identical to that arrived in
[6]7 for a Gaussian pdf 𝜂(⋅). So, this expression is valid for
any scalar pdf 𝜂(⋅); it is independent of the particular form
of 𝜂(⋅), and depends only on Λ𝑛 and total rate 𝑅. In other
words, that means that for a single letter distortion measure
the bit allocation between scalar CR quantizers having up to
some scaling the same point density would be independent of
the particular form of this density.

Finally, the scalar quantizer 𝑄𝑌𝑖

Λ𝑛,𝜂(⋅) with centroid density
(32) can be implemented via companding8 as follows:

1) Compute 𝑥𝑖 = 𝑦𝑖/
√

𝜆𝑛,𝑖.
2) Apply the optimal scalar compressor corresponding to

the pdf 𝜂 1
3
(⋅) (𝜂 1

3
(𝑥𝑖) ≜ 𝜂(𝑥𝑖)

1
3 /

∫
ℝ
𝜂(𝑧𝑖)

1
3 𝑑𝑧𝑖):

𝑢𝑖 = 𝜉 1
3
(𝑥𝑖),

where 𝜉 1
3
(⋅) is the cumulative distribution function (cdf)

of a random variable with pdf 𝜂 1
3
(⋅) (i.e., 𝜉 1

3
(𝑥𝑖) =∫ 𝑥𝑖

−∞ 𝜂 1
3
(𝑧𝑖)𝑑𝑧𝑖).

3) Quantize 𝑢𝑖 with a scalar quantizer 𝑄𝑈𝑖

𝐿𝑛,𝑖
: 𝑢𝑖 → 𝑢̂𝑖

uniform on the interval (0, 1) with 𝐿𝑛,𝑖 levels computed
using (33).

4) Reconstruct 𝑦𝑖 =
√

𝜆𝑛,𝑖𝜉
−1
1
3

(𝑢̂𝑖).

D. Mismatched operational rate-distortion functions

We consider a sequence of vectors s = {𝑠𝑛}𝑁𝑛=1, and
we assume that these vectors are quantized under HR theory
assumptions as described in sections III-B and III-C using a
model 𝜃 = {𝜇𝑛, 𝑈𝑛,Λ𝑛}𝑁𝑛=1. One can show that in this case
the mismatched operational RDF (analogous to (11)) can be
written as:

𝑅 = −𝑘

2
log2 𝐷 + 𝜓flex(𝜃, s), (34)

with

𝜓flex
CE (𝜃, s) =

𝑘

2
log2 𝐶𝑠 − 1

𝑁
log2

∏
𝑛

𝑓𝑆𝑛(𝑠𝑛∣𝜃), (35)

7Note that our derivations are almost the same as in [6], with difference
that we do not assume that orthogonal transform 𝑈𝑇

𝑛 is the KLT and that
𝜂(⋅) is a Gaussian pdf.

8Note that companding is optimal for the scalar case.

𝜓flex
CR (𝜃, s) =

𝑘

2
log2

[
𝐶𝑠

(∫
ℝ

𝜂(𝑧𝑖)
1
3 𝑑𝑧𝑖

)2
]
+

+
𝑘

2
log2

1

𝑘𝑁

𝑁∑
𝑛=1

∣Λ𝑛∣ 1𝑘
𝑘∑

𝑖=1

𝜂
(
𝑦𝑛
𝑖 /

√
𝜆𝑛,𝑖

)− 2
3

, (36)

where 𝑦𝑛 = 𝑈𝑇
𝑛 (𝑠𝑛−𝜇𝑛). For the CE case (Eqs (34), (35)) this

result is a straightforward consequence of (27). A derivation
of the result for the CR case (Eqs (34), (36)) is given in
Appendix B.

E. Optimal model parameter estimation

As before, we see from equations (34) and (35) that in the
CE case and under HR theory assumptions the ML criterion
is optimal in terms of quantization performance, and that this
is not true in the CR case. Thus, in the case of flexible CR
quantization we introduce the following new model estimation
criterion:

𝜃flexCR_MDL = argmin
𝜃

𝜙(𝜃, s), (37)

where the term 𝜙(𝜃, s) defined as

𝜙(𝜃, s) =
𝑁∑

𝑛=1

∣Λ𝑛∣ 1𝑘
𝑘∑

𝑖=1

𝜂
(
𝑦𝑛
𝑖 /

√
𝜆𝑛,𝑖

)− 2
3

, (38)

is obtained from the term 𝜓flex
CR (𝜃, s) (36) by some simpli-

fications such that the new criterion (37) is equivalent to
minimizing the term 𝜓flex

CR (𝜃, s).

IV. EXPERIMENTS

The goals of the experiments presented in this section
are: (𝑎) to check whether the rate and distortion of the
practical flexible quantizers follow the theoretically predicted
asymptotic behaviour at high rates, (𝑏) to see in the CR
case and for different situations, which improvement can be
obtained using the optimal CR-MDL criterion, as compared
to the ML criterion (as in [6]), for high and low rates, (𝑐) to
investigate, whether the newly proposed non-Gaussian model-
based quantizers (with parameters optimized via asymptoti-
cally optimal criteria) applied to some real data can bring
an improvement, as compared to the Gaussian model-based
quantizers [7], [11]. For that, we first provide some results
on quantization of synthetic sources, i.e., when we know
exactly the distribution the data were sampled from. Then,
we provide some practically useful results on quantization of
MLT coefficients of speech.

As non-Gaussian source models we use either centered
GGDs or their mixtures. The pdf of a centered GGD with
shape parameter 𝜈 and standard deviation 𝜎 can be written as:

𝑓GGD(𝑠∣𝜈, 𝜎) = 𝜈𝛼(𝜈)

2𝜎Γ(1/𝜈)
exp

[
−

∣∣∣𝛼(𝜈) 𝑠
𝜎

∣∣∣𝜈] , (39)

where 𝛼(𝜈) =
[
Γ(3/𝜈)
Γ(1/𝜈)

]1/2
, and Γ(⋅) denotes the Gamma

function defined as: Γ(𝑧) =
∫ +∞
0 𝑡−1+𝑧𝑒−𝑡 𝑑𝑡.
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A. Synthetic scalar sources

In the simple case of scalar quantization (𝑘 = 1) we assume
that

∙ the data sequence follows a GGD with unit variance and
the shape factor 𝜈data:

𝑝𝑆(𝑠) = 𝑓GGD(𝑠∣𝜈data, 1), (40)

∙ the model parametric family of pdfs consists of GGD pdfs
with the shape factor 𝜈model (𝜈model ∕= 𝜈data in general)
and different standard deviations (i.e., 𝜃 = {𝜎}𝜎):

{𝑓𝑆(𝑠∣𝜃)}𝜃 = {𝑓GGD(𝑠∣𝜈model, 𝜎)}𝜎, (41)

and we simulate the following three synthetic examples with
different degrees of mismatch between the true data distribu-
tion and the family of model distributions:

∙ Example 1: 𝜈data = 2 (Gauss.), 𝜈model = 1 (Laplacian),
∙ Example 2: 𝜈data = 𝜈model = 1.5 (no mismatch),
∙ Example 3: 𝜈data = 1 (Laplacian), 𝜈model = 2 (Gauss.).
1) Implementation issues: In the simulations presented

below we optimized the ML criterion (19) and the CR-MDL
criterion (37) with respect to (w.r.t.) to the parameter 𝜎. Since,
in contrast to the ML criterion, the CR-MDL criterion has no
closed-form solution for this model, we used either Newton’s
method or a gradient descent algorithm, depending on the
criterion convexity (in the case of the GGDs the criterion is
not always convex). Some implementation details about the
quantization and the CR-MDL criterion optimization are given
in appendices C-A and C-B, respectively.

2) Simulations: For each of three examples considered the
following was performed. A data sequence s = {𝑠𝑛}𝑁𝑛=1 of
length 𝑁 = 1000000 was drawn from pdf 𝑝𝑆(𝑠). Model
parameters, denoted as 𝜃ML and 𝜃flexCR_MDL, were estimated
using criteria (19) and (37) respectively. Data histograms and
estimated model pdfs are represented on the top row of Fig. 1.
The data sequence s was quantized for different rates between
0 and 30 bps in the following three scenarios:
(𝑖) CR-ML: CR quantization using model 𝜃ML estimated

with the ML criterion,
(𝑖𝑖) CR-OPT: CR quantization using model 𝜃flexCR_MDL esti-

mated with the CR-MDL criterion,
(𝑖𝑖𝑖) CE-OPT: CE quantization using model 𝜃ML estimated

with the ML criterion.
The bottom row of Fig. 1 show the experimental and theoreti-
cally predicted (via Eq. (34)) results relatively to the CE-OPT
theoretical performance.

3) Discussion: One can note from Fig. 1 that the exper-
imental results follow the theoretically predicted asymptotic
behaviour starting from some high rate (20 bps). Performance
improvement obtained using optimal CR-MDL criterion, as
compared to ML, is huge for the third example (about 40 dB in
distortion), moderate, but still important, for the first example,
and, as expected, there is no improvement for the second
example. In fact, when there is no mismatch between data
and model distributions, both criteria should lead to the same
parameter estimation. Note also that for the third example the
asymptotic behaviour of CR quantization with ML-estimated
model is very poor, even if the rate is high (20 bps). This is
probably because a heavy-tailed data distribution is modeled

by an ML-estimated light-tailed distribution leading to very
large quantization cells, i.e., the HR assumptions are violated.
The CR-MDL criterion makes the asymptotic behaviour of CR
quantization significantly better. Finally, we note that the CR-
MDL criterion brings as well some improvement, as compared
to ML, for low rates (e.g., starting from 5 bps).

B. Real multidimensional sources: Quantizing speech MLT
coefficients with GGSMM

In this section we investigate the CR-MDL criterion in
the case of real (non-synthetic) multidimensional sources,
i.e., when we do not know the “real” data distribution. We
consider quantization of modulated lapped transform (MLT)
coefficients of speech. Gaussian models are usually used to
encode discrete Fourier transform (DFT) [8], MLT [12] or
time-domain [9], [10] coefficients of speech. Here we would
like to check whether using non-Gaussian (e.g., Laplacian)
models for quantization of MLT coefficients of speech can
be more advantageous, as compared to Gaussian models.
Our motivation is based on our preliminary study [12] and
on some works on speech enhancement [26] and separation
[27] showing that using Laplacian distributions for speech
DFT coefficients can be more advantageous, as compared to
Gaussian distributions. More precisely, we consider a so-called
generalised Gaussian scaled mixture model (GGSMM). To
our best knowledge, such non-Gaussian models were not yet
studied in application to quantization of linearly transformed
speech samples.

1) GGSMM and coding scheme: Let s = {𝑠𝑛}𝑁𝑛=1 be a
sequence 𝑘-dimensional MLT vectors to be quantized. Each
vector is assumed to be a realization of a source vector 𝑆𝑛

with pdf:

𝑓𝑆𝑛(𝑠∣𝜃est𝑛 , 𝜃fix) =

𝑘∏
𝑖=1

𝑓GGD(𝑠∣𝜈, ℎ𝑛𝜎𝑞(𝑛),𝑖), (42)

where 𝜎𝑞 = [𝜎𝑞,𝑖]
𝑘
𝑖=1 (𝑞 = 1, . . . , 𝑄) are so-called character-

istic spectral patterns, 𝑞(𝑛) is the index of a spectral pattern
selected for 𝑛-th MLT vector, and ℎ𝑛 is a non-negative gain ac-
counting for vector’s energy. In terms of notations of equation
(21) we have 𝑈𝑛 = 𝕀𝑘 (𝕀𝑘 being the (𝑘× 𝑘) identity matrix),
𝜇𝑛 = 0, 𝜆𝑖,𝑛 = ℎ2

𝑛𝜎
2
𝑞(𝑛), and 𝜂(⋅) = 𝑓GGD(⋅∣𝜈, 1). As for

coding scheme, parameters 𝜃est𝑛 ≜ {𝑞(𝑛), ℎ𝑛} are estimated
for every vector, quantized if necessary, and transmitted to the
decoder, and a so-called dictionary of characteristic spectral
patterns 𝜃fix ≜ {𝜎𝑞}𝑄𝑞=1 is fixed and supposed to be known,
once estimated in a training phase, by both the coder and the
decoder. To allow reconstruction of the encoded MLT vector
at the decoder, component index 𝑞(𝑛) and gain ℎ𝑛 need to
be transmitted as well. The index 𝑞(𝑛) is losslessly encoded,
and the logarithm of gain ℎ𝑛 is lossy encoded using a single
Gaussian model and the same HR quantization strategy. As
we have found in [13], the asymptotically optimal rate for
gain (or more generally model) quantization is fixed, i.e., it is
independent on the overall rate.

2) Data and parameters: For evaluation and training, we
used respectively 100 and 360 narrow-band speech signals (5
and 15 minutes of speech) randomly selected from respectively
the evaluation and training sets of the TIMIT database. The



1038 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 4, APRIL 2011

−5 0 5

Data SF = 1.0, Model SF = 2.0

−5 0 5

Data SF = 1.5, Model SF = 1.5

 

 

−5 0 5

Data SF = 2.0, Model SF = 1.0

0 5 10 15 20 25 30
−10

0

10

20

30

40

50

Rate (bits per sample)

D
is

to
rt

io
n 

(d
B

) 
−

 C
R
−

O
P

T
 D

is
t. 

(t
he

or
y)

Data SF = 1.0, Model SF = 2.0

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Rate (bits per sample)

D
is

to
rt

io
n 

(d
B

) 
−

 C
R
−

O
P

T
 D

is
t. 

(t
he

or
y)

Data SF = 1.5, Model SF = 1.5

 

 

0 5 10 15 20 25 30
−1

0

1

2

3

4

5

Rate (bits per sample)

D
is

to
rt

io
n 

(d
B

) 
−

 C
R
−

O
P

T
 D

is
t. 

(t
he

or
y)

Data SF = 2.0, Model SF = 1.0

Data hist.
Model pdf (ML)
Model pdf (CR−MDL)

CR−ML (exp)
CR−ML (theory)
CR−OPT (exp)
CR−OPT (theory)
CE−OPT (exp)
CE−OPT (theory)

Fig. 1. Results on data sampled from GGDs with shape factors (SFs) 𝜈data = 2, 1.5, 1 and quantized by GGD-based quantizers with SFs 𝜈model =
1, 1.5, 2. Top row: data histograms (gray bars), ML-estimated model pdfs (blue dashed lines), CR-MDL-estimated model pdfs (red solid lines). Bottom row:
Experimental results for a set of rates between 0 and 30 bps (circles, triangles or squares) and HR theory predicted RD curves given by equation (34) (lines).
The following three scenarios were considered: (𝑖) CR-ML (circles and dashed line), (𝑖𝑖) CR-OPT (triangles and solid line), (𝑖𝑖𝑖) CE-OPT (squares and
dotted line). All the results are plotted relative to the CE-OPT theoretical performance.

MLT was computed with offset 𝑘 = 128 (16 ms). Finally, we
had about 20000 and 60000 MLT vectors for evaluation and
training, respectively.

3) Parameter optimization: For GGSMM-based coding
scheme we are interested in comparing coding scenarios (𝑖)
- (𝑖𝑖𝑖) described in section IV-A for different values of the
shape factor 𝜈 and of the number of model components 𝑄. In
order to provide a fair comparison, all the parameters without
exception are re-trained for every particular configuration
defined by the triple ((𝑙), 𝜈, 𝑄). To optimize parameters for
training (𝜃fix and 𝜃est ≜ {𝜃est𝑛 }𝑛) or coding (𝜃est only), we
used an iterative procedure consisting in updating in turn a
subset of parameters (gains, characteristic spectral patterns,
or component indices), given other parameters fixed.9 As for
updates used for gains {ℎ𝑞(𝑛)

𝑛 }𝑛,𝑞(𝑛) and characteristic spectral
patterns {𝜎𝑞}𝑞, the corresponding optimization sub-problems
for the ML criterion allow closed form solutions, and for the
CR-MDL criterion we used one iteration of Newton’s method
or gradient descent algorithm, as in section IV-A. The first
and second derivatives of the corresponding criterion are quite
similar in spirit to those presented in appendix C-B for the

9Such an optimization procedure is more in line with the segmental
K-means algorithm [28] for GMMs rather than with the Expectation-
Maximization (EM) algorithm [29] (as e.g., used in [6]–[8]). In our opinion
such a way of model training (i.e., when we look for the optimal sequence
of component indices, instead of integrating over all possible sequences, as
in EM) is more consistent with the common coding strategy [6], [7], where
every vector is quantized using only one mixture component.

scalar GGD case, and they are omitted here for brevity.

Note that the studied coding scheme in the CR case is
not entirely consistent with conventional GMM-based CR
quantization, as described in, e.g., [6]. In fact, in [6] every
source vector is quantized with every component, and the
component leading to the lowest distortion is selected then,
while we are using either the ML or the CR-MDL criterion
for component selection. The former strategy is obviously
the optimal one, but it also means that the selected model
parameter (we consider that the sequence of component in-
dices forms a part of the model) depends on the rate and the
quantizer implementation. Since we here prefer staying in the
rate-independent model estimation scenario, we leave aside
this “optimal component selection strategy” for component
selection, and continue using the ML or the CR-MDL cri-
terion. However, we performed some experiments using this
“optimal component selection strategy”, and noticed that it
does not improve the results drastically and does not alter
our conclusions on the comparison between ML and CR-
MDL criteria. For example, in the case of GSMM with 64
components (the case we study below, that is represented on
the bottom right subfigure of figure 2) the “optimal component
selection strategy” combined with the ML criterion (as in [6])
allows dividing by two the gap of about 50 dB between the
CR quantization performances obtained using the ML and
the CR-MDL criteria. However, this last method leads to a
very chaotic performance behaviour (this is due to the model
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Fig. 2. Top row: Zero-rate distortion for different numbers of GGSMM components, scenarios and shape factors (left), zoom on the CR curves (middle),
zoom on the CE curves (right). Scenarios: (𝑖) CR-ML (dashed line), (𝑖𝑖) CR-OPT (solid line), and (𝑖𝑖𝑖) CE-OPT (dotted line). Shape factors (SF): 𝜈 = 1
(diamonds), 𝜈 = 1.5 (x-marks), and 𝜈 = 2 (stars). Bottom row: Experimental results for a set of rates between 1 and 30 bps (circles, triangles or squares)
and HR theory predicted RD curves given by equation (34) (lines). Scenarios: (𝑖) CR-ML: (circles and dashed line), (𝑖𝑖) CR-OPT (triangles and solid line),
(𝑖𝑖𝑖) CE-OPT (squares and dotted line). Shape factors: 𝜈 = 1 (left), 𝜈 = 1.5 (middle), and 𝜈 = 2 (right).

parameter that changes with rate), and the remaining gap of
25 dB is still large.

4) Simulations: In our experiments we consider a so called
zero-rate distortion 𝐷0 defined as

log2 𝐷0 =
2

𝑘

(
𝜓flex(𝜃, s) +𝑅fix

mod

)
, (43)

where 𝑅fix
mod is the fixed rate used for transmission of the

model (components and gains). Let 𝑅tot = 𝑅 + 𝑅fix
mod be

the total rate. It is easy to see from Eq. (34) that the zero-
rate distortion 𝐷0 corresponds to (HR asymptotic) distortion
for 𝑅tot = 0. It is in fact a measure of asymptotic coding
performance.

a) Shape factors and number of GGSMM components:
We have computed zero-rate distortion for all three settings
(𝑖)-(𝑖𝑖𝑖), for shape factors 𝜈 = 1, 1.5, 2, and for the number
of components 𝑄 varying as log2 𝑄 = 0, 1, . . . , 9. The results
are shown on the top row of figure 2. First, we see again
that, as compared to the ML criterion, the CR-MDL criterion
significantly improves and stabilizes the performance in the
CR case. Second, the CR-ML performance closely approaches
the CR-OPT performance for Laplacian distribution (𝜈 = 1)
with many components, thus the mismatch between the ML
and the CR-MDL criteria is lowest for this model. This result
indicates that the mixture of Laplacian distributions with many
components is probably the most appropriate model for speech
among all the models considered. Finally, while the Laplacian

distribution leads to the best results (i.e., the best RD tradeoff)
for the CE-OPT case for all values of 𝑄, in the CR-OPT case
Laplacian distribution gives the best results for small values of
𝑄, but this tendency inverts for large values of 𝑄. The heavy
tails of the Laplacian distribution aid in the quantization of
outliers for low 𝑄, while the smooth shape around the mode of
a Gaussian facilitates accurate modeling of an arbitrary smooth
distribution at high 𝑄. These results show that there are some
practical situations, where using non-Gaussian models can be
beneficial, as compared to Gaussian.

b) Coding: Here we check whether the effective quanti-
zation performances approach theoretically predicted ones at
high-rates, and also we would like to see what happens at low
rates. For that we perform with the GGSMM-based coding
scheme the experiments similar to those reported on Fig. 1
for all settings (𝑖)-(𝑖𝑖𝑖), number of components 𝑄 = 64, and
for shape factors 𝜈 = 1, 1.5, 2. The results are shown on the
bottom row of figure 2. Note that, these results, in contrast
to those from Fig. 1, are plotted in the absolute scale, and
not relatively to the CE-OPT theoretical performance. In fact,
we see that real quantization results approach their high rate
asymptotics in all cases. Again, in line with what was observed
in the synthetic data case (see Fig. 1), the asymptotic behavior
is quite poor in the CR-ML case, notably for 𝜈 = 1.5 or 2,
and usage of the optimal criterion allows stabilizing it. Finally,
while quantization results approach their asymptotics only for
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high rates, we see that for low rates (e.g., 5 - 10 bits per
sample) the CR-MDL criterion outperforms systematically the
ML criterion in the CR case.

5) Summary: In the CR case the CR-MDL criterion outper-
forms systematically the ML criterion (used in [6]) for high
and moderately low rates (see the bottom row of figure 2). As
compared to quantization using mixtures of Gaussian distribu-
tions with HR-optimally estimated parameters [7], [11], using
mixtures of Laplacian distributions is beneficial for a small
number of components (up to 16) in the CR case (see the top
middle row of figure 2) and for any number of components we
have tested in the CE case (see the top right row of figure 2).
Thus, both the optimal estimation criteria and non-Gaussian
modeling have their advantages for this task.

V. DISCUSSION AND CONCLUSION

We have proposed a framework of asymptotically optimal
model estimation for quantization. This framework generalizes
previous works to a wider family of model distributions,
including non-Gaussian ones. We have evaluated the proposed
estimation criteria and quantization schemes on synthetic data
and speech MLT coefficients. Experiments showed that in the
CR case the proposed CR-MDL criterion outperforms the ML
criterion in all cases, thus compensating for the mismatch
between model and data distributions.

It should be noted that such a “suboptimality” of the ML
criterion for quantization in the CR case is related with other
works and remarks in the literature. For example, Samuelsson
[8] has tuned some factor (that equals to

√
3 according to

theory) for his GMM-based quantization scheme10 so that to
optimize the performance. While no motivation was given in
[8] for this tuning, our frameworks provides an obvious one.
In fact, this factor scales with model standard deviations, and
the goal of this tuning was to compensate for the mismatch
between model and data distribution.

Our experiments on quantization of MLT speech coefficients
with flexible quantizers based on such non-Gaussian models
(e.g., scaled mixtures of Laplacian distributions) show that
they can be advantageous, as compared to Gaussian models.
The advantage of Laplacian distributions for speech was al-
ready shown for other applications (e.g., speech enhancement
[26] and source separation [27]), and we confirm it for the
coding application.

As for further research, an interesting direction would be to
develop practical flexible model-based quantizers for hybrid
rate constraints in-between CR and CE (e.g., as in [3]) and
to derive corresponding optimal model estimation criteria. A
practical advantage of such quantizers is that they would be
able to avoid the most severe outliers in distortion of CR
quantizers and the outliers in rate of the CE quantizers.

APPENDIX A
DERIVATION OF THE EMPIRICAL MISMATCHED

OPERATIONAL RDF (EQS (16), (17), (18))

Let s = {𝑠𝑛}𝑁𝑛=1 a sequence of vectors to quantize. Let
𝒜 = {𝐴𝑚}𝑚∈ℤ be a partition of ℝ𝑘 into half-open cubes of

10From [8]: “The factor 𝑐𝑐 in the encoding and decoding was experimen-
tally tuned to maximize either SNR or PESQ for each model at rate 2 (the
same factor was used at the other rates).”

side length 𝜀 > 0:

𝐴𝑚 =
{
𝑠 ∈ ℝ

𝑘
∣∣∣𝐽𝑖(𝑚) ≤ 𝑠𝑖

𝜀
< 𝐽𝑖(𝑚) + 1, 𝑖 = 1, . . . , 𝑘

}
,

where 𝐽𝑖(𝑚) = [𝐽1(𝑚), . . . , 𝐽𝑘(𝑚)] is a bijective mapping
between ℤ and ℤ

𝑘 . We consider a histogram-based empirical
density estimate with pdf

𝑝𝑆(𝑠∣s, 𝜀) = 1

𝜀𝑘𝑁

∑𝑁

𝑛=1

∑
𝑚∈ℤ

1𝐴𝑚(𝑠𝑛), (44)

where 1𝐴(⋅) is the indicator function of a subset 𝐴 ⊂ ℝ
𝑘.

For the results on mismatched operational RDFs (11), (12),
(13) to be applicable to the data and model distributions with
pdfs 𝑝𝑆(𝑠∣s, 𝜀) and 𝑓𝑆(𝑠∣𝜃), one needs to assure the sufficient
conditions of Theorem 2 of [17] and of Theorem 2 of [16]
are satisfied.

Sufficient conditions of Theorem 2 of [17] are:

CE.1 Differential entropy ℎ(𝑓𝑆 , 𝜃) =
− ∫

ℝ𝑘 𝑓𝑆(𝑠∣𝜃) log 𝑓𝑆(𝑠∣𝜃)𝑑𝑠 exists and it is finite.
CE.2 For every optimal quantizer 𝑄 its entropy

𝐻𝑓𝑆 ,𝜃(𝑄) = −∑
𝑗

∫
𝑉𝑗

𝑓𝑆(𝑠∣𝜃)𝑑𝑠 log
∫
𝑉𝑗

𝑓𝑆(𝑠∣𝜃)𝑑𝑠
(where 𝑉𝑗 denotes quantization cells and the
summation is over all cells) exists and it is finite.

CE.3 𝑓𝑆(𝑠∣𝜃) = 0 implies 𝑝𝑆(𝑠) = 0 for all 𝑠.
CE.4 𝑝𝑆(𝑠)/𝑓𝑆(𝑠∣𝜃) is bounded.

Sufficient conditions of Theorem 2 of [16] are:

CR.1 There exist 𝛿 > 0 such that
∫
ℝ𝑘 ∥𝑠∥𝑟+𝛿(𝑝𝑆(𝑠) +

𝑓𝑆(𝑠∣𝜃))𝑑𝑠 < +∞.
CR.2 𝑝𝑆(𝑠) and 𝑓𝑆(𝑠∣𝜃) satisfy∫

ℝ𝑘 𝑝𝑆(𝑠)𝑓𝑆(𝑠∣𝜃)− 𝑟
𝑘+𝑟 𝑑𝑠(∫

ℝ𝑘 𝑓𝑆(𝑦∣𝜃) 𝑘
𝑘+𝑟 𝑑𝑦

)− 𝑟
𝑘

< +∞ (45)

We assume that for every 𝜃 and all the CE quantizers 𝑄 we
consider here conditions CE.1 and CE.2 are satisfied. We also
assume the model pdf 𝑓𝑆(𝑠∣𝜃) to be continuous and positive
in ℝ

𝑘. Finally, we assume that there exist 𝛿 > 0 such that∫
ℝ𝑘 ∥𝑠∥𝑟+𝛿𝑓𝑆(𝑠∣𝜃)𝑑𝑠 < +∞ and that

∫
ℝ𝑘 𝑓𝑆(𝑦∣𝜃) 𝑘

𝑘+𝑟 𝑑𝑦 <
+∞. With these assumptions and because of the fact that
𝑝𝑆(𝑠∣s, 𝜀) has a bounded support in ℝ

𝑘 conditions CE.3, CE.4,
CR.1 and CR.2 are satisfied.

Thus, we can write the mismatched operational RDFs
equations (11), (12), (13) for 𝑝𝑆(𝑠∣s, 𝜀) and 𝑓𝑆(𝑠∣𝜃). Doing so,
and tending 𝜀 to zero we obtain, due to continuity of 𝑓𝑆(𝑠∣𝜃),
the empirical mismatched operational RDFs expressed by (16),
(17) and (18).

APPENDIX B
DERIVATION OF THE CR MISMATCHED OPERATIONAL

RDF FOR FLEXIBLE QUANTIZERS (EQS (34), (36))

Since, because of orthogonality of 𝑈𝑛, the MSE distortion
measure is invariant under transform 𝑈𝑇

𝑛 (⋅−𝜇𝑛), we can con-
sider quantization of transformed data vectors y = {𝑦𝑛}𝑁𝑛=1

(𝑦𝑛 = 𝑈𝑇
𝑛 (𝑠𝑛−𝜇𝑛)) instead of quantization of s = {𝑠𝑛}𝑁𝑛=1,

without any loss of generality.
Let 𝑅𝑛,𝑖 be the rate spent for quantization of 𝑖-th dimension

of vector 𝑦𝑛, and 𝐷𝑛,𝑖 be the corresponding expected distor-
tion. Rewriting the CR empirical operational RDF defined by
Eqs (16) and (18) in the particular case of 𝑟 = 2, 𝑘 = 1,
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𝐶𝑟,𝑘 = 𝐶𝑠, 𝑅 = 𝑅𝑛,𝑖, 𝐷 = 𝐷𝑛,𝑖, 𝑁 = 1, and 𝑠1 = 𝑦𝑛
𝑖 , we

have the following relation between 𝑅𝑛,𝑖 and 𝐷𝑛,𝑖:

𝑅𝑛,𝑖 = −1

2
log2 𝐷𝑛,𝑖 +

1

2
log2

𝐶𝑠𝑓𝑌 𝑛
𝑖
(𝑦𝑛

𝑖 )
− 2

3(∫
ℝ
𝑓𝑌 𝑛

𝑖
(𝑧𝑖)

1
3 𝑑𝑧𝑖

)−2 , (46)

where 𝑓𝑌 𝑛
𝑖
(𝑦𝑖) is given by (28).

The overall average distortion 𝐷 (per dimension) can be
expressed as

𝐷 =
1

𝑘𝑁

𝑘∑
𝑖=1

𝑁∑
𝑛=1

𝐷𝑛,𝑖. (47)

Using (47), 𝐷𝑛,𝑖 expressed via (46), 𝑅𝑛,𝑖 expressed via
(33), and expression (28) for 𝑓𝑌 𝑛

𝑖
(𝑦𝑖), we obtain equation (34)

with 𝜓flex
CR (𝜃, s) defined by (36).

APPENDIX C
MISCELLANEOUS DETAILS ON IMPLEMENTATION

A. CR quantization with GGD

Here we consider the case of scalar CR quantization based
on a GGD, i.e., when 𝜂(⋅) = 𝑓GGD(⋅∣𝜈, 1) (see Sec. III-B). To
implement the optimal scalar compressor 𝜉 1

3
(⋅) and expander

𝜉−1
1
3

(⋅) (see Sec. III-C2) in this case, one only needs to
compute the cdf of the corresponding GGD and its inverse.
This simplification results from the fact that for the GGD
𝜂 1

3
(𝑥) = 3−1/𝜈𝜂(3−1/𝜈𝑥) (note that this is not a general

property).
The cdf of the centered GGD with unit variance and shape

parameter 𝜈 can be written as:

𝜉(𝑥) =
1

2

[
1 + sign(𝑥)𝛾

(
1

𝜈
, (𝛼(𝜈)∣𝑥∣)𝜈

)]
, (48)

where 𝛾(𝑎, 𝑦) is the lower incomplete Gamma function defined
as (we are using the Matlab definition of this function):

𝛾(𝑎, 𝑦) =
1

Γ(𝑎)

∫ 𝑦

0

𝑡𝑎−1𝑒−𝑡 𝑑𝑡. (49)

The inverse cdf is computed similarly using the inverse
upper incomplete Gamma function 𝛾−1(𝑎, 𝑦), i.e., the inverse
of 𝛾(𝑎, 𝑦) w.r.t. 𝑦. In our Matlab implementation we used
gammainc and gammaincinv functions to compute 𝛾(𝑎, 𝑦)
and 𝛾−1(𝑎, 𝑦).

B. CR-MDL criterion optimization for GGD

In the case of the GGD model considered in the experimen-
tal section IV-A the term 𝜙(𝜃, s) (38) becomes:

𝜙(𝜎, s) = 𝜒(𝜈)𝜎2
𝑁∑

𝑛=1

exp

[
2

3

𝛼(𝜈)𝜈

𝜎𝜈
∣𝑠𝑛∣𝜈

]
, (50)

where 𝜒(𝜈) = 3
2
𝜈

(
2Γ(1/𝜈)
𝜈𝛼(𝜈)

)2

is a constant that is independent
on 𝜎. To minimize this term we use either Newton’s method
or a gradient descent algorithm w.r.t. log 𝜎, instead of 𝜎, since

that incorporates a non-negativity constraint in the optimiza-
tion. The first and the second derivatives of 𝜙(𝜎, s) w.r.t. log 𝜎
needed for this optimization can be expressed as:

∂

∂ log 𝜎
𝜙(𝜃, s) = 𝜒(𝜈)𝜎2 [2𝜁0 − 𝜈 𝜁1] , (51)

∂

∂2 log 𝜎
𝜙(𝜃, s) = 𝜒(𝜈)𝜎2

[
2𝜁0 + 𝜈(𝜈 − 3)𝜁1 + 𝜈2𝜁2

]
, (52)

where

𝜁𝑙 =
𝑁∑

𝑛=1

[
2

3

𝛼(𝜈)𝜈

𝜎𝜈
∣𝑠𝑛∣𝜈

]𝑙

exp

[
2

3

𝛼(𝜈)𝜈

𝜎𝜈
∣𝑠𝑛∣𝜈

]
, 𝑙 = 0, 1, 2.
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