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ABSTRACT

We describe a coding scheme based on andio and speech quan-
tization with an adaptive quantizer derived from the autoregres-
sive model under high-rate assumptions. The main advantage of
this scheme compared to state-of-the-art training-based coders is
its flexibility. The scheme can adapt in real time to any partic-
ular rate and has a computational complexity independent of the
rate. Experiments indicate that, compared with a non-scalable
conventional fixed-rate code-excited linear predictive (CELP) cod-
ing scherme, our real time scalable coder with scalar quantization
performs at least as well in the constrained entropy case, and has
nearly identical performance for the constrained resolution case.

1. INTRODUCTION

Transmission networks are becoming increasingly heterogeneous.
The new network environment requires a new generation of flex-
ible coders that are able to adapt in real time to continuously
changing network conditions, and particulary to varving transmis-
sion rate. Most existing coders (e.g., CELP coders) require rate-
dependent off-line training, and, therefore, do not support such
flexibility.

The modern heterogeneous environment is not well served by
the ubiquitons CELP algorithm, since:

o CELP is not adaptable to any rate from a continuum of
rates. For every particular rate a new codebook must be
trained. Thus it is possible to use CELP for a predefined
set of rates, as for example in AMR-WBEB [1], but not for a
continunm of rates.

o Computational complexity grows exponentially with rate,
since it grows linearly with codebook size.

e Storage requirements grow exponentially with rate, since
the pre-trained codebooks must be stored.

o Quantization cell shapes are not locally optimal in signal
domain. In CELP, a fixed codebook in the excitation do-
main is mapped by a non-unitary transform (obtained from
linear predictive coding (L.PC) coefficients) to the signal
domain for every quantization frame. Since a non-unitary
transform does not preserve the squared error, the cell shapes
can be only optimal in excitation domain, not in signal do-
main. Evenifthe codebook is trained minimizing the squared
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error in the signal domain, the cell shapes can be optimal
only on average, but not for any local signal statistics.

In this paper we propose a flexible coding scheme that ad-
dresses all above-mentioned CELP shortcomings, while ensuring
performance comparable with training-based CELP algorithm. In
order to assure the rate-adaptability property of such a system,
it should be able to compute in real time quantizers appropri-
ate for any specified rate. The nse of probabilistic source mod-
els, combined with high-rate theory approximations [2], facilitates
the practical implementation of such computable quantizers, This
approach allows a computational complexity independent of the
rate [3]. It has low storage requiremnents independent of the rate
{no guantization tables need to be stored), and facilitates optimal
variable-rate quantization (constrained entropy guantization [4]).
Moreover, it uses quantizers with optimal (for scalar quantization
and under high-rate theory assumptions) cell shapes for the local
model-defined signal statistics.

For the probahilistic source model we use the autoregressive
{AR) model, which is commonly used to model the speech sig-
nal [5]. For each fixed-length signal block (frame) our approach
consists of two steps. The first one is the AR model estimation
and quantization of its parameters using some pre-trained Gaus-
sian mixture model (GMM) of the line spectral frequencies (LSF)
[3]. The second one is the signal frame quantization using the
quantized AR model. Both model and signal are quantized with
probabilistic model-based computable quantizers. Moreover, we
study both constrained resolution (CR) (constant rate) and con-
strained entropy (CE) (variable rate) quantization scenarios.

Our approach is related to [6, 7, 8]. Kim and Kleijn [6] demon-
strated that it is efficient to use a Gaussian signal model to encode
a speech segment directly, showing both theoretical and practical
advantages over the nbiquitous CELP coding scheme. Samuels-
son [7] applied the GMM model based quantization approach in-
troduced by [3] directly to the coding of the andio signal. We go
beyond these contributions: we use a single Gaussian model for
each signal block and use a theoretically optimal distribution of
rate between signal and model [9]. Li and Kleijn [8] recently pre-
sented a low delay coder nsing CE signal quantization with AR
model adapted in the backward manner, while in this paper we
study the forward AR model adaptation case.

The paper is organized as follows. The principles of Gaus-
sian model-based quantization under high-rate assumptions are de-
scribed in section 2. The architecture of our flexible coder is pre-
sented in section 3. The results and conclusions are given in sec-
tions 4 and 5 respectively.
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2. GAUSSIAN MODEL-BASED QUANTIZATION UNDER
HIGH-RATE ASSUMPTIONS

In this section we recall the principles of practical quantization
schemes with computable quantizers based on a single Gaus-
sian source model under high-rate theory assumptions. These
computable quantizers based on scalar quantization in the mean-
removed Karhunen-Loeve transform (KLT) domain are described
for both CR and CE cases. Extensions of these methods to the
GMM case can be found in [3] for CR case and in [4] for CE case.

We consider a K-dimensional source vector s
[51,...,5K]T, which is a realization of a random Gaussian
vector S = [S4,...,Sx|T with mean vector u and covariance
matrix ¥ (d.e., § ~ N (g, )} Let © = UAUT be the eigenvalue
decomposition of the covariance matrix, i.e., I/ is an orthogonal
matrix (V70 = Iyand A = diag{A,..., s} is a diagonal
matrix of eigenvalues.

We consider a CR quantization of a source vector s using
a fixed budget of B hits and mean squared error (MSE) distor-
tion. The quantization procedure is based on the companded scalar
quantizers in the mean-removed KLT domain, and it consists of the
following steps [3]:

1. Remove mean, apply the KLT, and normalize for standard
deviation v/ A (Eq. (1)).

Apply the optimal (for the Gaussian random variable) scalar
compressor, independently for each dimension & (Eq. (2)),

where ¢5(-) is the cumnlative distribution function for a Gauns-

sian random variable with zero mean and unit variance.

3. Apply a scalar quantizer uniform on the interval (0, 1) with
Ly = 25+ levels (Eq. (3)), where [-] denotes rounding and
By, is computed as in Eq. (4).

Compute codeword index (Eq. (5)), and transmit it to the
decoder.

5. At the decoder side the quantized source vector 4 is recon-
structed from ¢ by applving the inverse transforms corre-
sponding to equations (5), (2) and (1).

z o= ATUT(s— ) (1)
g P/ v/3) (2)
di = ([duLr —0.5]+0.5)/Ly (3)
Bi = B/K+05log (\/ Hf; NEY @

R T DRI | (5)

For the CE case with MSE distortion, uniform quantization is
asymptotically optimal [2]. Here we use scalar uniform quantizers
of fixed step size A in the mean-removed KLT domain, and the
quantization procedure can be summarized as follows [4]:

1. Remove mean and apply the KLT (Eq. (6)).
2. Quantize each dimension with a uniform scalar quantizer

having a constant step size A (Egs. (7) and (8)).

3. Again for each dimension, encode quantization index Cik
with a lossless entropy coder using the distribution pp, ()
defined by signal model as in equation (9), where py, () is
the probability density function (pdf) of Gaussian random
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variable ¥z with zero mean and variance Ay (i.e., Yy ~
N{0, M)y Note that v is a particular realization of this
random variable. We use an arithmetic coder as an entropy
coder, which gives an effective codeword length {; (in bits)

given by equation (10).

4. At the decoder the quantized source vector & is reconstructed
from vector of indices d = [dy,. . ., dx] by applying equa-
tion (8) and the inverse of the transform described by equa-
tion (6).

y = Uf(s—u) )
dp = [yx/4] o
o= der @®)
. Yet+A/2
pe ) = [ s ©)
Gp—A/2
e = —logylpp,(dw)) (10)

Note that both the described CR and CE quantization schemes
can run for any particular rate without any re-training, and have
computational complexities independent of the rate.

3. CODING ARCHITECTURE

In the proposed coding scheme the sampled input andio signal is
segmented into long blocks (frames) of 20 ms, and consequently
into small blocks {subframes) of fixed length of K samples. A
set of p-order linear predictive coding (LPC) coefficients is esti-
mated for every frame and interpolated (in the L.SF domain) for
subframes. Anexcitation variance is estimated for every subframe.

3.1. Signal model

Let {a:;}2_, and o be the LPC coeffitients and excitation vari-
ance estimated for subframe s. These parameters correspond to
the following AR model:
T -
Al T 1taiz—l+... +apz?’
For quantization of subframe s we use a two-step redundancy
removal: (i) the intra-frame redundancy is removed by AR model-
based KLT, (ii) the inter-frame redundancy is removed by AR
model-based “ringing” (or zero-input response) subtraction. Alto-
gether these two redundancy removal steps are translated by mod-
eling subframe s by a Gaussian random vector 5 distributed as:

S N, 3, (12)

where the mean vector r is the ringing from previous subframe
computed using LPC filter 1/A(z), and the covariance matrix 3. is
computed as:

(1)

Y=o (AT (13)
where 4 is a lower-triangular (K x K) Toeplitz matrix with as
first column [1, a4, .. .,a5,0,...,0]7.

Since the model parameters must be known as well at the de-
coder side, they are also quantized and transmitted. Thus, instead
of the covariance matrix ¥ from (12) we use its quantized version
3 computed from quantized LPC coefficients T4:},_, and quan-
tized variance 62, Instead of the ringing r from (12) we nse the
ringing £, which is computed from previous quantized subframe
using LPC filter 1/ A(z).
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3.2. Signal normalization

In this paper we do not consider any advanced model of percep-
tion, and the subframes are quantized using the MSE distortion.
However, in order to fit the segmental signal to noise ratio (SSNR)
criterion which we use for evaluation, every subframe must be nor-
malized by some gain § representing it’s energy. Note that this
normalization makes sense for CE quantization only, since it gov-
erns the number of bits spent for quantization of every particular
subframe. In the CR case, it does not change anything, since the
same number of bits is spent for each subframe. The gain g is esti-
mated as § = 1/ E[STS]|/K, which, given (12), can be expressed

as:
§ =2+ ulS)/K,

where tr[i] denotes the trace of matrix 3. Note that this normal-
ization is a simple model of perception. More advanced perceptual
models, like for example a perceptual weighting filter used in the
AMR-WB coder [1], can easily be integrated in our coding scheme
(see, e.g., [8]).

(14)

3.3. Coder structure

The structure of the proposed coder is shown on figure 1. Each
quantizer of the coder is based on a probabilistic model and can
run in either CR or CE quantization mode (see section 2 or [3, 4]).
The LPC are quantized using a GMM in the LSF domain. The vari-
ance o” is quantized using a single Gaussian in the log-domain.
The signal waveform (subframe) is quantized using a multivariate
Gaussian distribution (12). Thus, all the quantizers are computable
and can run at any rate.

[~ T TS
3 ; l\‘\§ Quantize
y « | !7// waveform S
input state from L 7 output
previous frame” .
N (7/3.2/8%)
\
A(z) N(7,X)
+ = =2
LPC estim. Variance e Compute
— and quant. estim. and =3 parameters
using GMM quant. A(z) of Gaussian
Encoder
Decoder

Fig. 1. Block diagram of the proposed encoder.

For each frame the LPC coefficients are estimated as described
in the AMR-WB [1] coder specification, converted to the .SFs and
quantized using some pre-trained GMM [3]. For subframes the
quantized 1.SFs are interpolated as in AMR-WB [1] and converted
back to LPCs. Thus, for each subframe s we obtain a set of LPC
coefficients {a;}7_,.

The “ringing” # from the previous subframe is computed by
passing zero excitation through the LPC filter 1/ A(z). The state of
this filter is updated by filtering through it the quantized excitation
¢ from the previous subframe (see Fig. 1).

The AR model variance o is estimated for each subframe as:

o2 = (ele)/K, (15)
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where e is the excitation computed by filtering the current sub-
frame without ringing (i.e., s — 7) through the filter A(z) with
zero initial state. This estimate is the maximum likelihood (ML)
estimate of the AR model variance. The variance is quantized in
log-domain using a single Gaussian distribution.

Given the ringing 7, quantized and interpolated LPC coeffi-
cients {&i}le, and quantized variance 62, the parameters of mul-
tivariate Gaussian distribution A/ (7, f]) are derived as described in
section 3.1.

The normalization gain § is computed using (14). The nor-
malized target vector # = s/§ is quantized using the correspond-
ing normalized multivariate Gaussian distribution A'(7/4, 3/4°).
The quantized subframe $ is obtained from the quantized target
vector & by multiplying it by the gain g.

3.4. Rate distribution between signal and model

Since both the signal s and the AR model parameters are quan-
tized, and the proposed system should adapt to any particular total
rate, we must decide in real time for each rate, what is the optimal
rate distribution between signal and model. In our recent study
[9] we showed theoretically that under high-rate assumptions the
optimal rate for model quantization is constant, i.e., it is indepen-
dent on the total rate. This fact significantly simplifies the design
of our flexible coding scheme. It means that when the total rate
changes, only the rate used for signal must be adjusted, and the
rate for model must be kept constant.

3.5. Ringing control

‘We have noted experimentally that for low rates (1-2 bits per sam-
ple) and for small subframe sizes (K = 5 - 10 samples) the present
system can become unstable. This instability problem arises from
the fact that there is a closed-loop between the ringing computa-
tion and estimation of the model variance (see Fig. 1). The concep-
tual problem is that the LPC coefficients {ai }le and the variance
o? are quantized, thus constrained, but ringing #, being a part of
the model as well, is not constrained at all. Thus for some low
rate, when there are not enough bits to quantize some subframe,
the ringing for the next subframe can be quite different from the
“true ringing” r (i.e., ringing computed from the non-quantized
excitation), and then all estimations can diverge because of the
above-mentioned closed-loop. We propose two different solutions
allowing to avoid this instability problem for the CR and CE cases
respectively.

For the CR case the solution consists of estimating the vari-
ance o based on the true ringing » computed from the non-
quantized previous subframe s instead of the quantized §. This
breaks the above-mentioned closed-loop, thus solving the instabil-
ity problem. This solution is satisfactory for the CR case, but not
for the CE case, since it decreases the likelihood of the signal (i.e.,
N(s; 7, ﬁ)) provoking outliers, resulting in unacceptable bursts in
the rate variation.

The solution for the CE case consists of introducing a mo-
dified distortion measure controlling the ringing variation during
quantization of the signal. Assuming that the model order p is
not greater than the subframe length K 1, the ringing for the next
subframe 7,4 is related to current quantized subframe $ through

In case when p > K, we just truncate the transform B{&) so that it
fits to the subframe length K.
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some linear transform B(&) (i.e., Fue = B(4)8), which depends
on LPC coefficients &. The same is valid for true ringing r s, i.e.,
Tox = B{&)s. We can define the following weighted distortion
measure:

du(s,8) = [(1— )]s — 31" + B B@)s — 8)II")/4",

where § is the normalization gain, and 8 € [0,1) is a constant
penalty factor that is small for low rates and zero for high rates
(the zero value corresponds to the standard unweighted case).
The distortion measure (16) can be represented as d. (s, §)
(s — &)7W(a,g)(s — &), where W{(4,3) = [(1 - B)*] +
B2Bi&)yT B(&)|/9° is a positive-definite sensitivity matrix. By
computing the Cholesky decomposition of the sensitivity matrix
one can obtain a linear transform H, such that for v = Hs dis-
tortion ., (s, &) becomes a squared error (see, e.g., [10] for more
details). Thus, CE quantization can be applied to « as described in
section 2. This solution eliminates the instability problem in the
CE case, and does not lead to an vnacceptable rate variation.

(16)

3.6, Computational complexity and storage requirements

The computational complexity of the proposed encoder, excluding
the complexity of the arithmetic coder, is summarized in table 1
with L being the length of a frame used for LPC estimation and
M being number of components of GMM used for LPC quantiza-
tion. The decoder’s computational complexity is lower, since the
decoder does not involve the estimation steps. We see once again
that the computational complexity does not depend on the rate, and
it is quite low, except the eigenvalue decomposition (EVD) com-
putation, which is of the order of (2{K®).

Table 1. Computational complexity of the proposed encoder.

Operation | every | Complexity
LPC coefficients estimation L samples || O(L*)
LPC ceefficients quantization L samples || O(Mp*)
Variance estimation & quant. K samples || O(Kp)
Signal subframe | EVD K samples || O(K")
guantization quantization | K samples || Q(K*)

The storage requirements are low. The only values that must
be stored are the parameters of the GMM used for LPC quantiza-
tion, which is of the order of Q(Mp®) values.

4. RESULTS

4.1. Comparison with CELP

We first compare the proposed coding scheme for both CR and CE
cases with a fixed-rate CELP coding scheme using a fixed excita-
tion codebook trained optimizing the signal domain squared error
criterion, as in [11]. For the comparison we used 10 sentences
of narrowband speech from TIMIT database. For all compared
schemes the LPC coefficients were not quantized, the subframe
length was five samples (K = 5), and the total rate was 19.2 kbps,
which is equivalent to 12 bits per subframe. The short subframe
length was chosen since the reference CELP scheme computa-
tional complexity grows exponentially when K increases {(given
the constant rate in kbps).
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The results in terms of SSNR together with optimal rate dis-
tributions between variance (or gain in case of CELP) and signal
rates (experimentally adjusted for every scheme) are given in ta-
ble 2. We see that, compared with a CELP with a codebook re-
trained for each tested rate, the performance of our scalable coder
in terms of SSNR is at least as good in the CE case and almost
as good in the CR case. It should be also mentioned that we use
scalar quantizers in the mean-removed KLT domain, while CELP
is based on vector quantization. By increasing K from 5 to 10
samples, and evaluating the proposed scheme for the same total
rate of 19.2 kbps, we obtain 18.5 dB and 20.43 dB SSNR for CR
and CE cases respectively. We are not able to perform practical
simulations for CELP using the same setting because of the exces-
sive computational load and memory requirerments.

Table 2. Comparison of the proposed scheme with CELP.
| CRcase | CEcase | CELP

Variance rate (bits/subframe) 3 2.7 5
Signal rate (bits/subframe) 9 9.2 7
SSNR (dB) 16.07 17.96 17.82

4.2. Rate vs, distortion

In this section we present the rate-distortion equations for the stud-
ied model-based signal quantizers under high-rate assumptions.
Since, as explained in section 3.4, the optimal rate spent for model
quantization is constant whatever the total rate is, we present these
rate-distortion equations only for the rate spent for signal transmis-
sion. Let = be quantized K -dimensional signal subframe drawn
from a random Gaussian vector X. The distribution of X is de-
fined by some model 6(z) = {#(z), $(z)}, which is assumed to
be already estimated and quantized. Let $3(z) = U (z)A(z)0(2)7
be the eigenvalue decomposition of covariance matrix ¥.{z).

In the CR case under high-rate assumptions the constant rate
Ror (inbits per subframe) is related to the average distortion Deg
{per dimension) as %:

) E
K 1 Nya(X);0, A(X)) ™3
— log, & MO E 17
2 OB {1:[ 1{(X) Zk: Ak(X)% }7 (17}

where y(z) = U(2)T(z — #(2)) (w(X) ~ N(0, A(z))) is the
vector z in the mean-removed KLT domain, N (-;0, Ax(z)) is the
pdf of its k-th compoenent, ¢ = 1/12 is the coefficient of quan-
tization of a scalar quantizer, and the expectation operation E[:]
means the averaging over all quantized subframes .

In the CE case the average rate Fog (in bits per subframe)
relates to the constant distortion D) op (per dimension) as [12]:

_ K D
Howr = *?1082 (ﬂ

22 ) = Plogu(p e (XA, (8)
Wherepxlé(-|é(:z))isthepdfofX.

2Relation (17) is derived from the rate-distortion function for scalar
quantizers from [12], using the rate distribution described by equation (4).
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Fig. 2. Rate-Distortion curves.

Thus, we see that in both the CR and CE cases, and under
high-rate assumptions, the rate depends linearly on the log of the
distortion with the scale factor K /2 and with an additive constant
which depends only on data and on modeling.

We compared the practical performance of the proposed cod-
ing scheme with the theoretical performance predicted under high-
rate assurnptions (Eqs. (17) and (18)) in both CR and CE cases, We
used the test material described in section 4.1. The AR model pa-
rarmeters (i.e., LPCand variance) were not quantized. Signal quan-
tization was performed at different rates (from 1 to 8 bits per sam-
ple). The distortion was measured as MSE in the gain-normalized
{Sec. 3.2) domain.

The results are plotted on figure 2 together with the theoretical
rate-distortion curves given by equations (17) and (18). We see
that, starting from the rate of 3 bits per sample, the practical coder
performance for both CR and CE cases follows the theoretical per-
formance predicted under high-rate assumptions.

4.3. Rate variation

Figure 3 presents the rate variation of the CE coder for one wide-
band speech sentence in two configurations: (i) without the per-
ceptual filter (i.e., as described in the paper), and (ii) using the
AMR-WB [1] perceptual filter (see, e.g., [8]). The average rate is
about 27 kbps. One can note that the rate variation is reasonable,
and has a smaller variance when the perceptual filter is applied,
which should be done in a practical coder.

5. CONCLUSION

We conclude that it is possible to build a practical flexible cod-
ing scheme that is able to adapt in real time to any particular rate,
and has low computational complexity and low storage require-
ments independently of the rate, with a performance equivalent to
training-based fixed-rate CELP at any rate. The performance of
the proposed high-rate theory-based scheme follows the theoreti-
cally predicted performance starting form the rate of three bits per
sample, and is close to the high-rate-theory derived rate-distortion
relation at lower rates. The rate variation of the variable-rate coder
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Fig. 3. Rate variation (for CE quantization).

{(based on the CE quantization) is reasonable, and does not require
significant flexibility of the transmission channel.
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